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Abstract 

The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the 
human gut. These microbes are not only important to maintain human health, but also closely related to the occur-
rence and development of various diseases. With the development of transplantation technologies, allogeneic trans-
plantation has become an effective therapy for a variety of end-stage diseases. However, complications after trans-
plantation still restrict its further development. Post-transplantation complications are closely associated with a host’s 
immune system. There is also an interaction between a person’s gut microbiota and immune system. Recently, animal 
and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplanta-
tions, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hemat-
opoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus 
host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and 
clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and 
reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in alloge-
neic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship 
with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications 
after transplantation are also discussed. Further research in this new field needs to determine the definite relationship 
between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut 
microbial intervention methods to ameliorate complications after transplantation is warranted. A better understand-
ing of the relationship between gut microbiota and complications after allogeneic transplantation may make gut 
microbiota as a therapeutic target in the future.
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Background
There are more than one thousand microbial species 
living in the complex human gut ecosystem and most 
of these species are bacteria [1]. The microbial den-
sity in fecal matter is approximately 1013 to 1014 cells/g 
with 70 % of the total microbes in the colon [2]. Micro-
bial communities in the gut are important in protect-
ing the host against pathogenic microbes [3–5] as well 

as regulating metabolic processes [6, 7], and have been 
regarded as peacekeepers [8] as well as a neglected endo-
crine organ [9]. Notably, gut microbiota can drive the 
maturation of host immune system [10]. It plays impor-
tant roles in the normal architecture of secondary lym-
phoid organs, differentiation of induced regulatory T 
cells (iTregs) and generation of immunoglobulin A (IgA)-
secreting B cells. However, gut microbial dysbiosis is 
associated with the development of inflammatory bowel 
disease [11, 12], obesity [2], diabetes [13, 14], colorectal 
cancer [15, 16], liver diseases [17], cardiovascular disease 
[18], nervous system diseases [19], etc.

Classical studies of gut microbiota are largely depend-
ent on culturing techniques, which can only culture 
10–30 % of gut microbiota [20–22]. In recent years, the 
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rapid development of advanced molecular technologies, 
such as polymerase chain reaction-denaturing gradient 
gel electrophoresis (PCR-DGGE), and next-generation 
sequencing (NGS) technologies, including 16S rRNA 
sequencing [23, 24] and metagenomic sequencing [25], 
has facilitated the analysis of a large number of microor-
ganisms in the gut.

Allogeneic transplantation is a potentially curative ther-
apy for a large number of end-stage diseases. However, 
complications after transplantation, such as infections, 
rejection, graft-versus-host disease (GVHD) and relapse, 
remain challenges of its widespread use [26–30]. Moreo-
ver, infections have also been associated with episodes 
of acute and chronic rejection [31]. It is usually thought 
that tissue microbiota has a major influence on local 
immunity. However, gut microbiota is also thought to 
impact distal immune responses and modulate diseases 
in distant tissues in conditions, such as liver diseases 
[17], cardiovascular disease [18], rheumatoid arthritis 
and obesity. Thus, alloimmune responses to transplanted 
organs may also be influenced by gut microbiota. In 
recent years, many animal and human studies have indi-
cated that gut microbial dysbiosis is closely linked with 
allogeneic transplantation, such as liver transplantation, 
small bowel transplantation, kidney transplantation and 
hematopoietic stem cell transplantation, and especially 
with post-transplantation complications.

Gut microbiota and the immune system
A large number of studies have shown that post-trans-
plantation complications are closely related with the 
immune system [32–34]. To clarify the relationship 
between gut microbiota and allogeneic transplantation, 

it is very important to discuss the interplay between 
gut microbiota and the host’s immune system [35, 36] 
(Fig. 1).

It has been proven that the intestinal immune system 
can maintain gut bacteria homeostasis and prevent dys-
biosis (Fig.  1). Epithelial, mucosal and immune cells at 
barrier surfaces of the intestinal tract all are important in 
maintaining gut microbial homeostasis and modulating 
microbes by producing mucus, antimicrobial peptides or 
luminal immunoglobulins. Some immune cells are inter-
calated between intestinal epithelial cells (IECs), such as 
intraepithelial lymphocytes (IELs), or underneath the 
epithelium, such as lamina propria immune cells. Others 
are organized into intestinal lymphoid structures, includ-
ing isolated lymphoid follicles (ILFs), Peyer’s patches 
(PPs) and mesenteric lymph nodes (MLNs). Impair-
ment or lack of these immune structures may lead to gut 
microbial dysbiosis. For example, Gram negative bacteria 
were over-represented in mice lacking ILFs [37].

Gut microbiota is also important to a host’s immune 
system. In transplantation, T cells are important in trans-
plant rejection. Interestingly, several studies found that 
specific gut bacteria species can promote T cell differ-
entiation. In rats, Th17 cell differentiation can be stimu-
lated by Segmented filamentous bacteria (SFB) [38] and 
Lactobacillus johnsonii [39]. Gut microbiota may also 
contribute to the generation of memory alloreactive T 
cells. Hand et  al. [40] found that, during a gastrointes-
tinal infection, both the pathogen and intestinal com-
mensal bacteria could cause immune responses and lead 
to commensal-reactive T-cell memory. Anticommen-
sal T-cell memory may result in a pool of memory cells 
with cross-reactive T-cell receptors (TCRs). In addition, 

Fig. 1  The interplay between gut microbiota and host’s immune system. Host’s immune system keeps gut microbiota stable and prevent out-
growth of pathogenic species by production of antimicrobial peptides (AMP) creating a sterility gradient, mucus separating the microbiota from the 
host, and secretory IgA neutralizing biologically active antigens. Gut microbiota are also important to the generation of optimal immune responses, 
including triggering differentiation of Th17 and regulatory T cells, driving generation of memory T cells and controlling maturation of NKT cells. 
MAMPs microbial-associated molecular patterns, IEL intraepithelial lymphocyte, IEC intestinal epithelial cell and Treg T regulatory cell
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several gut microbe species have been shown to promote 
expansion or differentiation of forkhead box protein 3 
(Foxp3)-expressing regulatory T cells (Tregs). Some of 
these colonic Tregs recognize microbial antigens [41, 
42]. Additionally, colonic Tregs are increased in germfree 
mice with a set of defined benign commensals termed 
altered Schaedler flora [43]. Indigenous Clostridium 
species have the potential to promote colonic inducible 
Treg (iTreg) differentiation [44]. Moreover, commensal 
gut microbiota can also control the development and 
maturation of mucosal and systemic natural killer T cells 
(NKTs) [45] and help the development and maturation of 
lymphoid structures [46].

Collectively, these data indicate that gut microbiota 
can interact with the immune system. Determining the 
relationship between gut microbiota and transplant com-
plications, including infections, rejection, GVHD and 
relapse after transplantation, is urgent.

Gut microbiota and allogeneic transplantation
In recent years, the progress of microbial detection 
technologies has facilitated studies evaluating the rela-
tionship between gut microbiota and allogeneic trans-
plantation. Many animal experiments and human studies 
have shown that gut microbiota is altered after alloge-
neic transplantation. When postoperative complications 
occur, gut microbiota populations and diversity are in a 
more significant dysbiosis (Table 1).

Liver transplantation
Thus far, the gut microbial status after LT has been mostly 
studied in animals. To investigate intestinal microbial lev-
els and bacterial translocation (BT) following LT, Yu et al. 
[47] performed a study on male Brown-Norway (BN) 

rats. They found that the number of Bifidobacterium 
and Lactobacillus in the feces was markedly decreased 
in rats following a LT. However, Enterobacteriaceae and 
Enterococcus counts were significantly increased com-
pared with rats without a LT. Moreover, the incidence 
of BT to the liver, spleen and mesenteric lymph nodes 
after the LT was increased. Recently, due to the develop-
ment of technologies to detect gut microbiota, the char-
acteristics of gut microbiota after LT are more accurate. 
Using PCR-DGGE, Xie et  al. [48] found a similar result 
as Yu et al. [47] in Sprague–Dawley rats. Moreover, one 
month after orthotopic LT (OLT), the microbial altera-
tion did not completely return to normal in cirrhotic 
rats. In studying fresh feces samples from participants 
in China, real-time quantitative PCR data of six interest-
ing gut bacteria showed that Eubacteria, Bifidobacterium 
spp., Faecalibacterium prausnitzii and Lactobacillus spp. 
were significantly decreased following the LT and that 
Enterobacteriaceae and Enterococcus spp. were signifi-
cantly increased [49]. Over time after LT, bacteria, except 
for Enterococcus spp., showed the potential to restore to 
normal. [49]. A later study [50] found that the fecal Lac-
tobacilli population in patients with hepatitis B cirrhosis 
treated with LT was simpler than in healthy people.

Acute rejection (AR) and infection remain life-threat-
ening complications after LT. In recent years, gut micro-
bial features after LT with complications have been 
evaluated in several studies. A study that monitored gut 
microbial alteration in rats after an OLT using PCR-
DGGE showed that the gut microbiota in rats with AR 
after an OLT was dominated by Bacteroides and Rumi-
nococcus overgrowth. These changes were associated 
with elevated plasma endotoxin and a higher rate of BT 
[51]. By dynamically detailing the intestinal microbial 

Table 1  Changes of gut microbiota in complications after transplantation

LT liver transplantation, SBT small bowel transplantation, KT kidney transplantation and HSCT hematopoietic stem cell transplantation

Complications Changes in microbiota Animal/human studies

LT Acute rejection Bacteroides and Ruminococcus ↑ [51] Animal study

Phylum Bacteroidetes ↑ phylum Firmicutes ↓ [52] Animal study

Infection Bifidobacterium dentium ↑ [53] Human study

Chronic bile duct hyperplasia Enterococcus and Enterobacteria  ↑Bifidobacterium and Lactobacillus ↓ [56] Animal study

SBT Acute rejection Phylum Proteobacteria ↑ phylum Firmicutes ↓ [61] Human study

Chronic rejection Escherichia coli, Bacteroides spp. and Clostridium spp. ↑ Lactobacillales ↓ [62] Animal study

KT Diarrhea Bacteroides, Ruminococcus and Coprococcus ↓ [63] Human study

Urinary tract infection Enterococcus ↑ [63] Human study

Acute rejection Bacteroidetes ↓ [63] Human study

HSCT Graft-versus-host disease Enterococci ↑ [66] Human study

Lactobacillales ↑ Clostridiales ↓ [69] Animal study

Escherichia coli ↑ [70] Animal study

Enterococci and Bacteroides/Prevotella spp. ↑ [78] Animal study



Page 4 of 11Wang et al. J Transl Med  (2015) 13:275 

characterization with PCR-DGGE, Ren et  al. [52] ana-
lyzed gut microbiota of ileocecal contents in rats follow-
ing an OLT. They found that microbial populations and 
diversity were decreased during AR with a decrease in 
phylum Firmicutes and increase in phylum Bacteroidetes. 
Lu et  al. [53] prospectively analyzed the predominant 
intestinal microbiota of 12 patients before LT and at three 
weekly postoperative follow-up visits within the first 
month. Their DGGE profile results showed that patients 
with an infection had a substantial decrease of intestinal 
microbial diversity. Moreover, fecal DGGE profiles of 
two patients who had infections showed Bifidobacterium 
dentium, which is reported to mainly survive in the oral 
cavity [54] but is able to survive in an abnormal intestine 
[55]. Compared to a normal group, rats with chronic bile 
duct hyperplasia after allogeneic liver transplantation 
had remarkably reduced numbers of Bifidobacterium 
and Lactobacillus, whereas Enterococcus and Enterobac-
teria were significantly increased [56]. Intestinal bacte-
ria also had a link with increased ischemia/reperfusion 
injury assessed by transaminase expression in a mouse 
model of OLT [57]. Flagellin, a TLR5 agonist, can be 
shed by gut bacteria and up-regulated intercellular adhe-
sion molecule 1 on hepatic sinusoidal endothelium. As a 
result, liver-derived Kupffer cells are activated. Kupffer 
cell proliferation and MHC Class II expression are then 
enhanced. Phagocytic activity is suppressed and results 
in enhanced ischemia/reperfusion injury [57].

Small bowel transplantation
Recently, studies were also performed to study the 
relationship between gut microbiota and small bowel 
transplant. Hartman et  al. [58] used qPCR to assay the 
bacterial population in the small bowel lumen over time 
in 17 small bowel transplant patients. Surprisingly, the 
post-transplant microbial community was dominated by 
Lactobacilli and Enterobacteria, which are both typically 
facultative anaerobes. This is significantly different from 
normal colonization, which is dominated by the strict 
anaerobes Bacteroides and Clostridia. They also found 
Lactobacilli and Enterobacteria in patients with ileosto-
mies who had not received a transplant. However, after 
surgical closure of the ileostomy, colonization reverted 
to the normal strict anaerobes. Thus, the authors sug-
gested that an ileostomy itself might be a primary eco-
logical determinant in shaping microbiota. Additionally, 
they indicated that there was robust small bowel ecologi-
cal resilience after SBT. Fungi form a diverse microbial 
community in the human intestine. Little is known about 
the succession of species after SBT. Li et al. [59] initially 
reported temporal alterations in fungal communities in 
patients after an intestinal allograft. DGGE data showed 
that Saccharomyces cerevisiae and Kluyveromyces waltii 

dominated the fungal microbiota in patients with a SBT. 
Some species, including Candida spp., Cryptococcus neo-
formans, Fusarium oxysporum, Aspergillus clavatus and 
Trichophyton verrucosum, were present early after the 
SBT. These results may provide novel insight into the 
roles of the fungal microbiota in the pathophysiology of 
the transplanted intestine.

There is a close relationship between gut microbial 
dysbiosis and complications, such as GVHD and rejec-
tion, after SBT. In a heterotopic rat model following SBT, 
Price et  al. [60] found that rejection and GVHD were 
associated with shifts in gut microflora toward poten-
tially pathogenic organisms (Staphylococcus epidermidis) 
and bacterial translocation into recipient tissues posed 
a major threat for the development of sepsis. By pyrose-
quencing 16S ribosomal RNA gene tags, Oh et  al. [61] 
indicated that, during episodes of rejection after SBT, 
the proportions of phylum Firmicutes and order Lacto-
bacillales in ileal effluents were significantly decreased. 
However, those of phylum Proteobacteria, especially the 
family Enterobacteriaceae, were significantly increased. 
A receiver-operating characteristic analysis revealed that 
the presence of Firmicutes could be used to discriminate 
between non-rejection and active rejection. A DGGE 
analysis of the luminal and mucosal microbiota com-
positions in chronic rejection (CR) rats 190  days after 
SBT revealed that the gut microbiota in the CR rats had 
a decrease in the abundance of Lactobacillales bacteria, 
but an increase in Escherichia coli, Bacteroides spp. and 
Clostridium spp. [62].

Kidney transplantation
Very recently, the gut microbial characteristics after 
kidney transplantation have been shown in two clini-
cal studies. Lee et  al. [63] prospectively enrolled 26 
kidney transplant recipients and collected serial fecal 
specimens during the first 3  months after transplanta-
tion. Fecal microbial composition was identified using 
a PCR amplification of the 16S rRNA V4–V5 variable 
region and deep sequencing using the Illumina MiSeq 
platform. As a result, compared to pre-transplantation 
specimens, Proteobacteria was increased in specimens 
after kidney transplantation. In patients with post-trans-
plant diarrhea, the diversity of fecal microbiota was lower 
than those without diarrhea. In addition, Bacteroides, 
Ruminococcus and Coprococcus were significantly lower 
in the patients with diarrhea. A principal coordinate 
analysis revealed significant differences in fecal micro-
bial composition between the AR and non-AR groups. 
Urinary tract infections with Enterococcus and fecal 
abundance of Enterococcus were also noted. Another 
clinical study [64] also noted specific differences in pre-
transplant microbiota of rectal samples during rejection 
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events and infectious complications after transplanta-
tion. Rejection events were correlated with significant 
decreases in Anaerotruncus, Coprobacillus, Coprococcus 
and an unknown member of the Peptostreptococcaceae 
(all from phylum Firmicutes) in four patients compared 
to 14 patients without adverse events post-transplant. 
In the four patients with post-transplant infections, the 
genus Anaerotruncus (phylum: Firmicutes) was markedly 
decreased compared to 14 control samples. These find-
ings suggest that specific microbiota features have the 
potential to be markers to predict patient history even 
before transplantation. In addition, in rectal swab sam-
ples, more significant microbial changes were observed 
between pre-transplant and 1-month post-transplant 
time points, than between 1-month and 6-month post-
transplant time points. Moreover, Firmicutes accounted 
for the majority of bacterial genera, with significant 
changes between pre-transplant and 1-month post-trans-
plantation time points.

Hematopoietic stem cell transplantation
Autologous or allogeneic hematopoietic stem cell trans-
plantation (HSCT) is a potentially curative treatment for 
various malignant and nonmalignant disorders. Bone 
marrow transplantation (BMT) is a type of HSCT. Graft-
versus-host disease (GVHD), infections and relapse 
remain the major complications of HSCT and remain 
huge challenges for more widespread and effective use of 
this potent therapy.

Several studies revealed that HSCT was related to gut 
microbial alterations. In one study, intestinal micro-
biota of patients was characterized using 454 pyrose-
quencing of bacterial 16S ribosomal RNA genes. During 
allo-HSCT, the diversity and stability of the intestinal 
microbiota were disrupted and became dominated by 
bacteria associated with subsequent bacteremia [65]. 
Using next-generation sequencing technology, a relative 
shift toward Enterococci was observed in stool speci-
mens after transplantation, which was more pronounced 
with antibiotic prophylaxis and treatments for neutro-
penic infections [66]. At the time of admission, patients 
showed a predominance of commensal bacteria. Using 
454-pyrosequencing of 16S rRNA genes, Montassier 
et al. [67] first observed a significant reduction in alpha 
diversity and marked differences in the composition 
of intestinal microbiota in response to chemotherapy. 
Chemotherapy was associated with a drastic drop in Fae-
calibacterium and increase in Escherichia. Mortality out-
comes seem to be related with gut microbiota because 
patients with significantly worse mortality outcomes had 
lower gut microbial diversity [68].

Several studies have shown that gut microbial dysbiosis 
may have a link with complications after HSCT, including 

GVHD. In mouse models and patients with GVHD after 
BMT, Jenq et al. [69] observed a loss of microbial diver-
sity and Clostridiales and expansion of Lactobacillales in 
intestinal microbiota. Eliminating Lactobacillales from 
the gut flora in mice before BMT could cause GVHD. 
When reintroducing a predominant species of Lactoba-
cillus, GVHD was alleviated. After HSCT, a relative shift 
toward Enterococci in intestinal microbial communities 
was also found. Specifically, the shift was prominent in 
patients who subsequently developed or suffered from 
active gastrointestinal GVHD [66]. In another study, mice 
with GVHD lost microbial diversity and overwhelmingly 
expanded otherwise rare bacteria Escherichia coli. There 
was a close correlation between alterations in the intesti-
nal microbiota and GVHD severity [70].

Gut microbiota, complications and the immune 
system
As discussed above, gut microbial dysbiosis and compli-
cations after transplantation coexist. However, the role 
of a host immune system in the correlation between gut 
microbial dysbiosis and complications is rarely stud-
ied. Similar to pathogens, gut microbes express micro-
bial-associated molecular patterns (MAMPs) such as 
lipopolysaccharides (LPS) that can be sensed by special-
ized receptors on various cells, including immune and 
gut endothelial cells, to communicate with the immune 
system. There are a variety of pattern recognition recep-
tors (PRRs). The most studied ones are Toll-like recep-
tors (TLRs)  and NOD-like receptors [71]. Intracellular 
adaptors are indispensable in transferring PRR signaling 
information and MyD88 is the most studied one, which 
is a molecule downstream of all TLRs except TLR3. After 
being exposed to MAMPs, PRR signaling in cells can pro-
mote the expression of major histocompatibility complex 
(MHC) and costimulatory molecules, particularly on 
antigen-presenting cells (APCs) and some endothelial 
cells [72]. As a result, cytokines such as tumor necrosis 
factor (TNF), type I interferons (IFNs), interleukin-1 (IL-
1) and IL-6 are produced.

The liver can maintain tolerance against harmless anti-
gens derived from commensal bacteria, even if com-
mensal bacteria escape from the gut [73]. However, this 
surveillance could be temporarily perturbed after liver 
transplantation. After liver transplantation and during 
AR, loss of intestinal microvilli, tight junction damage, 
decrease in fecal secretory IgA and increases in blood 
bacteremia, endotoxin, and TNF-α were detected, along 
with dysbiosis of gut microbiota [52]. Furthermore, acute 
rejection of small intestine allografts was associated with 
increased TLR expression [74].

There is growing evidence that bacteria and innate 
PRRs are critically involved in the pathogenesis of 
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acute GVHD after allogeneic stem cell transplanta-
tion. In experimental models, reduced GVHD severity, 
preserved graft-versus-leukemia effects and improved 
overall survival were found in allo-HSCT recipients 
that were treated with either anti-endotoxin neutral-
izing antibodies [75, 76] or an oral LPS inhibitor [77]. 
Alpha-defensins can selectively kill noncommensal 
microbes, but preserve commensal ones. However, Eri-
guchi et  al. [70] discovered that Paneth cells were tar-
geted by GVHD, which resulted in an obvious reduction 
in the expression of alpha-defensins. Moreover, Heime-
saat et al. [78] analyzed both gut microbiota composition 
and impact of bacterial sensing via TLRs in intestinal 
GVHD (iGVHD). When iGVHD occurred after HSCT, 
gut microbiota shifted towards Enterobacteria, Ente-
rococci and Bacteroides/Prevotella spp. An analysis of 
iGVHD in MyD88(−/−), TRIF(−/−), TLR2/4(−/−), 
and TLR9(−/−) recipient mice showed that bacterial 
sensing via TLRs was essential for iGVHD develop-
ment. Increasing numbers of apoptotic cells, proliferat-
ing cells, T cells and neutrophils were found within the 
colons of mice with acute iGVHD. However, compared 
with wild-type controls, these responses were markedly 
reduced in MyD88 (−/−), TLR2/4(−/−), TRIF(−/−) 
and TLR9(−/−) mice. Meanwhile, TLR9(−/−) mice 
had increased survival rates, whereas TRIF(−/−) and 
TLR2/4(−/−) mice were not protected from mortality. 
These results not only emphasize the critical role of gut 
microbiota, innate immunity and TLR9 in iGVHD but 
also highlight an anti-TLR9 strategy as a potential novel 
therapy for iGVHD after HSCT. However, TLR-4 can be 
activated by MAMPs, especially LPS, and was found to 
be critical in inducing tissue protective factors and for 

protection against intestinal cell apoptosis during acute 
GVHD [79].

Antibiotics, probiotics and prebiotics
To prevent or treat complications and ameliorate the 
imbalanced gut microbiota after allogeneic transplanta-
tion, gut microbial intervention methods are used. Anti-
biotics, probiotics and prebiotics are most often used. 
Promising and encouraging results have been obtained 
(Table  2). However, the role of intestinal decontamina-
tion in allogeneic transplantation is still controversial.

Colonization of the intestinal tract by various micro-
biota precedes infection in many cases, including LT. 
That lead to the evolution of selective digestive decon-
tamination (SDD), which is initially described by 
Stoutenbeek et  al. [80]. SDD aims to reduce the Gram 
negative and yeast flora in the gastrointestinal tract 
using antibiotics and antifungals to prevent infections. 
An early study [81] suggested that SDD could sig-
nificantly reduce Gram negative aerobic bacteria and 
Candida colonization in the gut. It appeared to reduce 
the high incidence of infection related to these organ-
isms in the early post-transplant period. However, in 
another study, after performing an SDD with norfloxa-
cin, thirty-two patients had at least one episode of a 
major bacterial infection. Furthermore, the number of 
Gram positive microorganisms was greater than that 
of Gram negative rods and anaerobes [82]. Zwave-
ling et  al. [83] found that SDD did not prevent infec-
tions in patients undergoing an elective LT. However, 
it did affect the type of infection. It demonstrated that 
Gram positive cocci infections replaced Gram nega-
tive bacilli and Candida species infections. Two recent 

Table 2  The results of different gut microbial intervention methods

LT liver transplantation, SBT small bowel transplantation, HSCT hematopoietic stem cell transplantation, KT kidney transplantation, LAB actic acid bacteria, SDD 
selective digestive decontamination and TGID total gastro-intestinal decontamination

Intervention methods Results Animal/human study

LT SDD [81–85] Reducing the high incidence of infection [81] Human study

Gram-positive microorganisms infection predominated over Gram-negative  
rods and anaerobes [82]

Human study

No infection prevention [83–85] Human study

Antibiotics [57] Partly ameliorating enhanced ischemia/reperfusion injury Animal study

LAB and fibers [87] Reducing bacterial infection rates Human study

Only fibers [87] Reducing incidence of severe infections Human study

Probiobics [88, 89] Promoting partial restoration of intestinal microflora and improving intestinal  
barrier function [88]

Animal study

Reducing the liver injury by acute rejection [89] Animal study

SBT Probiotics [90] Ameliorating small bowel histological injuries and reducing BT Animal study

HSCT TGID [86] Preventing acute GVHD Human study

Polymyxin B [70] Ameliorating GVHD Animal study

Probiotics [91] Reduceing acute GVHD and improving survival Animal study
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studies showed that the use of SDD prophylaxis in LT 
patients affected the rate or distribution of infectious 
complications, duration of hospitalization, antibiotic 
use, or acquisition of resistant bacteria [84, 85]. How-
ever, enhanced ischemia/reperfusion injury assessed by 
transaminase expression in a mouse model of LT with 
down-regulated MAMP expression could be partly 
ameliorated using an antibiotic treatment [57]. Studies 
also found that GVHD after allogeneic BMT could be 
ameliorated by eliminating facultative and strict anaero-
bic microorganisms from the gastrointestinal tract with 
antimicrobial drugs in the period of time around the 
allogeneic BMT. Total gastrointestinal decontamination 
(TGID) was used by Vossen et al. [86] with high doses 
of non-absorbable antimicrobial drugs while the graft 
recipient was maintained in strict protective isolation. 
As a result, a successful TGID of the graft recipient pre-
vented the development of acute GVHD after BMT. In 
another study, oral administration of polymyxin B could 
inhibit Escherichia coli outgrowth. Importantly, GVHD 
after HSCT was ameliorated [70].

Taking probiotics and prebiotics to regulate gut 
microbiota and reduce the incidence of complications 
after LT was also reported in several studies. Early 
enteric nutrition supplemented with a mixture of lactic 
acid bacteria and fiber reduced bacterial infection rates 
following LT. Treatment with only fiber led to a low 
incidence of severe infections [87]. In a BN rat study, 
Ren et al. [88] found that supplementation with probi-
otics, including Bifidobacterium and Lactobacillus, and 
long-term antibiotics promoted partial gut microbial 
restoration and improved intestinal barrier function in 
malnourished rats after LT. Similarly, after allograft LT 
in BN rats, Xie et al. [89] found that the numbers of Lac-
tobacillus and Bifidobacterium in the probiotic group 
were significantly greater than the antibiotic and allo-
graft groups. Liver injury was significantly reduced in 
the probiotic group compared with the allograft group. 
Moreover, the study revealed that probiotics mediated 
their beneficial effects through an increase of Treg cells 
and TGF-β and reduction of CD4/CD8 in rats with AR 
after LT [89].

Probiotic administration is also useful in ameliorating 
gut microbial dysbiosis after SBT. Compared with non-
treated hosts, small bowel histological injuries were sig-
nificantly ameliorated and BT was reduced in rats with 
6 days of probiotics treatment after SBT [90]. Similarly, 
in mice with an allogeneic stem cell transplantation, 
modifying the intestinal microbiota using the probiotic 
microorganism Lactobacillus rhamnosus resulted in a 
reduced translocation of enteric bacteria to the mesen-
teric lymph nodes, reduced acute GVHD and improved 
survival [91].

Conclusions and perspectives
With the improvement of transplantation techniques 
and postoperative recovery treatments, allogeneic trans-
plantation has become an effective therapy for a variety 
of end-stage diseases. However, various postoperative 
complications, such as infection, rejection and GVHD, 
still restrict the use of allogeneic transplantation. In 
recent years, because of the progress in microbial detec-
tion technologies, many animal and human studies have 
shown that populations and diversity of gut microbiota 
are altered after allogeneic transplantation. When post-
operative complications occur, gut microbiota popula-
tions and diversity are in a more significant dysbiosis. 
Furthermore, distinct gut microbial profiles could be 
potential diagnostic biomarkers of complications after 
transplantation [52, 61] and even predict a patient’s his-
tory before transplantation [64]. However, this needs 
to be confirmed in more studies. Whether microbial 
changes cause or follow complications after transplanta-
tion is still unclear.

In several studies, intervention methods, such as 
antibiotics, probiotics and prebiotics, could effectively 
regulate gut microbiota and reduce the incidence of com-
plications after transplantation. Thus, gut microbiota has 
the potential to be a novel therapeutic target to restrict, 
improve and even reverse complications after allogeneic 
transplantation. However, more studies revealing the def-
inite mechanism of these results are needed. The role of 
intestinal decontamination in allogeneic transplantation 
is still controversial. For example, several studies showed 
that selective perioperative intestinal decontamination 
did not reduce infectious complications after LT [83–85]. 
However, in HSCT, complete intestinal decontamination 
could significantly reduce the occurrence of postopera-
tive GVHD [86].

Recently, the study of gut microbiota after allogeneic 
transplantation has significantly progressed. However, 
there are still many limitations that need to be resolved. 
Thus far, most studies evaluating gut microbial charac-
teristics after allogeneic transplantation rely on rectal 
sampling only. However, the diversity and population of 
microbiota along the gastrointestinal tract are signifi-
cantly different. Gu et al. [92] found higher phylogenetic 
diversity in gastric, duodenal, large intestinal and fecal 
samples than jejunum and ileum samples. Moreover, a 
greater proportion of anaerobes, such as Bacteroidaceae, 
Prevotellaceae, Rikenellaceae, Lachnospiraceae, and 
Ruminococcaceae, were found in the large intestine and 
feces. However, a larger proportion of Lactobacillaceae 
were found in the stomach and small intestine. Inferring 
the status of the whole gut microbiota only by rectal sam-
ples may be a challenge. Therefore, the gut microbial pro-
files along the intestine should be studied in the future. 
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Many studies have been performed on rats. However, 
there are major differences in the gross anatomy, physiol-
ogy and food processed in gastrointestinal tract between 
a mouse and human. Consequently, a host’s gut micro-
biota may be highly divergent in species, as well. Overall, 
two major phyla, Bacteroidetes and Firmicutes, account 
for the dominant gut microbiota in humans and mice 
[93]. However, in genera taxonomic classifications, 85 % 
of bacterial genera found in mouse gut microbiota was 
not present in humans [94]. Thus, to obtain more cred-
ible and relevant results, more human studies are needed.

Using metagenomics to investigate fecal samples 
from 124 European individuals, the MetaHIT consor-
tium found more than one thousand microbial species 
in the human gut, and over 99 % of them were bacteria 
[1]. A core healthy human gut microbiome also has been 
explored and postulated to consist of three enterotypes, 
typified by the relative dominance of particular groups 
of organisms: Prevotella, Ruminococcus and Bacteroides 
spp. [95]. On average, individual microbiota could have 
long-term stability [96]. However, patients’ gut micro-
biota pre- and post-surgery [97] or drug consumption 
[98, 99] may be different. Gut microbiota can also be 
impacted by many other factors, including host genes 
[100], immune system [46], geography [101], age [102], 
weight [103], lifestyle [104], season [105] and diet [106]. 
For example, significant inter- and intra-individual vari-
ations in seasonal stabilities of the human gut microbi-
ota were found [107]. In addition, due to the difference 
in long-term dietary habits, the human gut microbiome 
abundance and proportions varied between United States 
individuals [108]. David et al. [109] also found that short-
term consumption of diets composed entirely of animal 
or plant products altered gut microbial community struc-
ture. Most transplant patients are put on special diet dur-
ing hospitalization, and gut microbiota can be impacted 
by diet alone. Antibiotics are usually used after allogeneic 
transplantation, which also can lead to the alteration of 
gut microbiota [110]. In future studies, these factors 
should be taken into account.

Current studies showing a relationship between allo-
geneic transplantation and gut microbiota were mainly 
concentrated in liver transplantation, small bowel trans-
plantation, kidney transplantation and hematopoietic 
stem cell transplantation. In addition, the role of a host’s 
immune system in the correlation of gut microbial dysbi-
osis and complications is rarely studied and is mostly lim-
ited to HSCT [111, 112]. Finding the definite microbiota 
effect on local and distal immune system that may lead to 
complications post-transplantation is important. Moreo-
ver, molecular pathways by which microbial signals can 
lead to complications after transplantation should be 
evaluated in future studies. Modulating infection and 

alloimmune responses after transplantation may become 
possible by identifying therapeutic targets. For example, 
in preclinical and clinical trials, agents that block TLRs 
are being tested to reduce pathology in septic or autoim-
mune patients [30]. These should be in-depth studies and 
extend to other types of transplantation.
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