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Abstract

Background: The effectiveness of current therapeutic regimens for Mycobacterium tuberculosis (Mtb) is diminished
by the need for prolonged therapy and the rise of drug resistant/tolerant strains. This global health threat, despite
decades of basic research and a wealth of legacy knowledge, is due to a lack of systems level understanding that
can innovate the process of fast acting and high efficacy drug discovery.

Methods: The enhanced functional annotations of the Mtb genome, which were previously obtained through a
crowd sourcing approach was used to reconstruct the metabolic network of Mtb in a bottom up manner.

We represent this information by developing a novel Systems Biology Spindle Map of Metabolism (SBSM) and
comprehend its static and dynamic structure using various computational approaches based on simulation and
design.

Results: The reconstructed metabolism of Mtb encompasses 961 metabolites, involved in 1152 reactions catalyzed
by 890 protein coding genes, organized into 50 pathways. By accounting for static and dynamic analysis of SBSM
in Mtb we identified various critical proteins required for the growth and survival of bacteria. Further, we assessed
the potential of these proteins as putative drug targets that are fast acting and less toxic. Further, we formulate a
novel concept of metabolic persister genes (MPGs) and compared our predictions with published in vitro and

in vivo experimental evidence. Through such analyses, we report for the first time that de novo biosynthesis of
NAD may give rise to bacterial persistence in Mtb under conditions of metabolic stress induced by conventional
anti-tuberculosis therapy. We propose such MPG's as potential combination of drug targets for existing antibiotics
that can improve their efficacy and efficiency for drug tolerant bacteria.

Conclusion: The systems level framework formulated by us to identify potential non-toxic drug targets and strategies
to circumvent the issue of bacterial persistence can substantially aid in the process of TB drug discovery and translational
research.
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Background

The first decade of the post-human genome era, with an
increasing convergence of experimental and computa-
tional approaches, has witnessed a remarkable transfor-
mations in our basic understanding of human health
and disease [1], however its full impact on rapid diagno-
sis and cure for long standing neglected diseases such as
Tuberculosis is yet to be realized [2]. There is still an
unmet need for comprehensive systems-level models
that can predict the behavior of living systems. Given
our current understanding and available tools, it seems
possible to build such systems level models for a rela-
tively moderate complexity of a prokaryote genome and
in this article we focus on establishing a comprehensive
data intensive systems level understanding of Mycobacter-
ium tuberculosis (Mtb) genome. We focus on the identifi-
cation of potential non-toxic drug targets and propose a
framework to address the problem of bacterial persistence
in Mtb. Such methods are expected to potentiate the on-
going efforts of Tuberculosis (TB) drug discovery.

Mtb is an etiological agent of TB, which is sweeping
the developing world and has become a potential threat
to global health [3]. The increasing prevalence of drug
resistance TB, as defined in terms of multi-drug resistant
(MDR) and extensively drug resistant (XDR) strains of
Mtb, is emerging as a predominant cause of concern to
public health [4]. The multifaceted issues pertaining to
drug development, vaccine, transmission, epidemiology
and diagnosis of TB have been extensively discussed
earlier [5]. While the problem of drug resistance in Mtb
has been extensively studied [6-9], the aspects of drug
tolerance through the emergence of bacterial persistence
are seldom addressed. The phenomenon that allows
non-mutant pathogens of an isogenic population to sur-
vive the impact of an antibiotic is known as bacterial
persistence [10-12]. For clarity, it is important to distin-
guish between persistence and resistance. The latter also
reduces the effectiveness of antibiotics, but does so by
selecting mutants that evade antimicrobial activity
through strategies such as drug efflux [13], gene amplifi-
cation [14], reduced expression of targets [15], and
structural modulation of drug-binding enzymes [16].
The impact of heterogeneity in the metabolism of a
given pathogen towards the formation of persister pheno-
types that can demonstrate drug tolerance, however re-
mains elusive. In the light of World Health Organization
(WHO) recent warning, ‘The world is poised to enter a post-
antibiotic era’, [17] the current situation of Mtb drug resist-
ance and drug tolerance therefore unequivocally suggests
an urgent need for the development of new therapeutic
interventions and strategies to tackle the problem of TB.

The exponential rise of big data in biological science
in recent years has crystalized the idea of data-driven
drug discovery [18]. The basic component of a data-
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intensive framework for drug discovery can be classified
into data capture, data curation, data visualization and
hypothesis driven data analysis. We have implemented
certain aspects of this new paradigm of data-driven drug
discovery earlier as a framework in Open Source Drug
Discovery (OSDD) [19,20] that utilizes various crowd-
sourcing approaches to capture data in terms of manual
genome annotation and innovative strategies towards its
curation, visualization and hypothesis driven analysis
[21,22].

In the present work, we formulate a data-intensive sys-
tems level framework for the analysis of Mtbh genome as
data curation, data visualization and hypothesis driven
data analysis to identify potential non-toxic drug targets
and comprehend the metabolic basis of bacterial persist-
ence in the context of drug discovery. We begin our
analysis by manually curating and updating the meta-
bolic knowledgebase of Mtb based on comprehensive
manual re-annotation of its genome that was earlier
undertaken by us [21,22]. Further we developed a novel
visualization method termed as Systems Biology Spindle
Map (SBSM) to represent the metabolism of Mth. SBSM
reduces the visual complexity of the problem signifi-
cantly and facilitates its empirical analysis. Further, by
modeling the structure and dynamics of SBSM in Mtb
we elucidate various critical genes that are likely to be
essential for its growth and survival, and assess them as
putative non-toxic drug targets in a hypothesis driven
manner. Furthermore, we hypothesize a novel concept
of Metabolic Persister Genes (MPGs) that may give rise
to a persistence phenotype of Mtb resulting into drug
tolerance. On the basis of our findings we build a
spectrum of such MPGs in Mth under the selection
pressure of front line antibiotcs such as Isoniazid, Eth-
ambutol, Rifampicin and TCA1l administer to treat TB
and propose alternate drug targets. We provide substan-
tial amount of experimental evidences both in vitro and
in vivo by referring to a wealth of literature information
to assess the potential of predicted drug targets. Most of
our findings are consistent with the available experimen-
tal evidence in vitro and in vivo. We believe that the
novel systems-level strategies developed in this article
and the results obtained can advance our basic under-
standing of Mtb metabolic physiology and provide a
framework towards developing new therapeutic inter-
ventions for targeting drug resistance and drug tolerance
due to bacterial persistence in Mtb.

Methods

This study uses the functional re-annotation of the Mtbh
genome, which we previously reported [22,23]. The
iNJ661 reconstruction was our starting point [24]. Its in-
consistencies were removed, and additional gene-reaction
associations were incorporated from various databases
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such as KEGG, Biocyc, MetaCyc, SEED as well as
reference textbooks from PubMed (Additional file 1:
Table S1A-C for detailed references). This resulted in the
iOSDD890 reconstruction. Every new reaction was
charged and mass-balanced based on its stoichiometric
parameters, and Flux-Based Analysis (FBA) was per-
formed in order to assess its contribution to the objective
biomass function [25]. An overall biomass objective
function was used as defined in iNJ661 [24]. All the data
was captured and organized into Excel® spreadsheets,
which were then converted into a metabolic model using
MATLAB?®. The FBA was performed on the stoichiometric
matrix S of iOSDD890 as described below:

max CTV
v

st Sv=0

subject to : Viin S Vi < Viax

Where S is (m x n) stoichiometric matrix representing
m metabolites and 7 reactions, v is (n x 1) the flux vec-
tor, ¢ represents the objective function weight in terms
of flux vector v. v,,;, and v,,,,, are the constraints on the

system. The overall biomass was defined as ¢’v.

Systems biology spindle Map
Systems biology spindle maps were generated using
3-degree Bézier curves defined by:

E:(?)o—w”%witem,u

i=0

B(t) =

where: Function B(t) traces its path from control points
Py, Py, Py, Ps for n = 3. The topological connectivity of all
the metabolites, genes and reactions was computed
using the genome scale metabolic matrix in Mtb.

Directional re-routing of metabolic fluxes

The re-routing of metabolic fluxes was computed for
every gene knock out as a binary matrix for all the
knockouts, defined as:

1

[DRM; = { o

where: DRM,; =1 if the reaction was observed to carry
flux in knock-out condition but not in optimal condition
and DRM;; = 0 otherwise.

Reaction-reaction graph and module identification

The reaction-reaction graph was computed from the stoi-
chiometric matrix that takes the reversibility of reactions
into account. The nodes in the graph are reactions and they
are connected if they shared a common metabolite. Hence
two nodes are connected if they share a metabolite
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produced by one and consumed by the other. This pro-
duced a reaction-reaction (7 x #) matrix [RRA]. For [RRA];
the weights of the i row and j column are defined as:

WMM—{B

where: RRA;;=1 if the metabolite is produced by the
first reaction and consumed by the second and RRA;; =0
otherwise.

First neighborhood topological overlap of [RRA]

The modules in the metabolic network were identified
by first computing the topological overlap matrix of
[RRA];;. For a given graph, the topological overlap matrix
is bounded between value 0 and 1. The value 0 means
no topological overlap in the sense that any two given
nodes are not connected and they do not share any dir-
ect common neighbor. The value 1 means high overlaps
if there is a direct link between two given nodes and if
one set of direct neighbors is the subset of the other. For
[RRA];, two reactions were therefore regarded similar
based on their topological overlap as follows:

lan(i) 0 ()] + [RRA], ;i
e )]} + 1[RRA, !
1 lf i:i

TO(i7j) =

where: To(i,)) is the topological overlap matrix, a, (i)
represents the direct neighbor of i for all i, a,, (j) repre-
sents the direct neighbor of j for all j, the quantity |a,
(i) N a,,(j)| measures the total number of common neigh-
bours that node i and j share. For n =1, |a,(i)|, |a.()|
represents the total number of neighbours of node i and
j for n =1 respectively and [RRA]; ithe reaction-reaction
adjacency matrix.

Module identification

The modules were identified based on the un-weighted
average distance method applied to the computed topo-
logical overlap matrix To(i, j) previously defined. Briefly,
any two reactions x, € R and x4 € S represented by nodes
in the To(i,j) matrix with the highest overlap value were
first joined together to a branching point on the tree and
indexed as a new cluster, which was then joined with the
subsequent branches of a tree with other clusters with
similar topological overlap as follows:

o

Where: dist(x,, xy) is the distance between objects
%;€R and x;€S, R and S are the two sets of objects
(clusters), n,n; are the total number of objectes in the
cluster R and S respectively.

d(R,S) =

dzst xr,, xs,)
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Results

Structuring biochemical, genetic and genomic
knowledgebase of Mtb

Decades of TB research has resulted in a wealth of informa-
tion, which can be attributed to unstructured form of
information, available as various journal articles in PubMed
[21]. A simple search in PubMed with the key word ‘myco-
bacterium tuberculosis’ results in numerous papers — the
unstructured information, the rate of which rises exponen-
tially every year since the last re-annotaiton of its genome
was reported in 2002 [26]. The potential of this unstruc-
tured information available for Mtbh remains untapped,
which if utilized could substantially improve the functional
annotation of its genome and quality of subsequent genome
scale reconstruction of metabolism. The initial sequencing
of Mtb genome a decade ago [27], and its subsequent
annotation till 2002 [26] have been utilized to construct two
comprehensive genome scale reconstructions of its meta-
bolism [24,28]. Although useful to a large extent these
reconstructions primarily rely on the partial annotation
(52%) of the Mtb genome available based on its most recent
re-annotation statistics [26], thus leaving a gap in our
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understanding of metabolic physiology in Mh. We filled
this gap by crowdsourcing the genome annotation of Mth
by referring to ~27,000 published manuscripts that
resulted in 87% of functional annotations as reported by
us earlier [22].

The enhanced functional annotations of Mth genome
were utilized to reconstruct its metabolism at genome
scale in a bottom up manner. In order to formalize the
best capabilities and to fill the knowledge gap in the
metabolism of Mtbh we followed standard and well estab-
lished protocol for its reconstruction (Methods) [25] and
the resulting GENRE of Mtb was labeled as iOSDD890
as illustrated in (Figure 1). In contrast to prior compre-
hensive genome-scale reconstruction of Mtb (iNJ661)
[24], the iOSDD890 contains 16% more metabolites,
12% more reactions and 34% more genes reflecting a
significantly improved knowledgebase of the metabolism
in Mtb (Figure 1A). A comparison of iOSDD890 with
other genome scale reconstructions of Mth GSMN-TB
[28], iNJ661 [24] and iINJ661m [29] revealed a significant
improvement in the metabolite, gene and reaction cover-
age of iIOSDD890 (see Additional file 2: Figure S1).
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Figure 1 Biochemical, genetic and genomic knowledgebase of Mtb - iOSDD890. A) Profile of metabolism in Mtb based on iOSDD890
reconstruction and its comparision with iNJ661; B) Number of new genes added to iNJ661; C) Number of new pathways and respective genes.
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Our understanding of the pathways involved in thiamine,
valine, leucine and isoleucine biosynthesis was substantially
expanded in terms of their gene coverage (Figure 1B). New
pathways such as -oxidation of fatty acids, p-oxidation of
odd numbered acyl chain fatty acids, p-oxidation of unsat-
urated fatty acids were added along with a substantial num-
ber of genes (Figure 1C). B-oxidation of fatty acids is
important in terms of lipid utilization. While much of the
earlier work has been focused on lipid biosynthesis, lipid
degradation through [B-oxidation has been less explored.
Since lipids are an important source of energy in hypoxic
conditions, integrating these pathways into the model helps
us understand the survival of M¢tb within the hypoxic niches
of granulomas. The other important pathway added to the
model is the biosynthesis of the cofactor F420. The cofactor
F420 is deazaflavin with no homology in humans but it is
widespread across prokaryotes such as Mycobacteria. It has
been suggested that the cofactor F420 plays an important
role in shielding Mtb from NO, stress, as induced by
macrophage in aerobic conditions [30]. The detailed
biochemical information, comprising the new genes, re-
actions, pathways and the literature cited included in
iOSDD890, together with the supportive literature is provided
in (see Additional file 1: Table S1 (A-C)) and the model
(iI0SDD890) is provided in (Additional file 3: Model-01).

Systems Biology Spindle Map

To comprehend the complex metabolic architecture one
must understand its organization in terms of metabolites
and genes that encode proteins with respect to the reactions
involved in various pathways. Conventionally, metabolic
pathways are represented in KEGG and other common
formats based on flow chart diagrams [31]. While useful to
a great extent, such representations seldom account for
inherent structural connectivity among various metabolites,
the genomic organization of genes (encoding for enzymes),
reactions and pathways. For instance, the metabolic repre-
sentation that can display the relation between various
metabolites involved in various reactions with respect to the
chromosome location of genes (encoding for respective
enzymes) is absent. The conventional flow chart diagrams
therefore limited our understanding of metabolic structure,
in the context of its function. This lack of accountability in
inherent metabolic topology by conventional representation
also makes it formidable to construct efficient computa-
tional algorithms that can render complete metabolic infor-
mation in a human perceivable manner.

To circumvent these challenges we developed a new
method of metabolic visualization termed as Systems
Biology Spindle Map (SBSM). As illustrated in (Figure 2A),
the components of SBSM include metabolites, genes and
reactions that are arrayed with their respective pathways
parallel to each other. The metabolites are classified into
exchange and intracellular metabolites. The exchange
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metabolites are linked to intracellular metabolites by
exchange reactions, representing all possible ways in
which a given metabolite can be imported or exported,
into or from the system.

All the metabolic genes are placed according to their
genomic order (chromosome position) with the first
gene (top) being closer to the origin of replication as
illustrated in (Figure 2A). The metabolites are then
connected to respective genes based on the reactions in
which they either act as reactant or product. The metab-
olites are sorted according to metGene, which represents
the metabolite out-degree with respect to genes as illus-
trated in (Figure 2A). The metabolite with the highest
metGene is placed at the centre, and each subsequent
metabolite is placed alternatively on either side of the
central metabolite, in descending order of metGene as
illustrated in (Figure 2A). The reactions however, were
first classified into their respective pathways and then
arranged according to reaction-gene (rxnGene) connect-
ivity (representing reaction out degree with respect to
genes) similar to the placement of metabolites as illus-
trated in (Figure 2A). The resultant complete metabolic
information in Mtb is summarized in (Figure 2B).

In addition, the degree distribution of the tripartite graph
linking metabolites, genes and reactions was analyzed. Most
of the metabolites were found to be highly connected to
either one or two genes as illustrated in (Figure 2C) suggest-
ing less redundancy in their utilization as either reactant or
product. In contrast to currency metabolites, metabolites
such as acetyl-CoA were found to be highly connected (100
genes) as illustrated in (Figure 2C). Metabolites such as
octacosanoyl-CoA, hexacosanoyl-CoA, tetracosanoyl-CoA,
docosanoyl-CoA etc. were found to be connected to a spe-
cific set of 67 genes, as illustrated in (Figure 2C), predomin-
antly coding for the FAD operon involved in the f-oxidation
of fatty acids. About 100 metabolites were found to be un-
connected to any gene. The list of all the metabolites and
their respective gene connectivity is provided in (Additional
file 1: Table S2). The gene-reaction connectivity analysis
revealed skewness towards single gene reactions, as illus-
trated in (Figure 2F), suggesting specificity in their function.
A total of 57 genes were found to connect to a specific set
of 27 reactions, as illustrated in (Figure 2F), involved in the
B-oxidation of fatty acids. The complete list of genes and the
reactions to which they are connected is provided in (see
Additional file 1: Table S3). A total of 550 reactions were
observed to be catalyzed by a single gene, and 320 were un-
connected to any gene (Figure 2G). These orphan reactions
along with their respective metabolites suggest a knowledge
gap that remains to be filled by future reaction annotations.

Context dependent metabolism in Mtb
While the complete SBSM of metabolism in Mth
(Figure 2B) depicts an overall connectivity between
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of active reactions H) optimal metabolic physiology obtained by optimizing for defined biomass function using Middlebrook media.

various metabolites, genes and reactions, it also indicates
that there might exist a functional redundancy in terms
of its connectivity. For a given fitness function, such
functional redundancy can be computed as a subset of the
overall connectivity of SBSM in Mth in a context
dependent manner. To this end, we used an optimization
approach (flux balance analysis) to quantify the optimal
set of metabolic physiology in Mtb for a given fitness
function (biomass) defined for specific media condition
(Middlebrook) (see Methods) [32]. The in silico growth
rate that was predicted on the basis of our simulations
was found to be well in accordance with the growth rates
reported in the literature, thereby validating the model
[33,34]. The quantified model of metabolism in Mtb was
further used for all the analysis.

The reduced overall connectivity of SBSM in Mtb
computed as an optimal set of metabolic information re-
quired for growth on Middlebrook media is illustrated in
(Figure 2H), suggesting that Mtb uses only a subset of its
metabolism to perform optimally. Interestingly, our model

showed that only 441 (45%) metabolites (Figure 2C), 439
(38%) reactions (Figure 2G) and 400 (44%) (Figure 2F)
genes were active in terms of their flux carrying capacity.
On an average, the metabolites with high metGen were
found to be active as illustrated in (Figure 2C). Most of
the metabolites with a metGen degree of 2 were found to
be predominantly active in contrast to other metabolites
whose metGen ranges from 0 to 7 (Figure 2C). The metab-
olites belonging to pathways such as B-oxidation of fatty
acids (connected to 67 genes of FAD operon) were mostly
observed to be inactive in the optimized metabolic phy-
siology of Mtb, further suggesting their importance for a
condition dependent metabolism.

Interestingly, we observed a more exact power-law distri-
bution (y = 2.52) on metGen for active metabolites in con-
trast to power law distribution of overall metGen (y = 2.02)
of SBSM (Figure 2D-E), suggesting a modular pattern in
the utilization of metabolites in the metabolism of Mtb
akin to what has been observed for other bacterial species
[35]. The improved value of y suggests that Mtb uses its
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most connected metabolites to operate in an optimal
manner. A similar type of pattern was observed in the
utilization of genes and reactions, where genes and reac-
tion with connectivity in the range of 0 to 4 were found to
be mostly active (Figure 2F-G). The 400 active genes were
then compared with the active transcriptome of Mtb, as
recently reported [36]. A similarity of 91% (364 genes) was
found between the active transcriptome (rpkm >5) and
predicted active genes in our model. Predominantly, genes
belonging to operons such as sdhA-D, mmaAl-A4, sugA-
C, atpA-F murA-I, pyrA-H, c¢ydA-D, aroA,B,D,E,G,EK,
ppsA-E and mur enzymes were found to be active. The
complete list of model genes, active genes and the rpkm
value of active gene transcript is provided in the (Additional
file 1: Table S4).

Critical genes required for the growth of Mtb

Elucidating the most efficient metabolic architecture has
given us a roadmap to identify new drug targets. It helps
us identify the essential genes that are required to main-
tain the metabolic integrity of bacteria. A gene was
regarded as essential if its knockout resulted into no bio-
mass production. The genes were classified into three
categories of lethality: (a) lethal gemes: genes whose
knockout resulted in no growth; (b) enzymatically low
efficient genes (ELE): genes that result in more flux
utilization than the alternate pathway to achieve the
same predicted growth rate. Such genes therefore need
to be overexpressed in order to achieve the desired
growth rate; (c) metabolically low efficient genes (MLE):
genes that reduce the growth if they are used in a
pathway.

Lethal genes were computed based on single gene
knockout of the genes involved in optimal metabolic
physiology as illustrated in (Figure 2F). Both the ELE and
MLE class of genes were identified based on the most effi-
cient metabolic physiology as computed using the pFBA
approach [37]. The pFBA method relies on selecting the
fastest growing mutant with a minimal set of metabolic
usage for a given objective function, which results in the
elucidation of the most efficient metabolic physiology. The
predicted essential genes were further assessed based on
the experimental evidence for their essentiality from both
in vitro and in vivo literature. Towards this we constructed
a literature based evidence pool of gene essentiality by re-
ferring to a vast amount (~112) of different manuscripts
reporting the essentiality of Mtb genes in vitro, in vivo, in
macrophage and in mice models, in contrast to previous
investigations [24,28], wherein the comparison between
computational predictions to that of their experimental
validations has been primarily made using single muta-
genesis based studies.

Knocking-out genes in-silico one at a time resulted into
116 lethal genes (Figure 3D, Additional file 1: Table S5).
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Of these, 86 (~74%) genes were also found to be essential
based on in vitro, in vivo, in macrophage and in mice
model evidence from the constructed literature pool. For
enzymatically low efficient genes, a total of 48 of the 890
genes were found to be ELE essential (Figure 3E, Additional
file 1: Table S6). Of these 48, 28 (58%) were reported to be
essential in the in vitro, in vivo, in macrophage and in mice
model based on the literature evidence pool. The genes that
reduced the growth rate if they participate in metabolic
pathways were then identified as metabolically low efficient
genes (MLE). Of the 890 metabolic genes, 281 genes were
found to be MLE essential (Figure 3F, Additional file 1:
Table S7). Of these, 107 (38%) were also reported to be es-
sential in vitro, in vivo, in macrophage and in mice model
based on the literature evidence pool. For all the essential
genes, a 58% overlap was observed between in-silico predic-
tions and what has been reported in the literature evidence.
However, the overlap was 74% between our in-silico predic-
tions and the existing experimental results based on the
in vitro, in vivo, in macrophage and in mice model, suggest-
ing a significant improvement over previous research where
the in silico predictions have been predominantly compared
with only in vitro analysis.

The minimum inhibitory concentration (MIC) of an anti-
biotic is an important measure of its efficacy. All other
things being equal, the lower the concentration of a target
protein/enzyme for a non-competitive inhibitor or a tight
binder (as most of the known antibacterial compounds are
non-competitive inhibitors), the lower the antibiotic's MIC
and hence more will be its efficacy. In this context, we
assessed the intracellular levels of all the proteins/enzymes
coded by the predicted essential genes based on the
complete proteome of Mtb as reported recently [38], and il-
lustrated in (Figure 3A,B,C). The mean concentration of the
complete set of proteins of Mtbh was computed, and used to
assess the concentration of the proteins derived from essen-
tial genes. Most of these protein/enzymes had a lower con-
centration than the mean protein concentration. Of the
total 116 single knockout lethal genes, 97 genes were
expressed, resulting in enzymes of measurable concentra-
tion. 75 of these expressed genes resulted in protein/enzyme
concentrations lower than the total mean concentration of
the Mtb proteome. Similarly, the protein concentration and
respective details of single gene knockout essential genes,
ELE and MLE essential genes as illustrated in (Figure 3B-C)
is provided in (see Additional file 1: Table S8).

Metabolic network structure and function

The topological location of metabolites, reactions and
genes can be used to assess the efficiency of a metabolic
structure. It has been suggested that metabolism operates in
a modular manner [35]. Each module can be identified based
on its function, such as genes involved in cofactor-
membrane-methionine-mycolic acid and ubuquinone
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modules on reaction-reaction graph of Mtb metabolism.

genes and (G) genes belonging to all the structural modules respectively (H) transcriptional control of genes mapped to various reaction topological

metabolism; fatty acids-glycolysis-citric acid cycle and sugar
metabolism. Given the importance to Mtb of such special-
ized pathways as mycolic acid and lipid production, it seems
important to analyze its modular topology, and identify its
vulnerabilities. In this context we hypothesize that the tran-
scription factors regulating genes that belong to different
modules could be essential targets, as their inhibition would
be more likely to result in lethal metabolic disruption.

We identified the modules in the metabolic network of
Mtb. Towards this a reaction-reaction graph (directed)

was first constructed. The graph was then partitioned into
various modules by computing the topological overlap
matrix that was quantified based on hierarchal clustering
[35] (Methods). A total of 9 modules were identified as
illustrated in (Figure 3H). The reactions of each module
were mapped to their respective genes, resulting in
sets of specific genes that were unique to each module
(see Additional file 1: Table-S9A-I). The genes of each
module were further mapped to their respective tran-
scription factors, as illustrated in (Figure 3H). Among
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all the transcription factors phoP, Rv0348 and sigE were
observed to be highly connected to genes belonging to dif-
ferent modules. phoP, which regulates a two-component
system, is essential for maintaining virulence [39]. mosR
(Rv0348) is a unique transcription factor that plays a key
role in the maintenance of Mtb’s hypoxic state by up-
regulating the mcel operon, which is responsible for
mammalian cell entry and for regulating various genes in-
volved in hypoxia and starvation [40].

sigE is one of the sigma factors in Mtb, which is
thought to be responsible for the heat shock response.
sigE mutants are more sensitive to heat shock and vari-
ous oxidative stress conditions [41]. Our earlier interac-
tome analysis suggests sigE as a potential drug target
candidate [22]. This analysis confirms this finding and
suggests that phoP and mosR are other valuable targets
whose inhibition could severely disrupt Mtb metabolism.
The list of all the transcription factors that were mapped
to respective genes in various modules along with their
pathways is provided in (Additional file 1: Table-S9A-I).

Metabolic basis of emergence in persister phenotype

The phenomenon in which an isogenic population of
bacterial cells survives the impact of an antibiotic is defined
as bacterial persistence [10-12]. While bacterial persistence
has been predominantly investigated in Escherichia coli, its
possible implications in Mtb are seldom addressed except
in a recent investigation on Mpycobacterium smegmatis
[42]. The precise mechanism leading to persister formation
remains elusive, however investigations suggest a pre-
dominant role of phenotypic heterogeneity [10,43,44], SOS
response induced by DNA damage [45], Bet hedging [46]
and stochasticity in cellular regulation [47,48] as probable
mechanism linked to bacterial persistence.

It is unclear if heterogeneity in the metabolism, that
can be brought about by the complex connectivity
among various metabolites, genes and reactions can fa-
cilitate formation of the persister. For a given metabolic
structure, such as those represented by SBSM of Mtb,
one can decipher the metabolic heterogeneity in terms
of alternate metabolic sub-phenotypes that bacteria can
adopt to survive in a context dependent manner under
the influence of a given selection pressure. Such selected
metabolic sub-phenotypes might become stable over a
prolonged period of stress, which eventually may facili-
tate the emergence of persister phenotypes. Moreover,
the intricate connectivity of metabolic interactions
makes it likely that the selection of metabolic sub-
phenotypes will be the preferred adaptive response, as it
is more efficient than altering the genomic architec-
ture through mutations. In this context, we therefore
hypothesize that the directional re-routing of meta-
bolic fluxes as a putative adaptive mechanism respon-
sible for section of metabolic sub-phenotypes under
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antibiotic stress that may give rise to bacterial persist-
ence in Mtb.

Consider a wild-type bacterium in an optimal meta-
bolic steady state, as shown in (Figure 4B). As stress is
introduced through antibiotics, the optimal metabolism
can undergo changes in three ways such as a) loss of
function (shutdown reactions that were active); b) func-
tion regulation (increase or decrease in the flux carrying
capacity of active reactions); c) gain of function (activa-
tion of reactions that were dormant). The gain of func-
tion through the activation of reactions is responsible
for the directional re-routing of metabolic fluxes, as il-
lustrated in (Figure 4B). This results into alternative
metabolic phenotypes. Over a prolonged period of anti-
biotic stress such phenotypes can eventually be selected,
leading to the adaptation of the bacterium, which might
demonstrate antibiotic tolerance.

We test this hypothesis by subjecting the metabolism
of Mtb to sudden stress of known antibiotics such as
Isoniazid (INH), Ethambutol (ETH), Rifampin (RIF) and
the recently reported small molecule TCA1. Isoniazid is
pro-drug which is activated by catalase-peroxidase he-
moprotein, katG. It inhibits inkA, a nicotinamide aden-
ine dinucleotide (NADH)-specific enoyl-acyl carrier
protein (ACP) reductase involved in the fatty acid syn-
thesis [49]. Ethambutol inhibits arabinosyltransferase
which catalyzes the arabinogalactan and lipoarabinoman-
nan polymer synthesis [49]. Arabinogalactan is a building
block of the mucolyl-arabinogalactan-peptidoglycan layer
that anchors it to the lipid-mycolic acid outer layer. Rifam-
pin inhibits the B-subunit of the DNA-dependent RNA
polymerase activity involved in transcription [49]. TCA1 is
reported to inhibit DprEl, a component of decaprenyl-
phosphoryl-B-D-ribofuranoseepimerase involved in cell
wall synthesis [50]. The metabolic targets of INH (embB,
katG, inhA and kasA) [51], the targets of ETH (embA,
manB and rmiD) [51], the target of RIF (embB) [51] and
the target of TCA1 (DprEI) [50] were identified from the
literature.

In our analysis, each of these gene was knocked out
individually and the flux carrying capacity of reactions
were re-computed in order to identify the directional
rerouting of metabolic fluxes (Methods). (Figure 4C)
shows the metabolite and reaction connectivity of inhA
in SBSM. The deletion of inhA resulted into a loss of
flux carrying capacity of 328 reactions, which were sub-
sequently mapped to 292 genes, (Figure 4D). However, a
total of 57 reactions were found be involved in the direc-
tional re-routing of metabolic fluxes and were further
mapped to their respective genes. A total of 60 enzyme-
coding genes (hereafter referred as metabolic persister
genes (MPGs) were identified that were responsible for
catalyzing the reactions involved in the directional re-
routing of metabolic fluxes (Figure 4E). Similarly all the
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genes (targets of antibiotics considered in this study) were
knocked out one at a time and the resulting MPG’s were
deciphered based on directional re-routing of metabolic
fluxes (Additional file 1: Table-S10 and Additional file 4:
Text-01).

in vitro and in vivo assessment of MPGs based on
experimental evidence

The MPGs were further analysed based on available ex-
perimental evidence from the literature both in vitro and
in vivo. For isoniazid, the knock out of inhA as target re-
sulted into 60 MPG’s. The global gene expression of
these 60 MPG’s was further assessed based on a study

reporting Mtb treatment with Isoniazid in a dormancy
model attained through nutrient depletion and progressive
hypoxia in vitro along with in vivo model of dormancy
[52]. A total of 42 MPG’s of the total 60 were observed to
be significantly up-regulated when treated with Isoniazid
at 1 pg/ml for 2 hours (Figure 4F). The expression of these
genes however was noted to reduce as a function of INH
exposure (6 hr treatment, (Figure 4G). The high concord-
ance between predicted MPG’s and their global up-
regulation in vivo upon early exposure to Isoniazid suggest
that the bacterium might use them as a resource to adapt
its metabolism when challenged with the drug, resulting
in an alternative metabolic phenotype. In addition, to
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probe the regulation of these MPGs, we mapped them to
their respective transcription factors as illustrated in
(Figure 4H). The transcription factors such as Rv0348
(mosR) and crp were observed to regulate most of the
MPGs. Earlier research suggests that mosR controls the es-
tablishment of long term survival in the Mtb by inducing
the mcel operon [40]. Bacterial cyclic-AMP receptor pro-
teins (CRP) are a specific class of transcription factors that
are suggested to induce upon activation of cAMP in Mtb
[53]. In response, CRP binds to the target promoter regu-
lating the expression of repfA and whiBI1, subsequently
leading to the emergence of persistence in Mtb. We also
observed sigF and sigE regulating the two-MPGs. A two-
fold up-regulation of sigE and sigF transcription factor has
been measured in an isogenic population of Mth when
challenged with Isoniazid [54]. Among other transcription
factors, we observed oxyS (Figure 4H) regulating one of the
MPGs involved in maintaining intracellular H,O, levels.

Directional re-routing of metabolic fluxes as mechanism
of adaptation

Upon removal of targeted genes a significant reduction in
the flux carrying capacity of glycolysis and citric acid cycle
along with the pentose phosphate pathway (not shown)
was observed as an overall response of metabolism as
illustrated in (Figure 5A). The flow of metabolic fluxes
through mycolic acid biosynthesis (primary target of Iso-
niazid) and the pentose phosphate pathway appeared to
be completely shutdown as shown in (Figure 5A). The re-
duction in the fluxes of glycolysis and citric acid cycle is
distant from mycolic acid biosynthesis, which is the direct
target of isoniazid. This clearly shows that the drug expos-
ure triggers systems level changes. A drastic reduction in
both growth and central metabolic activity has been sug-
gested as a predominant mechanism of Mtb adaptation
under antibiotic stress [55].

We observe that the directional re-routing of meta-
bolic flux via reactions catalysed by the sdhA-D, nadA-E
and nuoA-N operons is the predominant response to all
four antibiotics considered in this study. The activation
of the sdhA-D operon increases the production of fu-
marate from succinate in the citric acid cycle as illus-
trated in (Figure 5B). The fumarate then combines with
l-Aspartate and initiates the de novo biosynthesis of
NAD" cofactors, as observed through the activation of
the nadA-E operon. The nadA ~ E operon was also ob-
served to be completely unregulated upon treatment
with Isoniazid at 1 pg/ml for 2 hr and 6 hr of Isoniazid
exposure in vivo (Figure 4I) [52]. The NAD" cofactors
produced are then reduced to NADH pool in a reaction
catalysed by mez, converting malate into pyruvate. The
activation of nuoA-N further suggests the oxidation of
NADH to NAD"* by NDH-I dehydrogenase. Studies have
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characterized two class of NDH in Mtb. NDH-I is a type
one oxidoreductase in which the redox activity is
coupled with the proton translocation, whereas NDH-II,
is a type two oxidoreductase that performs electron
transport without proton pumping across membrane.
Further, cytochrome bd oxidase aaz — type cytochrome ¢
oxidase (CcO) has been shown to actively participate in
the electron transport chain of Mtb. Based on the direc-
tional re-routing of metabolic fluxes we propose the fol-
lowing probable mechanism of Mtb adaption.

As most of citric acid cycle and pentose phosphate
pathway components undergo flux arrest, the activation
of the nadA-E operon increase the intracellular produc-
tion of NAD" de novo (Figure 5B). The NAD" is further
reduced to NADH as observed by the activation of mez.
The activation of the nuoA-N operon further suggests
the oxidation of NADH through NDH-I dehydrogen-
ase. The electron produced in this process is further trans-
ferred to either bd oxidase or CoC branch, and eventually
to a terminal electron acceptor. The proton produced by
NADH oxidation is however translocated across the cell
membrane. This eventually might increases the potential
difference across the cell membrane, subsequently leading
to ATP production that is required for cell survival when
it is under antibiotic stress (Figure 5C). We therefore
suggest that de novo biosynthesis of the NAD" cofactor
is crucial for maintaining the viability of the cellular
redox potential, which can eventually be harnessed for
the production of ATP through the respiratory metabol-
ism of Mth. We support our finding with available
experimental evidence from literature in vitro and
in vivo [56,57] demonstrating the importance of de novo
biosynthesis in the growth, adaptation, survival and per-
sistence of Mtb in conditions similar to that of human
infection.

Spectrum of metabolic persister genes in Mtb

Further, a spectrum of MPG’s in Mtb was formulated
by considering all the metabolic genes as drug targets
(Figure 6A). For every single gene knock out in the
model, a total of 434 genes resulted into various MPG’s
based on directional re-routing of metabolic fluxes
(Additional file 1: Table S11). For any given knockout
the range of MPG’s were observed to vary from 1 to
179, with median value of 36 (Figure 6A). A total of
211/434 genes were observed in the range below me-
dian value (Figure 6A, Additional file 1: Table S12).
Predominantly these 211 genes belonged to nuoA ~ L
operon, sugA ~ C operon, frdA ~ D operon atpA ~ H
operon and proV ~ X operon. Off these operons, the
sugA ~ C has been suggested to involved in carbohy-
drate transport to maintain Mtb virulence in the con-
text of host-pathogen interaction [58], atpA ~ H codes
of ATP-Synthase, which has been proposed as drug
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Figure 5 Metabolic mechanism of adaptation. A) Flux arrest in glycolysis, citric acid and mycolic acid pathway; B) Activation of NAD pathway
de novo as computed based on directional re-routing of metabolic fluxes; C) Alternate mechanism of ATP generation based on proton motive
force; Mechanism: The activation of nadA ~ E operon lead to de novo biosynthesis of NADH, pool which is then reduced to NAD following the activation of
the nuoA ~ Eoperon coding for NDH-I. This maintains the electron flow with proton translocation, which increases the potential difference across cell
membrane, and can potentiate ATP production, thereby providing the necessary energy when challenged with antibiotic stress.

target earlier [59]. Except katG and dprEI, the MPG’s
for all the targets (inhA, kasA, embB, rmlD, embA and
manB) of other antibiotics considered in this study
were observed to be higher than median of all MPGs’
(Figure 6A). The high value of MPG’s for these known
antibiotics suggest a diversity in the options for bacteria
to circumvent the impact of these antibiotics and hence
likely to become drug tolerant. Contrary to this, the
knock-out of genes with MPG’s below the median value
can therefore be hypothesized as potential drug targets
in combination with existing antibiotics as they are
likely to get a limited support from the alternate metab-
olism and hence lower chances of developing drug tol-
erance. We support this hypothesis with the fact that
the katG, dprEl and atpEl all having MPGs below the
median value and are also approved drug targets for
Mtb, which have cleared preclinical and phase-II trials
successfully (www.tballiance.org).

Interestingly these drug targets also have lesser num-
ber of genes that were affected due to their knockout
(Figure 6B). In the process of drug discovery it is essen-
tial to minimize the chances of drug toxicity, which can
be achieved by minimizing the concentration of ligand
and by maximizing its impact on the over all metabolic
physiology. With this objective, we further mapped the
intracellular abundance of proteins encoded by these
211 metabolic persister genes. A total of 112 off the 211
proteins were observed to have intracellular protein
abundance lower than the average protein abundance of
Mtb proteome [38], suggesting them further as potential
drug targets for which ligands with minimum intracellu-
lar concentration could be designed.

The spectrum of metabolic persister genes in Mtb
therefore for the first time suggest a new strategy that
can be utilized to comprehend the impact of a given
gene knockout by accounting for all possible mechanism
through which such an impact could be buffered by the
complexity of metabolism. We therefore propose these
211 genes as potential drug targets (of which one katG
is known and dprE1 and atpE have clear preclinical and
phase-II trials), which can accelerate the drug discovery
for drug tolerant Mtbh and potentiate translation of vari-
ous therapeutic interventions for the same.

Potential non-toxic drug targets
Of the total 50 metabolic pathways, we observed essen-
tial genes in 42 pathways (Figure 6C). We have identified

33 of these 42 pathways that contain genes that are
metabolically low efficient (MLE), 24 (out of 42) that are
lethal, and 18 (out of 42) that are enzymatically low effi-
cient (ELE) (Figure 6C). Interestingly most of the MPGs
and MLE genes were observed in -oxidation of fatty acids.
This clearly suggests that Mtb utilized its B-oxidation path-
way under stress condition despite harnessing its potential
in wild type optimal metabolic physiology.

All the predicted essential genes were then compared
with the human genome and human microbiome at the
sequence level. The goal was to identify drug targets
with the least likelihood of side effects. Of the total 116
lethal genes obtained from single gene knockout, 104
genes were found to be absent from the human genome,
of which 48 were also found to have no homology in the
human microbiome (Additional file 1: Table S5). For the
48 ELE essential genes, 32 were absent from the human
genome, of which 26 had no homology to the human
microbiome (Additional file 1: Table S6). For the 281
MLE essential genes, 207 were found to be absent from
the human genome, of which 138 were also absent from
the human microbiome (Additional file 1: Table S7). Few
of the predicted targets with no sequence homology with
human genome and microbiome are discussed below. The
potential drug targets mostly belong to operons in Mtb.

The PPS system: the PPS system is made up of five
genes. ppsA ~ E encodes for a type-I polyketide synthase.
This operon codes for the protein responsible for the
production of phthiocerols and phenolphthiocerols. Es-
terified by multimethyl-branched chain fatty acids, these
complex lipids are composed of long chain B-diols, and
are vital for maintaining the integrity of the cell wall
[60]. In M. bovis BCG, ppsA-E has been shown to be re-
sponsible for the synthesis of phthiocerols and phe-
nolphthiocerols through a mechanism involving the
elongation of the C20-C22 fatty acyl chain containing a
phenol moiety with three malonyl-CoA and two methyl-
malonyl CoA [61].

The PIM system: the PIM system is made up of three
genes, pimA an a-mannosyltransferase, pimB, and pimE,
a mannosyltransferase. Along with phosphatidylinositol
(PI), the phosphatidylinositol mannosides (PIMs) are
predominantly phospholipids synthesized metabolically
in mycobacteria [62]. Anchoring two lipoglycans and
lipomannan, the lipoarabinomannan is a crucial modula-
tor of immune response during the course of a TB infec-
tion [63]. PIM synthesis begins with a mannose residue
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(See figure on previous page.)

Figure 6 Spectrum of metabolic persister genes in Mtb and pathway distribution of potential non-toxic drug targets. A) Spectrum of
metabolic persister genes in Mtb. X-axis represents the total number of gene knockouts. Total number of MPG for respective knockout is shown
above x-Axis and total number of affected genes is shown below x-axis (B) For both A and B the respective box-plots are shown with the region
below median colored red representing genes of interest. C) Pathway level coverage of essential genes: All the essential genes and the metabolic
persisters genes are plotted relative to total number of genes in a given pathway.

transfer from GDP-Man to the myo-inositol ring of PI
resulting into the formation of phosphatidylinositol
monomannosides subsequently resulting into the highly
branched lipoglycans, lipomannan, and lipoarabinoman-
nan with intermediate steps involving phosphate based
sugar donors.

The KDP system: it codes for kdpA, kdpB and kdpC,
and is a vital component of the host-pathogen inter-
action and for maintaining a K'gradiant across the Mtb
cell membrane during the course of infection. As a
mechanism of action, studies of the histidine kinase
kdpD of E. coli suggests autophosphorylation and de-
phosphorylation of the response regulator kdpE, which
in turn regulates the expression of the kdpFABC operon,
acting a primary stress response to osmotic pressure by
regulating the levels of K*. The change in osmotic pres-
sure is sensed by the K'-transporting P-type ATPase en-
zyme, which subsequently results in the import and
export of osmotic fluids such as K* [64].

The SDH system: it codes for sdhA-D, succinate
dehydrogenase, which plays a vital role in the adaptation of
M. smegmatis to restricted energy availability. The exact
role of Sdh enzymes along with their presence at different
locations in the cell membrane of mycobacterium species is
unclear [65]. Menaquinone has been suggested as an elec-
tron acceptor for Sdh, which would indicate a thermo-
dynamically stable conversion of fumarate to succinate [65].

Discussion

Almost one-third of worlds’ population is reported to
harbor the latent form of TB. Therapeutic interventions
to treat normal TB range from six months to a year, and
up to 24 months in the case of MDR and XDR TB. The
prolonged and sometimes improper use of multiple anti-
biotics has caused Mth to become resistant to most of
them. The emergence of persisters, adds another dimen-
sion to the problem. The severity of this situation and
its devastating impact on public health have created an
emergency situation in many countries that demands
new approaches and interventions to develop new thera-
peutic interventions that can potentiate TB-translation
research and reduce the global burden of disease.

In order to address the issues pertaining to the identi-
fication of potential non-toxic drug targets in Mtb, we
have established and implemented an integrated data-
intensive systems level framework for the analysis of its
metabolism. The metabolism of Mtb was reconstructed

manually in a bottom up manner by utilizing wealth of
legacy data present as unstructured form of information
in literature. Our reconstruction has significantly im-
proved the metabolic knowledge of Mtb in contrast to
its predecessors. The complex metabolic information
was then represented by developing a novel Systems
Biology Spindle Map (SBSM) that elucidate the inherent
structure of metabolism in the context of genome
organization and function. Further we identify various
essential genes based on single-gene knock out experi-
ments, the genes that code for enzymatically low effi-
cient proteins and metabolically low efficient genes. We
also identify various essential genes based on the modu-
lar nature of metabolic topology in Mtb and further map
them to their respective transcription factors to identify
potential drug targets form a polypharmacology ap-
proach. We assess the potential of predicted genes based
on substantial amount of experimental evidence avail-
able both in vitro and in vivo experimental studies by re-
ferring to wealth of literature information in contrast to
previous studies.

Further we formalized a novel concept of metabolic
persister genes (MPGs) and identified a spectrum of
such genes that can probably give rise to persister phe-
notypes of Mtb and hence may be responsible for drug
tolerance. We have modeled antibiotic stress as selection
pressure to investigate the directional re-routing of
metabolic fluxes as a prime mechanism that allows Mitb
to adapt to changing environmental conditions, and de-
velop persister phenotypes. Pathways such as the f-
oxidation of unsaturated fatty acids, the B-oxidation of
acyle chain fatty acids and the p-oxidation of fatty acids
were found to contain a large number of persister genes
as shown in the response to Isoniazid and Ethambutol
challenges (Figure 6C). We have specifically assessed
Mtb’s metabolic response to three commonly used anti-
biotics along with a recently reported small molecule
TCA1. We have observed the directional re-routing of
metabolic fluxes through de-novo biosynthesis of NADH,
which is then reduced by type-I NDH. This along with
electron transfer and proton translocation might in-
crease the potential difference across the membrane
eventually leading to ATP production, critical for the
survival under antibiotic stress. While earlier analysis
has suggested de novo synthesis of NADH as a mechan-
ism of survival under hypoxic conditions, the precise
mechanism has been unclear, but is now explained to some
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extent by our results on the directional re-routing of Mtb's
metabolism. It has also been suggested that NDH-II but not
NDH-I is important for survival under hypoxic conditions.
Since NDH-I is involved in proton translocation, which can
increase the potential difference across cell membrane, we
reason that the directional re-routing of metabolic fluxes
through de novo synthesis of NADH is a viable mechanism
to explain persister formation. We support our hypothesis
based on earlier [56] and a very recent investigation [57]
suggesting the importance of de novo synthesis of NAD
in vivo towards maintaining the viability and persistence of
Mtb in conditions relevant to clinical infections.

While the activation of NDH-I can lead to increase in
electron gradient across cell membrane and eventually
leading to ATP production, it can also facilitate the pro-
duction of reactive oxygen species (ROS) due to leakage
in electron flow. In the light of recent investigations
[66], we believe that our proposed mechanism can also
increase ROS production and make existing antibiotics
more effective when used in combination. However, the
implication of such mechanism in ROS production re-
mains uncertain and might be investigated experimen-
tally in future work. Earlier investigations also suggest a
metabolite mediated increase in uptake of aminoglyco-
sides as a mechanism of persister eradication as a result
of increased proton motive force [67]. While this mech-
anism is specific for aminoglycosides, it certainly re-
mains to be tested for Mtb given the high rate of
mutations in its drug efflux pumps [68].

We believe that the comprehensive data-intensive
systems level analysis performed in this study can signifi-
cantly potentiate the on going efforts of Tb drug discovery.
In the context of build a systems-level understanding fur-
ther, the model proposed by us in this analysis can be inte-
grated with human macrophage [69]. iOSDD890 when
combined with existing model of macrophage [69] is likely
to improve the predictive power of host-pathogen model
that can improve our basic understanding in an evolution-
ary context and rationalize the design of efficient and
effective drug targets.

Conclusion

Tuberculosis remains a leading cause of mortality across
the globe. There is an urgent need for the development of
new strategies and interventions to discover new drug tar-
gets or repurpose the existing ones. Towards this, the data
intensive systems level analysis of metabolic complexity
presented in this study can substantially aid in streamlining
the ongoing efforts of TB drug discovery by identifying po-
tential drug targets that are lethal for bacterial growth and
can aid in the emergence of bacterial persistence. We be-
lieve that framework present in this study is generic and
can be extended to study other neglected disease caused
by various pathogenic prokaryotes.
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List of Single-Gene knock out essential genes and their literature based
validation along with sequence level comparison with human genome
and microbiome, the information on availability of PDB structure is also
provided. Table S6. - List of ELE essential genes and their literature based
validation along with sequence level comparison with human genome
and microbiome, the information on availability of PDB structure is also
provided. Table S7. - List of MLE essential genes and their literature based
validation along with sequence level comparison with human genome and
microbiome, the information on availability of PDB structure is also provided.
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knockout, ELE and MLE essential genes. Table S9. (A-l) - List of genes
belonging to each module along with name, pathway mapping, literature
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out target of all the antibiotics considered in this study. Table S11. - List of
MPG's for knockout of all the genes present in the model. Table S12. - List
of 211 Potential genes.

Additional file 2: Figure S1. Comparison of iOSDD890 with GSMN-TB,
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Additional file 3: Model-01 iOSDD890 model in MATLAB compatible
format.

Additional file 4: Text-01. Detailed SBSM analysis for all the four
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