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Abstract 

Background:  Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. HCC has a 
poor prognosis associated with tumor recurrence and drug resistance, which has been attributed to the existence of 
hepatic cancer stem cells (HCSCs). However, the characteristics and regulatory mechanisms of HCSCs remain unclear. 
We therefore established a novel system to enrich HCSCs and we demonstrate that these HCSCs exhibit cancer stem 
cell properties.

Methods:  We used miRNA and mRNA high-throughput sequencing data sets to determine molecular signatures 
and regulatory mechanisms in HCSCs. Paired miRNA and gene deep sequencing data in HCSCs versus HCC cells were 
used to identify candidate biomarkers of HCSCs. Using network analysis, we studied the relationship between miRNA 
and gene biomarkers, and KEGG pathway enrichment analysis was performed to study the function of candidate 
biomarkers.

Results:  We identified 9 up- and 9 down-regulated miRNAs and 115 up- and 402 down-regulated genes in HCSCs 
compared with HCC cells. A miRNA-gene network was constructed using 651 miRNA–gene interactions (between 7 
up-regulated miRNAs and 274 down-regulated genes), and 103 miRNA–gene interactions (between 9 down-regu-
lated miRNAs and 62 up-regulated genes). Pathway enrichment analysis identified five tumor invasion- and metasta-
sis-related pathways and MAPK signaling associated with HCSCs. We further discovered two novel pathways that likely 
play a role in the regulation of HCSCs.

Conclusions:  We identified a molecular expression signature and pathway regulatory mechanisms in HCSCs with 
potential diagnostic and therapeutic value.
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Background
Hepatocellular carcinoma (HCC) is one of the most 
common malignancies that accounts for 70–85% of liver 
cancers worldwide [1]. Although significant progress 
has been made in recent years regarding the treatment 
options for HCC, poor prognosis remains a problem 
because of late diagnosis, recurrence, and drug resistance 

[2]. While surgical intervention–the main treatment 
option for HCC–is effective in patients diagnosed at an 
early stage [3], the treatment of advanced liver cancer is 
more difficult and prognosis remains poor because of 
drug resistance [4], making recurrence almost inevitable 
[5]. Cancer stem cells (CSCs), which are critical for the 
initial growth and maintenance of the tumor, have been 
identified in liver cancers [6–8]. Recently, CSCs have 
been associated with tumor recurrence and drug resist-
ance in HCC [9, 10]. CSCs are potential targets for HCC 
diagnosis and treatment–it is therefore crucial that we 
study the regulatory mechanisms of CSCs.
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Several biological markers of hepatic cancer stem cells 
(HCSCs), including CD133 [10], CD90 [11], and EpCAM 
[12] have been identified. However, the characteristics 
and regulatory mechanisms of HCSCs remain unclear. 
We therefore established a novel system to enrich HCSCs 
and previously reported that these cells have CSC charac-
teristics [13].

MicroRNAs (miRNAs), a class of small non-coding 
RNAs, have been shown to play an important role in a 
variety of biological processes. Abnormal expression 
of miRNAs may impact the expression of hundreds of 
genes. Recently, with the development of microarray 
and high-throughput sequencing technology, miRNA–
mRNA interactions in cancers and other biological pro-
cesses have been extensively studied [14–16]. However, 
genome-wide miRNA–mRNA interactions in HCSCs 
remain largely unknown.

In this study, we performed high-throughput 
sequencing of HCSC small RNA and mRNA, and inte-
grated miRNA and mRNA data to identify biomarkers 
of HCSCs and to unravel HCSC regulatory networks. 
Our network analysis approach is summarized in 
Fig. 1.

Methods
Data
We used two human hepatoma cell lines (Hep3B and 
Huh7) from the American Type Culture Collection 
(ATCC) to culture stem-like cancer cells. We previ-
ously demonstrated that these cells have enhanced stem 

cell properties, drug resistance, properties of epithelial 
mesenchymal transition, and enhanced tumor-initiat-
ing capabilities [13]. Here, we analyzed the regulatory 
mechanism of these two types of HSCSc using miRNA 
and RNA sequencing data. MiRNA and gene expres-
sion data of hepatic cancer stem cells and cancer cells 
were sequenced using the Illumina Genome Analyzer, to 
a depth of 30-fold coverage. Details of the data sets are 
shown in Table 1.

Small RNA and mRNA libraries were sequenced on 
an Illumina Genome Analyzer II (Illumina, San Diego, 
CA, USA) according to the manufacturer’s instruc-
tions. Raw RNAseq reads were filtered for adapters 
and/or low-quality reads, followed by alignment to the 

Fig. 1  The network analysis pipeline.

Table 1  Details of data sets

Paired miRNA and gene deep sequencing datasets from the same sample of 
two hepatic cancer stem cells and two hepatic cancer cells were used. Detailed 
information about these datasets is provided in this table.

Data type Cell line Total reads Normalized

miRNA Hep3B-C 15440438 TPM

Huh7-C 10714837

Hep3B 16782602

Huh7 10622276

RNA Hep3B-C 5762058 RPKM

Huh7-C 5886142

Hep3B 6116344

Huh7 5998659
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human genome (NCBI Build 36.1) using NextGENe® 
software (Softgenetics, State College, PA, USA). Reads 
mapping to individual transcripts were counted digi-
tally, and the expression levels for each gene were 
normalized using reads per kilobase of exon model 
per million mapped reads (RPKM) [17]. For small 
RNA analysis, after filtering contaminant and redun-
dant reads, and reads smaller than 18 nt, clean reads 
were mapped to the human genome (NCBI Build 36.1) 
using SOAP [18]. Reads were then mapped to Riboso-
mal RNA (rRNA), Small cytoplasmic RNA (scRNA), 
small nuclear RNA (snRNA), small nucleolar RNA 
(snoRNA), and transfer RNA (tRNA) from GenBank. 
The remaining reads were searched against miRBase 
(release 17) [19]. Read counts of the annotated miR-
NAs were normalized using transcripts per million 
(TPM) [20].

Differential expression analysis
Genes and miRNAs differentially expressed between 
hepatic cancer stem cells and hepatic cancer cells were 
identified by calculating fold change values and using an 
established statistical method based on the Poisson dis-
tribution [21–23] to calculate p-values. The Benjamini–
Hochberg FDR method [24] was used to adjust p-values 
for multiple testing. MiRNAs and genes with an absolute 
log2 fold-change (expression of cancer stem cells/expres-
sion of cancer cells) ≥1 and an FDR ≤0.01 were consid-
ered statistically significant.

miRNA target prediction
Using the results from differential gene and miRNA expres-
sion (cancer stem cells vs. cancer cells), gene–miRNAs 
interactions were predicted using seven miRNA target com-
putational prediction methods: MicroCosm (Version 5) 
[25], microT (version 3) [26], miRanda (August 2010 avail-
able at http://www.microrna.org/microrna/home.do) [27], 
miRDB (version 4.0) [28], PicTar (four-way) [29], PITA (ver-
sion 6) [30], and TargetScan (version 5.2) (with total context 
score >−0.3) [31]. Except for TargetScan, we used default 
cut-off values. Interactions that occurred in at least two of 
these sources were considered for downstream analyses.

Pathway enrichment analysis
Pathway enrichment analysis was employed to investigate 
the regulatory mechanisms of significantly differentially 
expressed miRNAs. KEGG and DAVID Bioinformatics 
Resources 6.7 databases were used for pathway enrich-
ment analyses. The enriched pathways were defined by 
their enrichment of significantly differentially expressed 
miRNA target genes. For DAVID functional annotation, 
the Fisher’s exact test was used to calculate statistical sig-
nificance (p values) of enriched annotation terms, where 

a smaller p value implies enrichment, and a p-value 
≤0.05 was deemed significant.

Results
Identification of candidate biomarkers in hepatic cancer 
stem cells
Differential expression analysis was used to identify can-
didate biomarkers in hepatic cancer stem cells. Using 
deep sequencing, miRNAs and genes differentially 
expressed between stem cells (Hep3B-C, Huh7-C) and 
the paired cancer cells from which they were derived 
(Hep3B, Huh7) were identified. Data normalization 
and differential expression analysis are described in the 
“Methods” section.

For miRNAs, 250 (59.7%) up- and 18 (4.3%) down-reg-
ulated miRNAs were identified in Hep3B-C cells, while 
23 (5.4%) up- and 128 (30.2%) down-regulated miRNAs 
were identified in Huh7-C cells. Finally, we selected 9 
up- and 9 down-regulated miRNAs, that were consist-
ently altered in both stem cell lines (compared with their 
corresponding cancer cells), as candidate miRNA bio-
markers of HCSCs (Fig. 2a). Using the same two paired 
samples, differential gene expression analysis was per-
formed, which produced 1928 (13.0%) up- and 4264 
(28.8%) down-regulated genes in Hep3B-C (vs. Hep3B) 
cells and 1933 (13.1%) up- and 1935 (13.1%) down-reg-
ulated mRNAs in Huh7-C (vs. Huh-7) cells. As shown 
in Fig. 2b, 115 and 402 genes were consistently up- and 
down-regulated, respectively in the two stem cell lines; 
these miRNAs and genes were used for downstream 
analyses (Additional file  1: Table  S1, Additional file  2: 
Table S2).

miRNA‑gene regulatory network analysis
To investigate the function of differentially expressed 
miRNAs, miRNA target genes were identified and 
miRNA target networks were constructed. First, seven 
miRNA target computational prediction methods were 
used to predict potential miRNA target genes, while con-
sidering all human genes as potential targets. This yielded 
54,933 miRNA–target interactions between 18 differen-
tially expressed miRNAs and 15,058 genes. To verify the 
miRNA–gene regulatory relationship in HCSCs, differ-
ential gene expression was considered in the context of 
miRNA–mRNA interaction whereby 1,460 miRNA–gene 
interactions between 16 and 398 differentially expressed 
miRNAs and differentially expressed genes were selected 
(Table  2). Considering the mechanism of miRNA-
mediated mRNA down-regulation, 651 miRNA–gene 
interactions between 7 up-regulated miRNAs and 274 
down-regulated genes, and 103 miRNA–gene interac-
tions between 9 down-regulated miRNAs and 62 up-reg-
ulated genes were selected (this workflow is summarized 

http://www.microrna.org/microrna/home.do
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Fig. 2  Differentially expressed miRNAs and genes. a, b illustrate the selection of differentially expressed miRNAs and genes, respectively between 
stem and cancer cells. Two paired stem- and cancer-cell samples (Hep3B-C, Hep3B) and (Huh7-C, Huh7) were used here; miRNAs and genes consist-
ently up- or down-regulated in both sample pairs were selected.

Table 2  Details of target genes regulated by differentially expressed miRNAs

Seven miRNA target computational prediction sources were used to identify the interactions of miRNAs and genes. The miRNA-target interactions which occurred in at least 
two of these sources were considered. For each miRNA, the expression level of the target genes in HCSC and HCC was considered. The detail result is listed in this table

miRNA Up/down-regulation 
of miRNA (HCSC/HCC)

Number of target genes

Total predicted 
targets

Differentially 
expressed targets

Up-regulated  
targets (HCSC/HCC)

Down-regulated  
targets (HCSC/HCC)

Candidate 
targets

hsa-miR-100 Down 574 22 4 18 4

hsa-miR-210 Down 1180 33 5 28 5

hsa-miR-29c Down 3533 99 26 73 26

hsa-miR-181c Down 5492 141 15 126 15

hsa-miR-22* Down 2343 55 4 51 4

hsa-miR-15b* Down 1641 45 4 41 4

hsa-miR-199a-3p Down 3707 99 11 88 11

hsa-miR-199b-3p Down 3456 96 10 86 10

hsa-miR-149 Down 5100 116 24 92 24

hsa-miR-378d Up 7 0 0 0 0

hsa-miR-450b-5p Up 5865 146 8 138 138

hsa-miR-338-5p Up 5240 156 15 141 141

hsa-miR-760 Up 4249 113 32 81 81

hsa-miR-378 Up 3486 92 20 72 72

hsa-miR-215 Up 2878 81 11 70 70

hsa-miR-375 Up 3312 95 10 85 85

hsa-miR-1269b Up 12 0 0 0 0

hsa-miR-1269 Up 2877 71 7 64 64
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in Fig. 3). These interactions were then used as candidate 
miRNA–gene interactions to construct a miRNA–gene 
regulatory network (Fig. 4).

The network is an objective representation of all reg-
ulatory relationships between miRNAs and genes in 
HCSCs. Fig.  4a, b represent the regulatory networks of 
miRNAs up- and down-regulated in HCSCs compared 
with cancer cells, respectively. From Fig. 4, it is clear that 
up-regulated miRNAs interact with relatively more tar-
get genes compared with down-regulated miRNAs. Hsa-
miR-338-5p and hsa-miR-450b-5p, which have a large 
number of target genes, were the most important com-
ponents in the up-regulated miRNA regulatory network. 

In the down-regulated miRNA regulatory network, four 
target genes were exclusively regulated by has-miR-15b* 
and the down-regulated miRNA regulatory network 
could be divided into two sub networks. To identify the 
significance of this feature, the Fisher’s exact test was 
used here [32]. However there was no significant differ-
ence (p = 0.1149), suggesting that this feature may be the 
result of random chance. The importance of this feature 
requires further validation.

Using a ‘novel out degree’ (NOD), defined by Zhang 
et  al. [16], we measured the independent regulatory 
power of individual miRNAs. The NOD value repre-
sents the number of genes uniquely regulated by one 

Fig. 3  Workflow for the selection of candidate miRNA–gene interactions.
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specific miRNA. The distribution of miRNA NOD values 
is shown in Fig. 5. Consistent with the above result, there 
were more up-regulated miRNAs with large NOD values. 
The up-regulated miRNAs had larger independent regu-
latory power.

Analysis of stem‑cell‑associated miRNA pathways
Investigating miRNA-regulated pathways should help 
uncover the underlying mechanisms of stem cells. Using 
KEGG pathways, we performed enrichment analysis to 

identify stem-cell-related pathways. Significantly enriched 
KEGG pathways (p value <0.05) are shown in Table 3. To 
investigate the relevance of these pathways to cancer, we 
searched PubMed for published papers describing the 
roles of these pathways; published cancer-associated-func-
tions are listed in Table 4. Five pathways, enriched with up-
regulated miRNA targets, reportedly participate in tumor 
invasion and metastasis; these pathways are Cytokine-
cytokine receptor interaction, Regulation of actin cytoskel-
eton, Focal adhesion, Axon guidance, and Adipocytokine 

Fig. 4  miRNA regulatory network constructed with candidate miRNA–gene interactions. a shows the up-regulated miRNA regulatory network, 
which consists of 7 up-regulated miRNAs and 274 down-regulated genes. b shows the down-regulated miRNA regulatory network, which consists 
of 9 down-regulated miRNAs and 62 up-regulated genes. Pink nodes represent miRNAs and blue nodes represent genes. The size of miRNAs repre-
sents the number of candidate target genes; edges represent the relationship between miRNAs and genes.

Fig. 5  Distribution of miRNAs with different NODs. This figure shows the distribution of miRNAs with different NODs. NOD, defined in Zhang et al. 
[16], refers to the number of genes uniquely regulated by one specific miRNA. It characterizes the independent regulatory power of individual 
miRNAs.
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signaling pathway. Another important cancer-related 
pathway, MAPK signaling pathway, was also enriched 
with up-regulated miRNA targets. To study the function 
of up-regulated miRNAs in the context of these cancer-
related pathways, we constructed miRNA-gene-pathway 
regulatory networks. Fig.  6a shows the network for the 
five pathways related to tumor invasion and metastasis. 
Fig. 6b shows the network for the MAPK signaling path-
way, which is involved in HCC growth and survival. In 
these six cancer-related pathways, four genes (IL8, PRLR, 
EFNA1, and CHP2) were uniquely regulated by one spe-
cific miRNA each (hsa-miR-338-5p_IL8, hsa-miR-338-5p_
PRLR, hsa-miR-760_EFNA1, hsa-miR-450b-5p_CHP2).

However, two pathways, Terpenoid backbone biosyn-
thesis (hsa00900) and Synthesis and degradation of ketone 
bodies (hsa00072), have not previously been related to 
cancer. These two pathways were enriched with the target 
genes of down-regulated miRNAs (hsa00900_hsa-miR-
181c, has-miR-29c, hsa00072_hsa-miR-29c). The net-
work of these two pathways is shown in Fig. 6c.

Discussion
To better understand the characteristics of HCSCs 
established in our lab, we identified differentially 
expressed miRNAs and genes in HCSCs compared with 

hepatic cancer cells based on high-throughput sequenc-
ing datasets (9 up-regulated miRNAs; 9 down-regulated 
miRNAs; 115 up-regulated genes; 402 down-regulated 
genes). The relationship between these miRNAs and 
genes, and their pathway-level involvement were ana-
lyzed. With the aim of investigating regulatory mecha-
nisms in HCSCs, we constructed regulatory networks 
based on candidate biomarkers and enriched pathways 
in HCSCs.

We found a complex relationship between dif-
ferentially expressed miRNAs and genes in HCSCs. 
MiRNA–gene regulatory networks were constructed, 
and up-regulated miRNAs were found to regulate 
more target genes and have larger NOD values com-
pared with down-regulated miRNAs. This implies that 
up-regulated miRNAs might be more important in the 
regulation of HCSCs. We identified two up-regulated 
miRNAs (hsa-miR-338-5p, and hsa-miR-450b-5p) that 
down-regulate hundreds of genes. The number of tar-
gets for hsa-miR-338-5p and hsa-miR-450b-5p were 
141 and 138, respectively. The association of these two 
miRNAs with HCC and HCSCs has not previously been 
reported. Our results were obtained by computational 
methods only and further experimental validation is 
therefore required.

Table 3  Significantly enriched KEGG pathways (p-value <0.05)

KEGG database and DAVID Bioinformatics Resources 6.7 were used for pathway enrichment analyses of genes regulated by identified HCSC miRNA biomarkers. 
Significant enriched pathways (P value <0.05) are listed in this table.

miRNA Term_ID Term_name Gene_count Genes P-value

hsa-miR-29c hsa00900 Terpenoid backbone biosynthesis 3 HMGCR, HMGCS1, HMGCS2 0.00023

hsa-miR-29c hsa00072 Synthesis and degradation of ketone bodies 2 HMGCS1, HMGCS2 0.014

hsa-miR-181c hsa00900 Terpenoid backbone biosynthesis 2 HMGCR, HMGCS1 0.012

hsa-miR-338-5p hsa05200 Pathways in cancer 10 RARB, FZD4, ITGA2, IL8, FGF12, DAPK1, EGLN3, 
PDGFRA, LAMC2, FGF11

0.0036

hsa-miR-338-5p hsa04510 Focal adhesion 7 CAV1, CAV2, ITGA2, LAMC2, MYLK3, PDGFRA, VAV3 0.012

hsa-miR-338-5p hsa04810 Regulation of actin cytoskeleton 7 VAV3, MYLK3, PDGFRA, ITGA2, FGF11, TIAM2, FGF12 0.016

hsa-miR-338-5p hsa04920 Adipocytokine signaling pathway 4 JAK2, ACSL4, PPARGC1A, PRKAB2 0.026

hsa-miR-338-5p hsa04060 Cytokine-cytokine receptor interaction 7 CXCL12, GHR, INHBB, IL8, PDGFRA, PRLR, TNFSF4 0.038

hsa-miR-378 hsa04510 Focal adhesion 5 COL6A2, ITGA2, MYLK3, PDGFRA, VAV3 0.0058

hsa-miR-378 hsa04810 Regulation of actin cytoskeleton 5 VAV3, MYLK3, PDGFRA, ITGA2, FGF12 0.0073

hsa-miR-378 hsa04060 Cytokine-cytokine receptor interaction 5 CXCL12, EPO, INHBB, PDGFRA, TGFB2 0.014

hsa-miR-378 hsa05200 Pathways in cancer 5 FGF12, FZD4, ITGA2, PDGFRA, TGFB2 0.03

hsa-miR-378 hsa05210 Colorectal cancer 3 FZD4, PDGFRA, TGFB2 0.038

hsa-miR-760 hsa04060 Cytokine-cytokine receptor interaction 6 CXCL12, EPO, INHBB, PDGFRA, TGFB2, TNFSF4 0.011

hsa-miR-760 hsa05200 Pathways in cancer 6 EGLN3, FGF11, FZD4, PDGFRA, TGFB2, RALB 0.027

hsa-miR-760 hsa04360 Axon guidance 4 CXCL12, EFNA1, NTN4, SEMA7A 0.03

hsa-miR-215 hsa05200 Pathways in cancer 6 FGF11, FGF12, FZD4, ITGA2, LAMC2, RALB 0.014

hsa-miR-450b-5p hsa04060 Cytokine-cytokine receptor interaction 7 IL1R1, EPO, CXCL12, TNFSF4, TGFB2, PDGFRA, GHR 0.029

hsa-miR-450b-5p hsa04010 MAPK signaling pathway 7 IL1R1, DUSP10, TGFB2, PDGFRA, CHP2, MAP3K8, 
FGF12

0.032

hsa-miR-450b-5p hsa04810 Regulation of actin cytoskeleton 6 TIAM2, FGF12, IGF2, ITGA2, PDGFRA, VAV3 0.043
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Table 4  Published cancer-associated functions of enriched pathways

We searched PubMed for published papers to explain the relevance of significantly enriched pathways to cancer. The published cancer-associated-functions of these 
pathways are listed in this table.

Term_ID miRNAs Term_name Relevance to cancer

hsa05200 hsa-miR-215,hsa-miR-338-5p,  
hsa-miR-378,hsa-miR-760

Pathways in cancer

hsa04060 hsa-miR-338-5p,hsa-miR-378,  
hsa-miR-450b-5p,hsa-miR-760

Cytokine-cytokine receptor interaction Cytokines can control invasion and metastasis, 
and also function to inhibit tumor progres-
sion [40]

hsa04810 hsa-miR-338-5p,hsa-miR-378,  
hsa-miR-450b-5p

Regulation of actin cytoskeleton Several studies revealed that molecules that 
link migratory signals to the actin cytoskel-
eton are upregulated in invasive and meta-
static cancer cells [41]

hsa04510 hsa-miR-338-5p, hsa-miR-378 Focal adhesion Focal adhesion kinase, which plays an 
important role in tumor progression and 
metastasis, is overexpressed and activated in 
a variety of human cancers [42, 43]

hsa04010 hsa-miR-450b-5p MAPK signaling pathway The MAPK pathway plays an important role 
in HCC in that its activation is reportedly 
involved in HCC growth and survival [35]

hsa04360 hsa-miR-760 Axon guidance The ligand/receptor pairs of axon guidance 
regulate tumor angiogenesis [44]

hsa04920 hsa-miR-338-5p Adipocytokine signaling pathway Adipocytokine signaling pathway has been 
demonstrated participate in breast cancer 
progression [45]

hsa05210 hsa-miR-378 Colorectal cancer

hsa00900 hsa-miR-181c, hsa-miR-29c Terpenoid backbone biosynthesis

hsa00072 hsa-miR-29c Synthesis and degradation of ketone bodies

Fig. 6  miRNA–gene–pathway regulatory networks. a shows the network for five pathways related to tumor invasion and metastasis. b shows the 
network for the MAPK signalling pathway. c shows the network for two new pathways, which have not been previously associated with cancer. MiR-
NAs, genes, and pathways are represented by nodes (pink miRNAs; green genes; and blue pathways). Edges of dark color represent the relationship 
between genes and pathways; and edges of light color represent the relationship between miRNAs and genes. Nodes marked with a red asterisk 
refer to genes uniquely regulated by one specific miRNA.
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Through functional analyses we uncovered impor-
tant biological processes involved in the regulation of 
HCSCs. Ten KEGG pathways were enriched in HCSCs. 
Pathway-level text mining was used to evaluate the rel-
evance of these enriched pathways in cancer. Interest-
ingly, five of the pathways have previously been reported 
to be involved in tumor invasion and metastasis. Inva-
sion and metastasis are the main causes of cancer deaths, 
and are complex multi-step processes [33, 34]. Pathway 
analysis results are supported by the fact that the HCSCs 
established in our lab have much stronger invasive capa-
bility than hepatic cancer cells. Four up-regulated miR-
NAs (hsa-miR-338-5p, hsa-miR-450b-5p, hsa-miR-378, 
and hsa-miR-760) were identified to take part in HCSC 
invasion-related pathways. Two genes, PDGFRA and 
CXCL12, that were regulated by all four invasion-related 
miRNAs and that are involved in several invasion-related 
pathways, might play important roles in the regulation 
of this process (Fig.  6a). Another cancer-related path-
way, MAPK signaling pathway, was also enriched with 
hsa-miR-450b-5p target genes. The MAPK signaling is a 
complex pathway involved in the regulation of a variety 
of growth and differentiation pathways and is reportedly 
involved in HCC growth and survival [35]. Four genes 
(IL8, PRLR, EFNA1, and CHP2) that were uniquely regu-
lated by specific miRNAs, have been associated with HCC 
[36–39]. However, the regulatory mechanism of these 
genes in HCSCs requires further investigation. In addition 
to known cancer-related pathways, we also identified two 
novel HCSC-related pathways, Terpenoid backbone bio-
synthesis and Synthesis and degradation of ketone bodies. 
These two pathways were enriched with down-regulated 
miRNA target genes in HCSCs. Terpenoids are a large 
class of natural products consisting of isoprene units, 
while ketone bodies are produced by the liver from fatty 
acids and used peripherally as an energy source when 
glucose is not readily available. Their relevance to HCC 
and HCSCs has not been reported, and requires further 
validation.

We globally analyzed the molecular expression signature 
and regulatory mechanisms in HCSCs established in our 
lab. Although we have identified candidate molecular mark-
ers and important pathways in HCSCs, our results are pre-
liminary and further experimental validation is required.

Conclusions
Using high-throughput sequencing data sets and 
bioinformatics analyses, we identified miRNA and 
mRNA signatures of HCSCs. Additionally, we com-
bined miRNA, mRNA, and pathway analyses to study 
the regulatory mechanisms in HCSCs by constructing 
miRNA–mRNA and miRNA–mRNA–pathway regu-
latory networks. The molecular markers and pathways 

identified herein might be used as candidate biomark-
ers and drug targets for the diagnosis and treatment of 
hepatic cancer.

Abbreviations
HCC: hepatocellular carcinoma; HCSCs: hepatic cancer stem cells; CSCs: 
cancer stem cells; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAPK: 
mitogen-activated protein kinase; rRNA: ribosomal RNA; scRNA: small cyto-
plasmic RNA; snRNA: small nuclear RNA; snoRNA: small nucleolar RNA; tRNA: 
transfer RNA.

Authors’ contributions
MD designed the analysis pipeline, performed the statistical analysis, and 
drafted the manuscript. JL, JW, and ZY cultured HCSCs and HCCs for sequenc-
ing. HL and YY revised the manuscript. QQ conceived and coordinated the 
overall study and revised the manuscript. All authors read and approved the 
final manuscript.

Author details
1 Department of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospi-
tal, The Second Military Medical University, Shanghai 200438, People’s Repub-
lic of China. 2 The First Department of Biliary Surgery, Eastern Hepatobiliary 
Surgical Hospital, The Second Military Medical University, Shanghai 200438, 
People’s Republic of China. 

Acknowledgements
This work was supported by the National Significant Science and Technology 
Special Projects of Prevention and the National Significant Science and Tech-
nology Special Projects of New Drugs Creation (No. 2013ZX10002-010-007, 
No. 2012ZX10002-014-005).

Accession number
MiRNA-seq and mRNA-seq raw data are available at the Gene Expression 
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under accession 
numbers GSE70470 and GSE70537.

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interest.

Received: 11 November 2014   Accepted: 17 July 2015

References
	1.	 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) 

Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/
caac.20107

	2.	 Villanueva A, Minguez B, Forner A, Reig M, Llovet JM (2010) Hepato-
cellular carcinoma: novel molecular approaches for diagnosis, prog-
nosis, and therapy. Annu Rev Med 61:317–328. doi:10.1146/annurev.
med.080608.100623

	3.	 Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat 
Rev Gastroenterol Hepatol 7(8):448–458. doi:10.1038/nrgastro.2010.100

	4.	 Yau T, Chan P, Epstein R, Poon RT (2008) Evolution of systemic therapy 
of advanced hepatocellular carcinoma. World J Gastroenterol WJG 
14(42):6437–6441

Additional files

Additional file 1:  Table S1. Consistently differentially expressed 
miRNAs.

Additional file 2:  Table S2. Consistently differentially expressed mRNAs.

http://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.3322/caac.20107
http://dx.doi.org/10.3322/caac.20107
http://dx.doi.org/10.1146/annurev.med.080608.100623
http://dx.doi.org/10.1146/annurev.med.080608.100623
http://dx.doi.org/10.1038/nrgastro.2010.100


Page 10 of 10Ding et al. J Transl Med  (2015) 13:259 

	5.	 Chun JM, Kwon HJ, Sohn J, Kim SG, Park JY, Bae HI et al (2011) Prognos-
tic factors after early recurrence in patients who underwent curative 
resection for hepatocellular carcinoma. J Surg Oncol 103(2):148–151. 
doi:10.1002/jso.21786

	6.	 Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO et al (2007) Identification 
and characterization of tumorigenic liver cancer stem/progenitor cells. 
Gastroenterology 132(7):2542–2556. doi:10.1053/j.gastro.2007.04.025

	7.	 Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK et al (2008) Identification 
of local and circulating cancer stem cells in human liver cancer. Hepatol-
ogy 47(3):919–928. doi:10.1002/hep.22082

	8.	 Yin S, Li J, Hu C, Chen X, Yao M, Yan M et al (2007) CD133 positive hepa-
tocellular carcinoma cells possess high capacity for tumorigenicity. Int J 
Cancer J Int du Cancer 120(7):1444–1450. doi:10.1002/ijc.22476

	9.	 Guo Z, Li LQ, Jiang JH, Ou C, Zeng LX, Xiang BD (2014) Cancer stem cell 
markers correlate with early recurrence and survival in hepatocellular 
carcinoma. World J Gastroenterol WJG 20(8):2098–2106. doi:10.3748/wjg.
v20.i8.2098

	10.	 Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008) CD133+ HCC cancer 
stem cells confer chemoresistance by preferential expression of the 
Akt/PKB survival pathway. Oncogene 27(12):1749–1758. doi:10.1038/
sj.onc.1210811

	11.	 Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P et al (2008) Significance of 
CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153–
166. doi:10.1016/j.ccr.2008.01.013

	12.	 Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H et al (2008) EpCAM 
and alpha-fetoprotein expression defines novel prognostic subtypes of 
hepatocellular carcinoma. Cancer Res 68(5):1451–1461. doi:10.1158/0008-
5472.CAN-07-6013

	13.	 Li J, Yu Y, Wang J, Yan Z, Liu H, Wang Y et al (2015) Establishment of a 
novel system for the culture and expansion of hepatic stem-like cancer 
cells. Cancer Lett 360(2):177–186. doi:10.1016/j.canlet.2015.02.006

	14.	 Grigoryev YA, Kurian SM, Hart T, Nakorchevsky AA, Chen C, Campbell 
D et al (2011) MicroRNA regulation of molecular networks mapped by 
global microRNA, mRNA, and protein expression in activated T lympho-
cytes. J Immunol 187(5):2233–2243. doi:10.4049/jimmunol.1101233

	15.	 Szeto CY, Lin CH, Choi SC, Yip TT, Ngan RK, Tsao GS et al (2014) Integrated 
mRNA and microRNA transcriptome sequencing characterizes sequence 
variants and mRNA-microRNA regulatory network in nasopharyngeal 
carcinoma model systems. FEBS Open Bio 4:128–140. doi:10.1016/j.
fob.2014.01.004

	16.	 Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D et al (2014) Identi-
fication of candidate miRNA biomarkers from miRNA regulatory 
network with application to prostate cancer. J Trans Med 12:66. 
doi:10.1186/1479-5876-12-66

	17.	 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping 
and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 
5(7):621–628. doi:10.1038/nmeth.1226

	18.	 Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide align-
ment program. Bioinformatics 24(5):713–714. doi:10.1093/bioinformatics/
btn025

	19.	 Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA 
annotation and deep-sequencing data. Nucleic Acids Res 39(Database 
issue):D152–D157. doi:10.1093/nar/gkq1027

	20.	 Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q et al (2011) Identification 
of miRNomes in human liver and hepatocellular carcinoma reveals miR-
199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 
19(2):232–243. doi:10.1016/j.ccr.2011.01.001

	21.	 Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA et al 
(2011) Identification and comparative analysis of drought-associated 
microRNAs in two cowpea genotypes. BMC Plant Biol 11:127. 
doi:10.1186/1471-2229-11-127

	22.	 Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Gross-
man AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas 
cells reveals aspects of acclimation critical for cell survival. Plant Cell 
22(6):2058–2084. doi:10.1105/tpc.109.071167

	23.	 Audic S, Claverie JM (1997) The significance of digital gene expression 
profiles. Genome Res 7(10):986–995

	24.	 Benjamini YH, Yosef Y (1995) Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. J Royal Stat Soc Series B 
57(1):289–300

	25.	 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) 
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic 
acids research. 34(Database issue):D140–D144. doi:10.1093/nar/gkj112

	26.	 Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z 
et al (2004) A combined computational-experimental approach predicts 
human microRNA targets. Genes Dev 18(10):1165–1178. doi:10.1101/
gad.1184704

	27.	 John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human 
MicroRNA targets. PLoS Biol 2(11):e363. doi:10.1371/journal.pbio.0020363

	28.	 Wang X (2008) miRDB: a microRNA target prediction and functional 
annotation database with a wiki interface. RNA 14(6):1012–1017. 
doi:10.1261/rna.965408

	29.	 Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) 
Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. 
doi:10.1038/ng1536

	30.	 Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site 
accessibility in microRNA target recognition. Nat Genet 39(10):1278–
1284. doi:10.1038/ng2135

	31.	 Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often 
flanked by adenosines, indicates that thousands of human genes are 
microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

	32.	 Fisher RA (1992) On the interpretation of χ2 from contingency tables, 
and the calculation of P. J Roy Stat Soc 85(1):87–94

	33.	 Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ 
hypothesis revisited. Nat Rev Cancer 3(6):453–458. doi:10.1038/nrc1098

	34.	 Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and 
growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572. 
doi:10.1038/nrc865

	35.	 Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular 
carcinoma. Hepatology 48(4):1312–1327. doi:10.1002/hep.22506

	36.	 Ashour AE, Abd-Allah AR, Korashy HM, Attia SM, Alzahrani AZ, Saquib Q 
et al (2014) Thymoquinone suppression of the human hepatocellular 
carcinoma cell growth involves inhibition of IL-8 expression, elevated lev-
els of TRAIL receptors, oxidative stress and apoptosis. Mol Cell Biochem 
389(1–2):85–98. doi:10.1007/s11010-013-1930-1

	37.	 Cui XD, Lee MJ, Yu GR, Kim IH, Yu HC, Song EY et al (2010) EFNA1 ligand 
and its receptor EphA2: potential biomarkers for hepatocellular carci-
noma. Int J Cancer J Int du Cancer 126(4):940–949. doi:10.1002/ijc.24798

	38.	 Yeh YT, Lee KT, Tsai CJ, Chen YJ, Wang SN (2012) Prolactin promotes hepa-
tocellular carcinoma through Janus kinase 2. World J Surg 36(5):1128–
1135. doi:10.1007/s00268-012-1505-4

	39.	 Wang Y, Han KJ, Pang XW, Vaughan HA, Qu W, Dong XY et al (2002) 
Large scale identification of human hepatocellular carcinoma-associated 
antigens by autoantibodies. J Immunol 169(2):1102–1109

	40.	 Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. 
Nat Rev Cancer 4(1):11–22. doi:10.1038/nrc1252

	41.	 Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in 
cancer cell migration and invasion. Biochim Biophys Acta 1773(5):642–
652. doi:10.1016/j.bbamcr.2006.07.001

	42.	 Golubovskaya VM, Cance W (2010) Focal adhesion kinase and p53 signal 
transduction pathways in cancer. Front Biosci (Landmark Ed) 15:901–912

	43.	 Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase 
in cancer. Cancer metastasis reviews. 28(1–2):35–49. doi:10.1007/
s10555-008-9165-4

	44.	 Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and 
ligands in blood vessel development and tumor angiogenesis. Cytokine 
Growth Factor Rev 16(4–5):535–548. doi:10.1016/j.cytogfr.2005.05.002

	45.	 Sun G, Shan MH, Ma BL, Geng ZL, Alibiyati A, Zhong H et al (2012) Identi-
fying crosstalk of mTOR signaling pathway of lobular breast carcinomas. 
Eur Rev Med Pharmacol Sci 16(10):1355–1361

http://dx.doi.org/10.1002/jso.21786
http://dx.doi.org/10.1053/j.gastro.2007.04.025
http://dx.doi.org/10.1002/hep.22082
http://dx.doi.org/10.1002/ijc.22476
http://dx.doi.org/10.3748/wjg.v20.i8.2098
http://dx.doi.org/10.3748/wjg.v20.i8.2098
http://dx.doi.org/10.1038/sj.onc.1210811
http://dx.doi.org/10.1038/sj.onc.1210811
http://dx.doi.org/10.1016/j.ccr.2008.01.013
http://dx.doi.org/10.1158/0008-5472.CAN-07-6013
http://dx.doi.org/10.1158/0008-5472.CAN-07-6013
http://dx.doi.org/10.1016/j.canlet.2015.02.006
http://dx.doi.org/10.4049/jimmunol.1101233
http://dx.doi.org/10.1016/j.fob.2014.01.004
http://dx.doi.org/10.1016/j.fob.2014.01.004
http://dx.doi.org/10.1186/1479-5876-12-66
http://dx.doi.org/10.1038/nmeth.1226
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/nar/gkq1027
http://dx.doi.org/10.1016/j.ccr.2011.01.001
http://dx.doi.org/10.1186/1471-2229-11-127
http://dx.doi.org/10.1105/tpc.109.071167
http://dx.doi.org/10.1093/nar/gkj112
http://dx.doi.org/10.1101/gad.1184704
http://dx.doi.org/10.1101/gad.1184704
http://dx.doi.org/10.1371/journal.pbio.0020363
http://dx.doi.org/10.1261/rna.965408
http://dx.doi.org/10.1038/ng1536
http://dx.doi.org/10.1038/ng2135
http://dx.doi.org/10.1016/j.cell.2004.12.035
http://dx.doi.org/10.1038/nrc1098
http://dx.doi.org/10.1038/nrc865
http://dx.doi.org/10.1002/hep.22506
http://dx.doi.org/10.1007/s11010-013-1930-1
http://dx.doi.org/10.1002/ijc.24798
http://dx.doi.org/10.1007/s00268-012-1505-4
http://dx.doi.org/10.1038/nrc1252
http://dx.doi.org/10.1016/j.bbamcr.2006.07.001
http://dx.doi.org/10.1007/s10555-008-9165-4
http://dx.doi.org/10.1007/s10555-008-9165-4
http://dx.doi.org/10.1016/j.cytogfr.2005.05.002

	Integrated analysis of miRNA, gene, and pathway regulatory networks in hepatic cancer stem cells
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data
	Differential expression analysis
	miRNA target prediction
	Pathway enrichment analysis

	Results
	Identification of candidate biomarkers in hepatic cancer stem cells
	miRNA-gene regulatory network analysis
	Analysis of stem-cell-associated miRNA pathways

	Discussion
	Conclusions
	Authors’ contributions
	Received: 11 November 2014   Accepted: 17 July 2015References




