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Abstract

Background: The purpose of this study was to examine the expression of metabolism-related proteins according
to metastatic site in metastatic breast cancer and to assess the implication of site-specific differential expression.

Methods: A tissue microarray containing 162 cases of metastatic breast cancer (52 lung metastasis, 47 bone metastasis,
39 brain metastasis, and 24 liver metastasis) was constructed. It was subject to immunohistochemical staining of the
following proteins: Glycolysis-related: Glut-1, hexolinase II, carbonic anhydrase (CA) IX, and monocarboxylate transporter
(MCT) 4; glutaminolysis-related: glutaminase (GLS) 1, glutamate dehydrogenase (GDH), and amino acid transporter (ASCT)
2; mitochondrial metabolism-related: ATP synthase, succinate dehydrogenase (SDH)A, and SDHB; and serine/glycine
metabolism related: phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT), phosphoserine
phosphatase (PSPH), glycine decarboxylase (GLDC), and serine hydroxymethyltransferase (SHMT).

Results: The expression levels of glycolysis-related-proteins (Glut-1, hexokinase II, CAIX, and MCT4) differed according to
metastatic site, with higher expression seen in the brain and lower expression in the bone and liver (p < 0.001, 0.001,
0.009, and <0.001, respectively). Differences in metabolic phenotype were analyzed according to metastasis site. Glycolysis
type was most frequently encountered in the brain and lung (p < 0.001). In univariate analysis, the factors associated with
shorter overall survival were CAIX positivity (p = 0.044), PSPH positivity (p = 0.045), and SHMT1 positivity (p = 0.002), as well
as serine/glycine type (p = 0.041).

Conclusions: Differences in metabolic features according to metastatic site were seen in metastatic breast cancer, with
the glycolysis phenotype found predominantly in the brain and lung and the non-glycolysis phenotype in the bone and
liver.
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Introduction
Breast cancer has a high morbidity and mortality, mainly
because it can easily metastasize to distant organs. The
main metastatic sites from breast cancer are the lung,
bone, brain, and liver [1,2]. However, most studies have
focused on bone and brain metastases [3-8]. The main
mechanism of tumor metastasis is the reciprocal inter-
action between tumor cells and the host tissue, involving
cell adhesion, proteolysis, invasion, and angiogenesis
[2,9]. Because different cancers display distinct meta-
static patterns, the seed and soil hypothesis has been
proposed, which dictates that the specific tumor (seed)
can survive only in specific visceral organs (soil) [10].
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Accordingly, metastatic breast cancer cells show different
characteristics according to the metastatic site. For example,
brain metastasis is associated with young age, estrogen re-
ceptor (ER) negativity, prior lung metastasis, HER-2 overex-
pression, EGFR overexpression, and the basal subtype [5-7],
while bone metastasis is associated with lower histologic
grade, ER positivity, ER positivity/progesterone receptor
(PR) negativity, strand growth pattern, and the presence of
fibrotic foci in invasive ductal carcinoma [4,11,12]. There-
fore, metastatic breast cancer is also likely to display distinct
characteristics according to metastatic site.
According to the Warburg effect theory, while normal

cells gain energy from oxidative phosphorylation, cancer
cells obtain energy from glycolysis, making glycolysis an im-
portant component in cancer metabolism [13]. However,
this theory cannot fully explain the energy usage of all
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Table 1 Clone, dilution, and source of antibodies used in this study
Antibody Clone Dilution Source

Molecular subtype related

ER SP1 1:100 Thermo Scientific, CA, USA

PR PgR 1:50 DAKO, Denmark

HER-2 Polyclonal 1:1500 DAKO, Denmark

Ki-67 MIB-1 1:150 DAKO, Denmark

Glycolysis related

Glut-1 SPM498 1:200 Abcam, Cambridge, UK

Hexokinase II 3D3 1:200 Abcam, Cambridge, UK

CAIX Polyclonal 1:100 Abcam, Cambridge, UK

MCT4 Polyclonal 1:100 Santa Cruz, CA, USA

Glutaminolysis related

GLS1 Polyclonal 1:50 Abcam, Cambridge, UK

GDH Polyclonal 1:100 Abcam, Cambridge, UK

ASCT2 Polyclonal 1:100 Abcam, Cambridge, UK

Mitochondrial related

ATP synthase 15H4C4 1:100 Abcam, Cambridge, UK

SDHA 2E3GC12FB2AE2 1:100 Abcam, Cambridge, UK

SDHB 21A11AE7 1:100 Abcam, Cambridge, UK

Serine/glycine metabolism related

PHGDH Polyclonal 1:100 Abcam, Cambridge, UK

PSPH Polyclonal 1:100 Abcam, Cambridge, UK

PSAT1 Polyclonal 1:100 Abcam, Cambridge, UK

SHMT Polyclonal 1:100 Abcam, Cambridge, UK

GLDC Polyclonal 1:100 Abcam, Cambridge, UK

Table 2 Basal clinicopathologic characteristics of patients with breast cancer metastasis according to metastatic site
Parameters Total

N = 162 (%)
Bone metastasis
n = 47 (%)

Brain metastasis
n = 39 (%)

Liver metastasis
n = 24 (%)

Lung metastasis
n = 52 (%)

p-value

Age (yr, mean ? SD) 52.0 ? 10.5 52.3 ? 10.0 53.5 ? 11.7 54.2 ? 10.8 49.7 ? 9.5 0.221

ER <0.001

Negative 69 (42.6) 8 (17.0) 26 (66.7) 6 (25.0) 29 (55.8)

Positive 93 (57.4) 39 (83.0) 13 (33.3) 18 (75.0) 23 (44.2)

PR <0.001

Negative 109 (67.3) 23 (48.9) 38 (97.4) 12 (50.0) 36 (69.2)

Positive 53 (32.7) 24 (51.1) 1 (2.6) 12 (50.0) 16 (30.8)

HER-2 0.017

Negative 114 (70.4) 38 (80.9) 20 (51.3) 19 (79.2) 37 (71.2)

Positive 48 (29.6) 9 (19.1) 19 (48.7) 5 (20.8) 15 (28.8)

Molecular subtypes <0.001

Luminal A 67 (41.4) 33 (70.2) 4 (10.3) 15 (62.5) 15 (28.8)

Luminal B 27 (16.7) 7 (14.9) 9 (23.1) 3 (12.5) 8 (15.4)

HER-2 30 (18.5) 5 (10.6) 12 (30.8) 3 (12.5) 10 (19.2)

TNBC 38 (23.5) 2 (4.3) 14 (35.9) 3 (12.5) 19 (36.5)

Time to metastasis (month, mean ? SD) 30.3 ? 38.0 29.3 ? 29.2 32.7 ? 32.6 18.2 ? 16.8 35.1 ? 38.0 0.182

Patients death 53 (32.7) 23 (48.9) 11 (28.2) 7 (29.2) 12 (23.1) 0.040

Bold represents p < 0.05.
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cancer cells [14]. Glutamine and mitochondrial metabolism,
along with glucose metabolism, are also important compo-
nents in cancer cell metabolism. Tumor cells under active
glycolysis have higher levels of glycolytic intermediates, and
the metabolism of glycolytic intermediates has been re-
cently shown to be involved in tumorigenesis. A representa-
tive metabolic pathway of glycolytic intermediates is the
glycine and serine metabolic pathway [15-18], which has
been recently studied as a new possible target for tumor
Figure 1 Differential expression of metabolism-related proteins in brea
glycolysis-related proteins (Glut-1, hexokinase II, CAIX, and MCT4) was higher
of MCT4, PHGDH, and SHMT1 were higher in bone metastasis than other site
therapy [19]. Targeted therapy can be used in metastatic
cancer, as well as in primary cancer, making the identifica-
tion of metabolic phenotypes in metastatic cancer clinically
important. However, metastatic cancer displays distinct
characteristics according to metastatic site, but the site-
specific metabolic features have not yet been fully identified.
The purpose of this study was to examine the expression of
metabolism-related proteins according to their metastatic
site in metastatic breast cancer and their implication.
st cancer metastasis according to metastatic site. The expression of
in the brain and lower in the bone and liver. The stromal expression levels
s.



Table 3 Expression of metabolism-related proteins in the tumor cell compartment of breast cancer metastasis
according to metastatic site

Parameters Total
N = 162 (%)

Bone metastasis
n = 47 (%)

Brain metastasis
n = 39 (%)

Liver metastasis
n = 24 (%)

Lung metastasis
n = 52 (%)

p-value

Glut-1 <0.001

Negative 83 (51.2) 35 (74.5) 10 (25.6) 18 (75.0) 20 (38.5)

Positive 79 (48.8) 12 (25.5) 29 (74.4) 6 (25.0) 32 (61.5)

Hexokinase II 0.001

Negative 113 (69.8) 41 (87.2) 25 (64.1) 20 (83.3) 27 (51.9)

Positive 49 (30.2) 6 (12.8) 14 (35.9) 4 (16.7) 25 (48.1)

CAIX 0.009

Negative 130 (80.2) 44 (93.6) 26 (66.7) 21 (87.5) 39 (75.0)

Positive 32 (19.8) 3 (6.4) 13 (33.3) 3 (12.5) 13 (25.0)

MCT4 <0.001

Negative 66 (40.7) 25 (53.2) 4 (10.3) 13 (54.2) 24 (46.2)

Positive 96 (59.3) 22 (46.8) 35 (89.7) 11 (45.8) 28 (53.8)

GLS1 0.473

Negative 83 (51.2) 28 (59.6) 17 (43.6) 11 (45.8) 27 (51.9)

Positive 79 (48.8) 19 (40.4) 22 (56.4) 13 (54.2) 25 (48.1)

GDH 0.610

Negative 2 (1.2) 1 (2.1) 1 (2.6) 0 (0.0) 0 (0.0)

Positive 160 (98.8) 46 (97.9) 38 (97.4) 24 (100.0) 52 (100.0)

ASCT2 0.033

Negative 122 (75.3) 37 (78.7) 34 (87.2) 19 (79.2) 32 (61.5)

Positive 40 (24.7) 10 (21.3) 5 (12.8) 5 (20.8) 20 (38.5)

ATP synthase 0.610

Negative 2 (1.2) 1 (2.1) 1 (2.6) 0 (0.0) 0 (0.0)

Positive 160 (98.8) 46 (97.9) 38 (97.4) 24 (100.0) 52 (100.0)

SDHA 0.175

Negative 2 (1.2) 2 (4.3) 0 (0.0) 0 (0.0) 0 (0.0)

Positive 160 (98.8) 45 (95.7) 39 (100.0) 24 (100.0) 52 (100.0)

SDHB 0.006

Negative 52 (32.1) 20 (42.6) 16 (41.0) 9 (37.5) 7 (13.5)

Positive 110 (67.9) 27 (57.4) 23 (59.0) 15 (62.5) 45 (86.5)

PHGDH 0.027

Negative 61 (37.7) 24 (51.1) 11 (28.2) 12 (50.0) 14 (26.9)

Positive 101 (62.3) 23 (48.9) 28 (71.8) 12 (50.0) 38 (73.1)

PSPH 0.926

Negative 146 (90.1) 42 (89.4) 36 (92.3) 22 (91.7) 46 (88.5)

Positive 16 (9.9) 5 (10.6) 3 (7.7) 2 (8.3) 6 (11.5)

PSAT1 <0.001

Negative 140 (86.4) 41 (87.2) 37 (94.9) 14 (58.3) 48 (92.3)

Positive 22 (13.6) 6 (12.8) 2 (5.1) 10 (41.7) 4 (7.7)
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Table 3 Expression of metabolism-related proteins in the tumor cell compartment of breast cancer metastasis
according to metastatic site (Continued)

SHMT1 0.033

Negative 127 (78.4) 43 (91.5) 31 (79.5) 18 (75.0) 35 (67.3)

Positive 35 (21.6) 4 (8.5) 8 (20.5) 6 (25.0) 17 (32.7)

GLDC 0.547

Negative 96 (59.3) 31 (66.0) 24 (61.5) 14 (58.3) 27 (51.9)

Positive 66 (40.7) 16 (34.0) 15 (38.5) 10 (41.7) 25 (48.1)

Bold represents p < 0.05.

Table 4 Expression of metabolism-related proteins in the stromal compartment of breast cancer metastasis according
to metastatic site

Parameters Total
N = 162 (%)

Bone metastasis
n = 47 (%)

Brain metastasis
n = 39 (%)

Liver metastasis
n = 24 (%)

Lung metastasis
n = 52 (%)

p-value

Hexokinase II 0.058

Negative 159 (98.1) 44 (93.6) 39 (100.0) 24 (100.0) 52 (100.0)

Positive 3 (1.9) 3 (6.4) 0 (0.0) 0 (0.0) 0 (0.0)

MCT4 0.002

Negative 113 (69.8) 26 (55.3) 36 (92.3) 17 (70.8) 34 (65.4)

Positive 49 (30.2) 21 (44.7) 3 (7.7) 7 (29.2) 18 (34.6)

GLS1 0.006

Negative 157 (96.9) 42 (89.4) 39 (100.0) 24 (100.0) 52 (100.0)

Positive 5 (3.1) 5 (10.6) 0 (0.0) 0 (0.0) 0 (0.0)

GDH 0.035

Negative 140 (86.4) 36 (76.6) 38 (97.4) 22 (91.7) 44 (84.6)

Positive 22 (13.6) 11 (23.4) 1 (2.6) 2 (8.3) 8 (15.4)

ATP synthase 0.084

Negative 155 (95.7) 42 (89.4) 38 (97.4) 24 (100.0) 51 (98.1)

Positive 7 (4.3) 5 (10.6) 1 (2.6) 0 (0.0) 1 (1.9)

SDHA 0.004

Negative 145 (89.5) 36 (76.6) 38 (97.4) 21 (87.5) 50 (96.2)

Positive 17 (10.5) 11 (23.4) 1 (2.6) 3 (12.5) 2 (3.8)

PHGDH 0.018

Negative 158 (97.5) 43 (91.5) 39 (100.0) 24 (100.0) 52 (100.0)

Positive 4 (2.5) 4 (8.5) 0 (0.0) 0 (0.0) 0 (0.0)

PSPH 0.006

Negative 156 (96.3) 46 (97.9) 34 (87.2) 24 (100.0) 52 (100.0)

Positive 6 (3.7) 1 (2.1) 5 (12.8) 0 (0.0) 0 (0.0)

PSAT1 <0.001

Negative 154 (95.1) 46 (97.9) 32 (82.1) 24 (100.0) 52 (100.0)

Positive 8 (4.9) 1 (2.1) 7 (17.9) 0 (0.0) 0 (0.0)

SHMT1 <0.001

Negative 98 (60.5) 16 (34.0) 31 (79.5) 16 (66.7) 35 (67.3)

Positive 64 (39.5) 31 (66.0) 8 (20.5) 8 (33.3) 17 (32.7)

Bold represents p < 0.05.
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Materials and methods
Patient selection
Patients with invasive primary breast cancer and metas-
tasis to distant organs (lung, bone, brain, and liver) were
selected from medical records of the Department of
Pathology of Severance Hospital. Only patients with a
diagnosis of invasive ductal carcinoma were included. In
total, 162 cases were identified, and 49 cases were paired
between primary cancer and metastatic cancer. All slides
were reviewed, and pathologic diagnoses were approved
by two pathologists (JSK and WHJ). Histological grade
was assessed using the Nottingham grading system [20].
This study was approved by the Institutional Review
Board (IRB) of Severance Hospital. Written informed
consent was obtained from the patient for the publica-
tion of this report and any accompanying images.

Tissue microarray
On H&E-stained slides of the tumors, a representative
area was selected, and the corresponding spot was
marked on the surface of the paraffin block. Using a bi-
opsy needle, a 3-mm tissue core in the selected area was
punched out and placed onto a 6 ? 5 recipient block.
Two tissue cores were extracted to minimize extraction
bias. Each tissue core was assigned a unique tissue
microarray location number that was linked to a data-
base containing other clinicopathologic data.

Immunohistochemistry (IHC)
The antibodies used for IHC in this study are shown in
Table 1. Formalin-fixed, paraffin-embedded (FFPE) tis-
sue samples were used as follows. Three-micron-thick
slices from the FFPE tissue block were deparaffinized
and rehydrated in xylene and alcohol solutions and
stained using a Ventana Discovery XT automated stainer
Table 5 Metabolic phenotypes of breast cancer metastasis ac

Parameters Total
N = 162 (%)

Bone metastasis
n = 47 (%)

Brain m
n = 39

Glycolysis type

No 81 (50.0) 36 (76.6) 9 (23.1)

Yes 81 (50.0) 11 (23.4) 30 (76.9

Glutamine type

No 62 (38.4) 23 (48.9) 14 (35.9

Yes 100 (61.7) 24 (51.1) 25 (64.1

Mitochondrial type

No 2 (1.2) 2 (4.3) 0 (0.0)

Yes 160 (98.8) 45 (95.7) 39 (100

Serine/glycine type

No 128 (79.0) 37 (78.7) 34 (87.2

Yes 34 (21.0) 10 (21.3) 5 (12.8)

Bold represents p < 0.05.
(Ventana Medical Systems, Tucson, AZ, USA). Antigen
retrieval was performed with CC1 (Cell Conditioning 1)
buffer (citrate buffer pH 6.0, Ventana Medical Systems).
Appropriate positive and negative controls were used.

Interpretation of immunohistochemical results
A cut-off value of 1% or more positively stained nuclei was
used to define ER and AR positivity [21]. HER-2 staining
was analyzed according to the American Society of Clinical
Oncology (ASCO)/College of American Pathologists (CAP)
guidelines using the following categories: 0 = no immuno-
staining; 1+ =weak incomplete membranous staining, less
than 10% of tumor cells; 2+ = complete membranous stain-
ing, either uniform or weak in at least 10% of tumor cells;
and 3+ = uniform intense membranous staining in at least
30% of tumor cells [22]. HER-2 staining was considered
positive when strong (3+) membranous staining was ob-
served whereas it was considered negative when none or
weak (0 to 1+) staining was noted.
IHC result interpretation was based on the product of

the proportion of stained cells and the immunhisto-
chemical staining intensity. A product between 0 and 1
was regarded as negative, a product between 2 and 4 as
low positive, and a product between 5 and 6 as high
positive [23]. The proportion of stained cells was scored
as 0 for negative, 1 for positive with less than 30%, and 2
for positive with greater than or equal to 30%. The stain-
ing intensity was scored as 0 for negative, 1 for weak, 2
for moderate, and 3 for strong. Ki-67 labeling index (LI)
was defined as the percentage of positive cells in tumor
cell nuclei.

Tumor phenotype classification
In this study, breast cancer phenotypes were classified
according to IHC results for ER, PR, HER-2, and Ki-67,
cording to metastatic site

etastasis
(%)

Liver metastasis
n = 24 (%)

Lung metastasis
n = 52 (%)

p-value

<0.001

17 (70.8) 19 (36.5)

) 7 (29.2) 33 (63.5)

0.308

) 9 (37.5) 16 (30.8)

) 15 (62.5) 36 (69.2)

0.175

0 (0.0) 0 (0.0)

.0) 24 (100.0) 52 (100.0)

0.444

) 19 (79.2) 38 (73.1)

5 (20.8) 14 (26.9)



Table 6 Correlation of expression of metabolism related proteins between primary and metastatic breast cancer
according to metastatic site

Parameters Total Bone metastasis Brain metastasis Liver metastasis Lung metastasis

N = 49 (%) p-value n = 13 (%) p-value n = 9 (%) p-value n = 4 (%) p-value n = 23 (%) p-value

Glut-1 0.481 0.063 1.000 1.000 0.004

(+) → (+) 10 (20.4) 0 (0.0) 4 (44.4) 0 (0.0) 6 (20.4)

(+) → (−) 7 (14.3) 5 (38.5) 1 (11.1) 1 (25.0) 0 (0.0)

(−) → (+) 11 (22.4) 0 (0.0) 2 (22.2) 0 (0.0) 9 (39.1)

(−) → (−) 21 (42.9) 8 (61.5) 2 (22.2) 3 (75.0) 8 (34.8)

Hexokinase II 0.581 1.000 0.500 1.000 1.000

(+) → (+) 11 (22.4) 1 (7.7) 1 (11.1) 0 (0.0) 9 (39.1)

(+) → (−) 5 (10.2) 3 (23.1) 0 (0.0) 0 (0.0) 2 (8.7)

(−) → (+) 8 (16.3) 2 (15.4) 2 (22.2) 1 (25.0) 3 (13.0)

(−) → (−) 25 (51.0) 7 (53.8) 6 (66.7) 3 (75.0) 9 (39.1)

CAIX 0.688 N/A 1.000 N/A 1.000

(+) → (+) 2 (4.1) 0 (0.0) 0 (0.0) 0 (0.0) 2 (8.7)

(+) → (−) 2 (4.1) 0 (0.0) 1 (11.1) 0 (0.0) 1 (4.3)

(−) → (+) 4 (8.2) 0 (0.0) 2 (22.2) 0 (0.0) 2 (8.7)

(−) → (−) 41 (83.7) 13 (100.0) 6 (66.7) 4 (100.0) 18 (78.3)

MCT4 0.002 0.250 0.250 0.500 0.004

(+) → (+) 14 (28.6) 3 (23.1) 4 (44.4) 0 (0.0) 7 (30.4)

(+) → (−) 2 (4.1) 0 (0.0) 0 (0.0) 2 (50.0) 0 (0.0)

(−) → (+) 15 (30.6) 3 (23.1) 3 (33.3) 0 (0.0) 9 (39.1)

(−) → (−) 18 (36.7) 7 (53.8) 2 (22.2) 2 (50.0) 7 (30.4)

GLS1 1.000 0.063 1.000 1.000 0.289

(+) → (+) 15 (30.6) 2 (15.4) 3 (33.3) 2 (50.0) 8 (34.8)

(+) → (−) 8 (16.3) 0 (0.0) 1 (11.1) 1 (25.0) 6 (26.1)

(−) → (+) 9 (18.4) 5 (38.5) 2 (22.2) 0 (0.0) 2 (8.7)

(−) → (−) 17 (34.7) 6 (46.2) 3 (33.3) 1 (25.0) 7 (30.4)

GDH 1.000 1.000 1.000 1.000 1.000

(+) → (+) 44 (89.8) 11 (84.6) 8 (88.9) 3 (75.0) 22 (95.7)

(+) → (−) 2 (4.1) 1 (7.7) 1 (11.1) 0 (0.0) 0 (0.0)

(−) → (+) 3 (6.1) 1 (7.7) 0 (0.0) 1 (25.0) 1 (4.3)

(−) → (−) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

ASCT2 0.092 1.000 0.219 1.000 0.375

(+) → (+) 8 (16.3) 0 (0.0) 0 (0.0) 1 (25.0) 7 (30.4)

(+) → (−) 10 (20.4) 1 (7.7) 5 (55.6) 0 (0.0) 4 (17.4)

(−) → (+) 3 (6.1) 1 (7.7) 1 (11.1) 0 (0.0) 1 (4.3)

(−) → (−) 28 (57.1) 11 (84.6) 3 (33.3) 3 (75.0) 11 (47.8)

ATP synthase 1.000 1.000 N/A N/A N/A

(+) → (+) 48 (98.0) 12 (92.3) 9 (100.0) 4 (100.0) 23 (100.0)

(+) → (−) 1 (2.0) 1 (7.7) 0 (0.0) 0 (0.0) 0 (0.0)

(−) → (+) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

(−) → (−) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
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Table 6 Correlation of expression of metabolism related proteins between primary and metastatic breast cancer
according to metastatic site (Continued)

SDHA 1.000 1.000 1.000 N/A N/A

(+) → (+) 44 (89.8) 9 (69.2) 8 (88.9) 4 (100.0) 23 (100.0)

(+) → (−) 2 (4.1) 2 (15.4) 0 (0.0) 0 (0.0) 0 (0.0)

(−) → (+) 3 (6.1) 2 (15.4) 1 (11.1) 0 (0.0) 0 (0.0)

(−) → (−) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

SDHB 0.263 1.000 1.000 1.000 0.063

(+) → (+) 24 (49.0) 4 (30.8) 3 (33.3) 1 (25.0) 16 (69.9)

(+) → (−) 7 (14.3) 3 (23.1) 3 (33.3) 1 (25.0) 0 (0.0)

(−) → (+) 13 (26.5) 3 (23.1) 3 (33.3) 2 (50.0) 5 (21.7)

(−) → (−) 5 (10.2) 3 (23.1) 0 (0.0) 0 (0.0) 2 (8.7)

PHGDH 0.581 1.000 1.000 1.000 0.688

(+) → (+) 22 (44.9) 3 (23.1) 6 (66.7) 1 (25.0) 12 (52.2)

(+) → (−) 5 (10.2) 2 (15.4) 1 (11.1) 0 (0.0) 2 (8.7)

(−) → (+) 8 (16.3) 2 (15.4) 1 (11.1) 1 (25.0) 4 (17.4)

(−) → (−) 14 (28.6) 6 (46.2) 1 (11.1) 2 (50.0) 5 (21.7)

PSPH 1.000 N/A 1.000 1.000 1.000

(+) → (+) 1 (2.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (4.3)

(+) → (−) 3 (6.1) 0 (0.0) 1 (11.1) 0 (0.0) 2 (8.7)

(−) → (+) 2 (4.1) 0 (0.0) 0 (0.0) 1 (25.0) 1 (4.3)

(−) → (−) 43 (87.8) 13 (100.0) 8 (88.9) 3 (75.0) 19 (82.6)

PSAT1 0.607 1.000 1.000 1.000 0.219

(+) → (+) 1 (2.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (4.3)

(+) → (−) 9 (18.4) 3 (23.1) 0 (0.0) 1 (25.0) 5 (21.7)

(−) → (+) 6 (12.2) 2 (15.4) 1 (11.1) 2 (50.0) 1 (4.3)

(−) → (−) 33 (67.3) 8 (61.5) 8 (88.9) 1 (25.0) 16 (69.6)

SHMT1 1.000 1.000 1.000 N/A 1.000

(+) → (+) 10 (20.4) 0 (0.0) 2 (22.2) 0 (0.0) 8 (34.8)

(+) → (−) 2 (4.1) 1 (7.7) 0 (0.0) 0 (0.0) 1 (4.3)

(−) → (+) 1 (2.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (4.3)

(−) → (−) 36 (73.5) 12 (92.3) 7 (77.8) 4 (100.0) 13 (56.5)

GLDC 0.143 0.375 1.000 1.000 0.508

(+) → (+) 12 (24.5) 0 (0.0) 3 (33.3) 1 (25.0) 8 (34.8)

(+) → (−) 5 (10.2) 1 (7.7) 1 (11.1) 0 (0.0) 3 (13.0)

(−) → (+) 12 (24.5) 4 (30.8) 1 (11.1) 1 (25.0) 6 (26.1)

(−) → (−) 20 (40.8) 8 (61.5) 4 (44.4) 2 (50.0) 6 (26.1)

*p-value was calculated by McNemar test.
Bold represents p < 0.05.
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as well as FISH results for HER-2 as follows [24]: lu-
minal A type: ER or/and PR positive and HER-2 negative
and Ki-67 LI <14%; luminal B type: (HER-2 negative) ER
or/and PR positive and HER-2 negative and Ki-67 LI
≥14%, (HER-2 positive) ER or/and PR positive and HER-
2 overexpressed or/and amplified; HER-2 type: ER and
PR negative and HER-2 overexpressed or/and amplified;
and triple negative breast cancer (TNBC) type: ER, PR,
and HER-2 negative.

Classification of tumor metabolic subtype
In this study, tumor metabolic subtypes were classified
according to IHC results for metabolism-related pro-
teins as follows: Glycolysis type: 3 or more positive



Figure 2 Expression of Glut-1 and MCT4 in primary and metastatic
breast cancer. There was no expression of Glut-1 and MCT4 in primary
breast cancer, while the expression of Glut-1 and MCT4 increased in
lung metastasis.

Figure 3 Correlation between pathologic factors and expression of m
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glycolysis-related proteins [Glut-1, hexolinase II, car-
bonic anhydrase (CA) IX, and monocarboxylate trans-
porter (MCT) 4]; glutaminolysis type: 2 or more positive
glutaminolysis-related proteins [glutaminase (GLS) 1,
glutamate dehydrogenase (GDH), and amino acid trans-
porter (ASCT) 2]; mitochondrial type: 2 or more
positive mitochondrial metabolism proteins [ATP syn-
thase, succinate dehydrogenase (SDH)A, and SDHB];
and serine/glycine type: 3 or more positive serine/glycine
metabolism-related proteins [phosphoglycerate dehydrogen-
ase (PHGDH), phosphoserine aminotransferase (PSAT),
phosphoserine phosphatase (PSPH), glycine decarboxylase
(GLDC), serine hydroxymethyltransferase (SHMT)].
Statistical analysis
Data were statistically processed using SPSS for Windows,
version 12.0 (SPSS Inc., Chicago, IL, USA). Correlation
analysis of immunostaining results between primary breast
cancer and metastatic breast cancer was calculated by
the McNemar test. Student ? s t and Fisher ? s exact tests
were used to examine any differences in continuous and cat-
egorical variables, respectively. Corrected p-value and the
Bonferroni method were used for multiple comparisons.
Statistical significance was assumed when P <0.05. Kaplan-
etabolism-related proteins.
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Meier survival curves and log-rank statistics were employed
to evaluate time to tumor metastasis and time to survival.
Multivariate regression analysis was performed using a Cox
proportional hazards model.

Results
Baseline characteristics of patients
In a total of 162 cases, 52 (32.1%) had lung metastasis, 47
(29.0%) had bone metastasis, 30 (18.5%) had brain metasta-
sis, and 24 (14.8%) had liver metastasis. The proportion of
cases with ER positivity and PR positivity was higher among
those with bone and liver metastases than in those with
Figure 4 Association between expression level of metabolism-related
metastasis to other sites (p < 0.001), and HER-2 positivity
was higher among cases of brain metastasis compared to
other sites (p = 0.017). Furthermore, luminal A type tumors
were more common among patients with bone and liver
metastasis, while the proportion of tripe negative breast can-
cer (TNBC) was higher among cases of brain and lung me-
tastasis (p < 0.001) (Table 2).

Expression of metabolism-related proteins in breast
cancer metastasis according to metastatic site (Figure 1)
Analysis of metabolism-related protein expression accord-

ing to metastatic site in metastatic breast cancer revealed
proteins and patient prognosis in metastatic breast cancer.



Table 7 Univariate analysis of the association between expression levels of metabolism-related proteins in metastat reast cancers and overall survival by
the log-rank test

Parameters Total
N = 162 (%)

Bone metastasis
n = 47 (%)

Brain metastasis
n = 39 (%)

Liver metastasis
n = 24 (%)

Lung metastasis
n = 52 (%)

Mean survival (95% CI)
months

P
-value

Mean survival (95% CI)
months

P
-value

Mean survival (95% CI)
months

P
-value

Mean survival (9 CI)
months

P
-value

Mean survival (95% CI)
months

P
-value

Glut-1 0.141 0.020 0.504 0.591 0.833

Negative 121 (103? 139) 102 (76? 129) 94 (65 ? 123) 84 (64? 105) 131 (97? 165)

Positive 92 (72 ? 111) 56 (41? 70) 101 (74? 127) 62 (35? 88) 120 (89? 150)

Hexokinase II 0.727 0.912 0.680 0.418 0.192

Negative 112 (96? 128) 83 (61? 104) 103 (76? 130) 85 (65? 105) 146 (117? 175)

Positive 96 (68 ? 124) 62 (42? 81) 54 (42 ? 65) 56 (21? 90) 103 (69? 137)

CAIX 0.044 <0.001 0.527 0.964 0.046

Negative 115 (100? 130) 87 (67? 108) 115 (90? 141) 81 (61? 101) 140 (114? 166)

Positive 80 (56 ? 103) 16 (0? 41) 64 (42 ? 86) 67 (30? 105) 87 (49 ? 124)

MCT4 0.612 0.787 0.995 0.652 0.456

Negative 107 (87? 128) 92 (62? 122) 73 (29 ? 117) 85 (63? 107) 120 (85? 154)

Positive 113 (95? 131) 66 (55? 77) 107 (84? 130) 61 (40? 82) 138 (107? 168)

GLS1 0.274 0.690 0.061 0.348 0.896

Negative 114 (96? 132) 85 (61? 108) 133 (108? 158) 70 (52? 88) 127 (95? 160)

Positive 110 (91? 130) 61 (43? 78) 61 (43 ? 80) 72 (47? 98) 133 (102? 164)

GDH 0.919 0.171 n/a n/a n/a

Negative 165 (165? 165) 165 (165? 165) n/a n/a n/a

Positive 111 (97? 125) 72 (58? 86) n/a n/a n/a

ASCT2 0.686 0.948 n/a 0.761 0.730

Negative 111 (96? 127) 89 (64? 114) n/a 83 (62? 104) 135 (107? 162)

Positive 89 (74 ? 104) 80 (47? 114) n/a 58 (40? 76) 70 (57 ? 83)

ATP synthase 0.965 0.171 n/a n/a n/a

Negative 165 (165? 165) 165 (165? 165) n/a n/a n/a

Positive 111 (97? 125) 72 (58? 86) n/a n/a n/a

SDHA 0.830 0.132 n/a n/a n/a

Negative 165 (165? 165) 165 (165? 165) n/a n/a n/a

Positive 111 (96? 125) 72 (57? 86) n/a n/a n/a
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Table 7 Univariate analysis of the association between expression levels of metabolism-related proteins in metastatic breast cancers and overall survival by
the log-rank test (Continued)

SDHB 0.460 0.630 0.372 0.870 0.649

Negative 102 (80? 124) 85 (52? 118) 115 (85? 146) 49 (45? 53) 82 (48 ? 115)

Positive 117 (101? 133) 68 (57? 80) 70 (52 ? 88) 80 (57? 103) 135 (112? 158)

PHGDH 0.590 0.494 0.878 0.048 0.939

Negative 117 (96? 138) 90 (61? 119) 84 (53 ? 115) 78 (65? 90) 127 (80? 174)

Positive 108 (90? 126) 60 (48? 71) 107 (81? 133) 64 (39? 89) 122 (89? 154)

PSPH 0.045 0.011 0.714 0.654 0.477

Negative 114 (99? 128) 88 (67? 110) 108 (86? 131) 83 (63? 102) 131 (105? 157)

Positive 68 (36 ? 100) 35 (22? 49) 30 (17 ? 42) 53 (22? 83) 94 (41 ? 147)

PSAT1 0.542 n/a n/a 0.927 0.074

Negative 109 (94? 123) n/a n/a 83 (59? 106) 134 (109? 158)

Positive 79 (63 ? 95) n/a n/a 65 (46? 83) 38 (11 ? 65)

SHMT1 0.002 0.258 0.022 0.089 0.009

Negative 119 (104? 134) 84 (64? 105) 117 (95? 140) 90 (71? 109) 147 (121? 172)

Positive 63 (31 ? 94) 31 (7? 56) 27 (19 ? 34) 39 (24? 55) 78 (32 ? 123)

GLDC 0.281 0.485 0.024 0.281 0.370

Negative 115 (98? 133) 80 (55? 104) 127 (105? 150) 89 (68? 111) 135 (102? 168)

Positive 99 (80 ? 119) 66 (56? 76) 53 (31 ? 76) 59 (35? 82) 111 (78? 144)

Glycolysis type 0.615 0.159 0.614 0.921 0.961

No 116 (97? 134) 96 (71? 122) 91 (59 ? 123) 82 (61? 103) 128 (91? 164)

Yes 99 (80 ? 118) 63 (51? 75) 102 (76? 128) 69 (44? 94) 123 (95? 151)

Glutamine
type

0.116 0.661 0.251 0.213 0.454

No 121 (101? 142) 90 (59? 120) 128 (96? 159) 74 (54? 93) 140 (105? 175)

Yes 99 (79 ? 119) 72 (51? 93) 68 (51 ? 84) 72 (49? 95) 129 (101? 157)

Mitochondrial
type

0.830 0.132 n/a n/a n/a

No 165 (165? 165) 165 (165? 165) n/a n/a n/a

Yes 111 (96? 125) 72 (57? 86) n/a n/a n/a

Serine/glycine
type

0.041 0.886 0.467 0.034 0.019

No 116 (101? 131) 83 (61? 105) 109 (86? 133) 90 (72? 109) 142 (116? 168)

Yes 79 (56 ? 103) 60 (45? 76) 66 (30 ? 103) 38 (15? 60) 72 (32 ? 112)
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Table 7 Univariate analysis of the association between expression levels of metabolism-related proteins in metastatic breast cancers and overall survival by
the log-rank test (Continued)

Molecular
subtypes

0.002 <0.001 0.081 N/A N/A

Luminal A 105 (86? 124) 84 (62? 107) 55 (10 ? 100) N/A N/A

Luminal B 140 (111? 170) 60 (26? 93) 138 (112? 164) N/A N/A

HER-2 134 (109? 158) 62 (47? 77) 79 (60 ? 97) N/A N/A

TNBC 51 (38 ? 64) 3 (2? 4) 31 (22 ? 39) N/A N/A

Bold represents p < 0.05.
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site-specific expression patterns of glycolysis-related proteins
(Glut-1, hexokinase II, CAIX, and MCT4), with higher ex-
pression levels seen in brain metastasis than in bone or liver
metastasis (p < 0.001, 0.001, 0.009, and <0.001, respectively).
Similar trends were seen for PHGDH (p = 0.027). The high-
est expression levels of SDHB and SHMT1 were found in
lung metastasis, while the lowest levels were seen in bone
metastasis (p = 0.006, and 0.033, respectively) (Table 3).
On analysis of metabolism-related protein expression in

the stromal compartment of tumors, the expression of
MCT4 (p = 0.002), GLS1 (p = 0.006), GDH (p = 0.035),
SDHA (p = 0.004), PHGDH (p = 0.018), PSPH (p = 0.006),
PSAT1 (p < 0.001), and SHMT1 (p < 0.001) showed site spe-
cificity: higher stromal expression of MCT4, GLS1, GDH,
SDHA, PHGDH, and SHMT1 were found in bone metasta-
sis, while PSPH and PSAT1 were higher in brain metastasis
(Table 4).
After a review of the metabolic phenotype according to

metastatic site, the glycolysis phenotype was most often
seen in the brain and lung (p < 0.001) (Table 5).
Table 8 Multivariate analysis of patient prognosis in
metastatic breast cancer

Parameters Overall survival

Hazard ratio 95% CI P-value

ER status 0.067

Negative versus positive 10.42 0.846-128.4

PR status 0.091

Negative versus positive 1.195 0.898-4.237
Correlation of expression of metabolism-related proteins
between primary and metastatic breast cancer according
to metastatic site
We analyzed the expression levels of metabolism-
related proteins in primary and metastatic cancers in 49
paired cases. The expression level of MCT4 was statisti-
cally different between primary and metastatic cancers
(p = 0.002). When considering difference between primary
and metastatic cancers according to metastatic sites,
Glut-1 (p = 0.004) and MCT4 (p = 0.004) were expressed
in the lung metastasis but not in the primary cancer
(Table 6 and Figure 2).
HER2 status 0.408

Negative versus positive 0.436 0.075-2.869

Ki-67 LI 0.002

≤14 versus >14 4.096 1.664-10.08

Tumor phenotypes 0.147

Luminal A

Luminal B 6.697 0.387-116.0

HER2 7.286 0.348-152.4

TNBC 0.433 0.055-3.387

CAIX 0.189

Negative versus positive 1.690 0.773-3.695

PSPH 0.117

Negative versus positive 2.156 0.825-5.634

SHMT1 0.014

Negative versus positive 2.836 1.239-6.495

Serine/glycine type 0.451

No versus Yes 0.723 0.311-1.679

Bold represents p < 0.05.
Correlation between pathologic factors and expression of
metabolism-related proteins
On analyzing the association between expression of
metabolism-related proteins and pathologic factors,
ER negativity was associated with Glut-1 positivity
(p < 0.001), hexokinase II positivity (p < 0.001), CAIX
positivity (p < 0.001), glycolysis type (p < 0.001), glutami-
nolysis type (p = 0.001), PHGDH positivity (p < 0.001),
and SHMT1 positivity (p < 0.001). PR negativity was as-
sociated with MCT4 positivity (p = 0.001) and higher
Ki-67 LI was associated with Glut-1 positivity
(p = 0.001) and MCT4 positivity (p = 0.001). Glut-1
(p < 0.001), CAIX (p < 0.001), and SHMT1 (p < 0.001)
were associated with molecular subtype. If these pro-
teins were expressed, the proportion of TNBC was
higher, while luminal A type was higher when these pro-
teins were not expressed. In addition, TNBC was more
common in glycolysis type, while luminal A was more
common in non-glycolysis type (p < 0.001) (Figure 3).
The association between the expression of
metabolism-related proteins and patient prognosis
On analyzing the association of metabolic phenotype and
the expression of metabolism-related proteins with patient
prognosis with univariate analysis (Figure 4 and Table 7), we
found that factors associated with shorter overall survival
(OS) were CAIX positivity (p = 0.044), PSPH positivity
(p = 0.045), SHMT1 positivity (p = 0.002), and serine/glycine
type (p = 0.041). The factors associated with shorter
OS in multivariate analysis were higher Ki-67 LI (hazard
ratio: 4.096, 95% CI: 1.664? 10.08, P = 0.002) and tumoral
SHMT1 positivity (hazard ratio: 2.836, 95% CI: 1.239?
6.495, P = 0.014) (Table 8).
Univariate analysis was performed to analyze the asso-

ciation between expression of metabolism-related pro-
teins and metabolic phenotype according to metastatic
site. The factors associated with shorter OS were Glut-1
positivity (p = 0.020), CAIX positivity (p < 0.001), and
PSPH positivity (p = 0.011) in bone metastasis. SHMT1
positivity (p = 0.022) and GLDC positivity (p = 0.024) were
associated with shorter OS in brain metastasis, PHGDH
positivity (p = 0.048) was associated with shorter OS in
liver metastasis, and CAIX positivity (p = 0.046) was
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associated with shorter OS in lung metastasis (Figure 5
and Table 7).

Discussion
In this study, differences in metabolic features of tumors
were seen according to metastatic site among cases of
metastatic breast cancer. Briefly, brain and lung metas-
tasis showed higher expression levels of glycolysis-
related proteins (Glut-1, hexokinase II, CAIX, and
MCT4) than did bone and liver metastasis. Thus, there
are several possible reasons for the different metabolic
features according to metastatic site. First, the molecu-
lar subtypes showed site specificity in metastatic breast
cancer, with a high proportion of TNBC in brain and
lung metastases and luminal A in bone and liver metas-
tases. In previous studies, the expression levels of
glycolysis-related proteins were higher in TNBC or
basal-like type [25,26]. Such data are in agreement with
the results from this study that the expression of
Figure 5 Association between expression level of metabolism-related
according to the metastatic sites.
glycolysis-related proteins is higher in brain and lung
metastases, which consist of more TNBC cases. Another
possible reason is the variety of influences from circula-
tion tumor cells (CTC). Given that CTC, defined as can-
cer cells in the blood of cancer patients, plays a significant
role in the metastatic process, CTC and its metabolites
have an influence on metastatic properties. This may re-
sult in site specificity according to metastatic site; how-
ever, further study is required [27]. One other reason is
the different metabolic characteristics of metastatic
sites. For example, given that bone tissue creates the
hematopoietic cells, the metabolites of bone tissue are
expected to differ from those of liver, brain, or lung.
This is supported by the fact that immune-responsive
tissue and immune-privileged tissues are reported to
show different cellular compositions, as well as different
metabolic and immunological responses [28].
The stromal expression levels of hexokinase II, MCT4,

GLS1, GDH, SDHA, PHGDH, and SHMT1 were higher in
proteins and patient prognosis in metastatic breast cancer



Kim et al. Journal of Translational Medicine 2014, 12:354 Page 16 of 17
http://www.translational-medicine.com/content/12/1/354
bone metastasis compared to that at other sites. In terms of
histologic features, bone metastasis forms highly rich
tumor stroma with prominent fibroblasts. The reverse-
Warburg effect theory, which describes the metabolic
interaction between tumor cells and the stroma, sup-
ports the expression of metabolism-related proteins in
the stroma in bone metastasis. The theory insists that
lactate created by glycolysis in the stroma is transferred
to tumor cells and metabolized as the substrate by oxi-
dative phosphorylation in tumor cells [29,30]. There-
fore, the reverse Warburg effect phenotype may be
applicable to bone metastasis, in which glycolysis-
related molecules or glycolytic metabolism intermedi-
ates are highly expressed. In previous studies, luminal
type tumors were more likely to have the reverse Warburg
effect phenotype [31]. This may explain why metastatic
tumors with the reverse Warburg effect phenotype
are more likely to occur in the bone, since luminal type tu-
mors are most commonly found in the bone. However,
further validation studies are needed to confirm these
findings.
Primary tumors were negative for Glut-1 and MCT4,

but some positivity was seen in lung metastasis. Previous
studies reported differential expression of most important
biomarkers of breast cancer (ER, PR, and HER-2) between
primary cancer and metastatic cancer, with 21? 50% show-
ing HER-2 loss, about 30% showing HER-2 gain [8,32],
3.2? 44% showing ER loss [33-35], 24% showing PR loss
[35], and ER or PR gain not reported. In other words,
when primary breast cancer progresses to metastatic can-
cer, expression of ER/PR can be lost. The loss of ER/PR
may be because metastatic cancer exhibits more aggres-
sive features compared to primary tumors; thus, ER/PR, a
good prognostic marker, presents as a loss rather than as a
gain. In this study, Glut-1 expression was associated with
ER negativity and MCT4 expression was associated with
PR negativity. In the progression of primary to metastatic
cancer, ER/PR is lost and the expression of metabolism-
related proteins like Glut-1 and MCT4 appear. Further
validation is required to generalize the findings of this
study.
The clinical significance of this study is that inhibition

of the metabolic pathway may be a potential treatment
target. The expression of metabolism-related proteins,
especially glycolysis-related proteins differed according
to metastatic site. Previous preclinical studies reported
that Glut-1 inhibitor [36,37], CAIX inhibitor [38], and
MCT4 inhibitor [39] suppress tumor growth in several
tumor types. Thus, these proteins are possible targets
for chemotherapy in brain and lung metastasis, which
showed higher expression levels of glycolysis-related
proteins. However, it should be noted that a compensat-
ing response may appear if one or two molecules are
inhibited in metabolic pathway targeted therapy [40].
Conclusion
In conclusion, differences in metabolic features according
to metastatic site were seen in metastatic breast cancer,
with the glycolysis phenotype found predominantly in the
brain and lung since the expression of glycolysis-related
protein was higher and the non-glycolysis phenotype in
the bone and liver.
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