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Abstract

Entry coreceptor use by HIV-1 plays a pivotal role in viral transmission, pathogenesis and disease progression. In
many HIV-1 infected individuals, there is an expansion in coreceptor use from CCR5 to include CXCR4, which is
associated with accelerated disease progression. While targeting HIV-1 envelope interactions with coreceptor
during viral entry is an appealing approach to combat the virus, the methods of determining coreceptor use and
the changes in coreceptor use that can occur during disease progression are important factors that may compli-
cate the use of therapies targeting this stage of HIV-1 replication. Indicator cells are typically used to determine
coreceptor use by HIV-1 in vitro, but the coreceptors used on these cells can differ from those used on primary cell
targets. V3 based genetic sequence algorithms are another method used to predict coreceptor use by HIV-1
strains. However, these algorithms were developed to predict coreceptor use in cell lines and not primary cells
and, furthermore, are not highly accurate for some classes of viruses. This article focuses on R5X4 HIV-1, the earliest
CXCR4-using variants, reviewing the pattern of coreceptor use on primary CD4+ lymphocytes and macrophages,
the relationship between primary cell coreceptor use and the two principal approaches to coreceptor analysis
(genetic prediction and indicator cell phenotyping), and the implications of primary cell coreceptor use by these
strains for treatment with a new class of small molecule antagonists that inhibit CCR5-mediated entry. These are
important questions to consider given the development of new CCR5 blocking therapies and the prognosis
associated with CXCR4 use.

Introduction
HIV-1 isolates can be divided into three broad groups
based on coreceptor use. Variants with singular use of
CCR5 or CXCR4 are termed R5 and X4 viruses,
respectively, while those capable of using both core-
ceptors are termed R5X4 [1,2]. New infections are
almost always established by R5 variants while the
emergence of CXCR4-using viruses typically occurs
later in a proportion of infected individuals and is
associated with an accelerated decline in the number
of peripheral blood CD4+ lymphocytes and a more
rapid progression to AIDS and death [3-5]. R5X4
viruses are the first variants with CXCR4 use to
emerge during viral evolution in vivo [6], so under-
standing coreceptor use on primary target cells by

these viruses is critical to elucidating this aspect of
pathogenesis and also has implications for the new line
of therapeutics targeting viral entry.
CCR5 is expressed principally by memory CD4+

T cells and monocyte/macrophages, while CXCR4 is
expressed by both naïve and memory CD4+ T cells
and, at lower levels, by monocyte/macrophages [6,7].
Indicator cell lines that express CD4 in conjunction
with CCR5 or CXCR4 are typically used to assess cor-
eceptor use by HIV-1 [8,9]. While these cell lines are
invaluable tools for studying certain aspects of HIV-1
entry and infection, we and others have shown core-
ceptor use on indicator cell lines may not accurately
reflect coreceptor use on primary cells [2,10,11]. Here,
we will discuss aspects of primary cell coreceptor use,
focusing on areas where primary cell utilization and
indicator cell use diverge, and in particular on R5X4
variants given their central role in viral evolution
in vivo.
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R5 and X4 HIV-1 coreceptor use on macrophages
CD4+ macrophages and lymphocytes express CCR5 and
CXCR4 [7,12], and efforts in the field have focused on
defining the coreceptors used by HIV-1 on these cells
and determining how viruses differ in their ability to use
coreceptors on different primary cell targets including
macrophages.
Early studies identified high concordance between the

non-syncytia-inducing (NSI) phenotype and macrophage
tropism [3], and the subsequent observation that NSI
strains used CCR5 for entry but not CXCR4 [13-16] led
to the expectation that R5 isolates would all likely repli-
cate in macrophages. Indeed, prototype R5 strains are
typically highly macrophage-tropic, but this has not
turned out to be the case for all R5 primary isolates as
it was recently recognized that R5 strains can vary
markedly in their ability to infect macrophages.
Interestingly, two different clinical patterns of R5

macrophage tropism have been described. One set of
data has reported that nearly all R5 Envs obtained
directly from peripheral blood (i.e., without in vitro cul-
ture and selection) infect macrophages poorly whereas
Envs from the central nervous system infect quite well
[17,18]. CD4 levels on macrophages are quite low, and
greater macrophage infection capacity among R5 strains
has been linked to the ability to utilize CD4 at very low
levels [17,18]. Importantly, CD4 binding plays a role in
maintaining viral neutralization resistance by protecting
the coreceptor binding site on Env, which is a potential
target for neutralization but is only created after struc-
tural changes triggered by CD4 binding [19]. The
immune privileged nature of the central nervous system
is thought to allow emergence of such neutralization-sen-
sitive, highly macrophage-tropic R5 variants [18,20,21]. In
contrast, others have reported that R5 blood isolates from
early stage infection infect macrophages poorly, but that
as disease progresses, macrophage infection capacity
increases [22], which is associated with an increasing
ability to utilize lower levels of both CD4 and CCR5 by
later stage variants [22,23].
In contrast to prototype R5 viruses, prototype X4 var-

iants (which were isolated by serial passage in CD4
+CXCR4+ transformed cell lines) are uniformly non-
macrophage-tropic. Subsequently, however, it has been
recognized that macrophages do express CXCR4, albeit
at low levels, and many X4 primary isolates are able to
utilize macrophage CXCR4 even though prototypes can-
not [24-27]. This phenotype among X4 variants is also
linked, at least in part, to the ability of some X4 strains
to use CXCR4 at the low levels expressed on macro-
phages, as CXCR4 overexpression can in some cases
render macrophages permissive for infection by X4 pro-
totypes [10].

R5X4 HIV-1 coreceptor use on macrophages
Studies to determine which coreceptors R5X4 viruses use
to infect primary macrophages have used replication com-
petent and pseudotype viruses from different clades of
HIV-1 [11,28]. Since macrophages express both corecep-
tors, unlike single coreceptor virus analysis, these studies
have largely utilized small molecule antagonists to CCR5
or CXCR4 as a means of evaluating use of the unblocked
coreceptor. These studies have shown that in the presence
of a CCR5 or CXCR4 antagonist, infection by R5X4 HIV-1
still occurs and infection by these viruses is fully blocked
only when both antagonists are present. The proportional
contribution of each coreceptor to total infection of
macrophages can be determined by comparing entry
through that coreceptor to entry in the absence of antago-
nists. As shown by the results from a representative group
of R5X4 viruses in Fig 1 (and expanded upon for R5X4
isolates more broadly in ([11,28]), this analysis reveals that
the level of viral entry that occurs through a single
coreceptor is reduced relative to infection when both

Figure 1 R5X4 HIV-1 use CCR5 and CXCR4 on primary
macrophages. Monocyte-derived macrophages (MDM) were infected
with HIV-1 luciferase-pseudotype viruses (5ng p24 Gag antigen)
carrying representative prototype R5X4 envelope glycoproteins, along
with control R5 (Bal) and X4 (Tybe) Env-containing viruses. Infections
were carried out without entry blocker or in the presence of the CCR5
antagonist Maraviroc (“CXCR4 pathway”; 5μM), CXCR4 antagonist
AMD3100 (“CCR5 pathway”; 5μg/ml) or both inhibitors. Three days
after infection, cells were lysed with 0.1% Triton, luciferase assay
substrate (Promega) was added and luciferase activity (RLUs) was
measured using a Dynex Revelation Luminometer. Results represent
normalized infection mediated by each coreceptor as a percentage of
infection in the absence of antagonists and are means ± sem of
infections done using cells from two different donors, each performed
in triplicate.
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coreceptors are available. Thus, both coreceptors make
substantial contributions to the overall infection of macro-
phages by R5X4 HIV-1, although there are modest differ-
ences between isolates in the proportion of total entry
mediated by each coreceptor.

R5X4 HIV-1 coreceptor use on CD4+ lymphocytes
R5X4 variants have the capacity to use both CCR5 and
CXCR4 on macrophages and indicator cell lines (Figs 1
and 2A), but in contrast, the pattern of coreceptor use
by R5X4 HIV-1 on CD4+ lymphocytes from peripheral
blood is quite different from that seen on those two cell
types. Initial reports using a similar coreceptor blocking
strategy and prototype strains showed that R5X4 viruses
used CXCR4 on lymphocytes but CCR5 use was

minimal, and lymphocyte CCR5 use by R5X4 isolates
was markedly impaired relative to infection by R5
viruses [11]. Furthermore, unlike macrophages, infection
mediated by CXCR4 alone was equivalent to infection
when both coreceptors were present, suggesting no
additional contribution of CCR5 in the presence of the
CXCR4 pathway. More recently, using an expanded
panel of R5X4 Envs from diverse sources, we found that
that some R5X4 viruses do possess the ability to use
CCR5 for entry into CD4+ lymphocytes [29]. A range of
CCR5 use was observed among these R5X4 strains, with
CCR5 making virtually no contribution to infection by
some strains while nearly half the total amount of entry
could be mediated by CCR5 for other strains. However,
despite more robust CCR5 use by some clones, CXCR4

A. B.

Figure 2 Coreceptor use by R5X4 HIV-1 on indicator cell lines and primary CD4+ lymphocytes. (A) Coreceptor use on U87 indicator cells
by R5X4 HIV-1. U87 CD4, CD4/CCR5 or CD4/CXCR4 cells were infected with HIV-1 pseudotype viruses (5ng p24 Gag antigen). Three days after
infection, cells were lysed and luciferase activity was measured. Results are means sem of two experiments performed in triplicate. (B)
Coreceptor-specific entry into CD4+ T lymphocytes. Purified CD4+ lymphocytes were isolated by negative selection, stimulated with PHA for
3 days, infected with 5ng of HIV-1 pseudotype viruses in the absence or presence of coreceptor antagonists as described in Figure 1, maintained
with IL-2 and lysed four days later for measurement of luciferase expression. Results represent normalized infection through each coreceptor and
are means +/- sem of infections done using cells from three different donors, each performed in duplicate.
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remained the predominant coreceptor used on CD4+
lymphocytes for all R5X4 viruses. CD4+ lymphocytes in
blood are a mixture of different subsets, with CXCR4
expressed on a larger percentage of cells than CCR5
[12,30,31]. Consequently, CXCR4 is likely to be the pre-
dominate coreceptor used by the majority of R5X4
strains. Strikingly, there was consistently no difference
between infection of unblocked CD4+ T lymphocytes
and infection mediated by CXCR4 alone, confirming
that even though both pathways can be used, when
CXCR4 is available there is no additional contribution
to infection made by CCR5 (Fig. 2B).

Mechanisms that regulate R5X4 HIV-1 use of
CCR5 on CD4+ lymphocytes
Differences in CCR5 use by R5X4 viruses on macro-
phages and lymphocytes imply the factors that regulate
coreceptor use are cell-specific and differ on these pri-
mary cell types. Furthermore, the fact that R5 strains
uniformly use lymphocyte CCR5 efficiently indicates
that there are virus-specific determinants as well. In an
attempt to identify the factors that regulate use of this
coreceptor on CD4+ lymphocytes by R5X4 viruses [29],
we found that greater ability to use CCR5 on primary
lymphocytes correlated with reduced sensitivity to inhi-
bition by the CCR5 antagonist Maraviroc and by
another small molecule inhibitor M657 [32,33] (Fig 3 A
and data not shown). We also found a correlation
between lymphocyte CCR5 use and resistance to block-
ing by anti-CCR5 monoclonal antibodies directed at the

second extracellular loop of the protein (data not
shown). Since reduced sensitivity to CCR5 antagonists is
often an indicator of greater efficiency of Env-CCR5
interactions, these results suggest that lymphocyte CCR5
use by R5X4 variants might be regulated by the effi-
ciency of this interaction.
Therefore, the efficiency of CCR5 use was evaluated

using an indicator cell line that allows independent
manipulation of CD4 and CCR5 density [29]. At a phy-
siologically relevant CD4 level (83,000 antibody binding
sites (ABS)/cell, similar to the primary lymphocyte range
of 63,000-100,000 ABS/cell [34]), there was a strong cor-
relation between the ability of an R5X4 strain to use
CCR5 to enter lymphocytes and relative infection of
indicator cells at the lowest compared to the highest
CCR5 densities (3,800 and 45,000 ABS/cell, respec-
tively). Thus, those R5X4 viruses that most effectively
infected the indicator cells expressing minimal levels of
CCR5 were also the variants that exhibited the greatest
lymphocyte CCR5 use (Fig 3 B). Since CCR5 is
expressed at low density and on a small percentage of
lymphocytes [30,34,35], these results indicate that
viruses with the most efficient interactions with CCR5
are better able to scavenge the low levels of this core-
ceptor expressed on CD4+ lymphocytes to complete
entry. We confirmed this notion by upregulating CCR5
expression on CD4+ T lymphocytes through either len-
tivirus transduction or extended culture in IL-2, and
found that for most R5X4 strains, CCR5 upregulation
markedly enhanced their use of lymphocyte CCR5 for

Lymphocyte CCR5 use (% of total)

Af
fin

of
ile

 in
fe

ct
io

n 
at

 lo
w

es
t 

C
C

R
5 

le
ve

l (
%

 o
f m

ax
im

al
)

B.

Af
fin

of
ile

in
fe

ct
io

n
at

lo
w

es
t

A.

Lymphocyte CCR5 use (% of total)

M
ar

av
iro

c 
EC

50
 (n

M
)

Figure 3 CCR5 use on CD4+ lymphocytes by R5X4 HIV-1 correlates with CCR5 mediated entry efficiency. (A) Relationship between R5X4
use of lymphocyte CCR5 and sensitivity to the CCR5 blocker Maraviroc. The proportion of total entry into CD4+ lymphocytes that is mediated
by CCR5 for each R5X4 virus is shown on the X axis while the Maraviroc EC50 determined using U87/CD4/CCR5 cells is shown on the Y axis.
Luciferase activity was measured as described in Figure 1, and EC50 values were determined using GraphPad Prism4 software. (B) The correlation
between R5X4 HIV-1 infection of Affinofile cells expressing CCR5 at low density and lymphocyte entry through CCR5. CCR5/CD4-expressing
Affinofile cells were induced to express varying levels of CCR5 at a constant level of CD4 and infected with R5X4 luciferase-expressing HIV-1
pseudotypes. Infection of Affinofiles expressing low CCR5 levels was normalized to cell expressing CCR5 at maximal density and plotted on the Y
axis against the proportion of total lymphocyte entry for each virus that is mediated by CCR5 on the X axis.
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entry. Notably, the density of CCR5 on macrophages is
much greater than on lymphocytes [34], and these find-
ings suggest that the difference in CCR5 expression lar-
gely accounts for the disparate CCR5-mediated infection
by R5X4 HIV-1 on these two primary cell types.

CCR5 antagonists and R5X4 HIV-1
In recent years, a number of small molecule antagonists
have been developed that target CCR5. These agents are
allosteric inhibitors that block infection by binding to
the pocket created by the extracellular loops of CCR5,
and cause conformational changes in the coreceptor
that prevent its recognition and/or use by HIV-1
[36-38]. Maraviroc (Selzentry) [32] was the first CCR5
antagonist approved by the FDA for treatment-experi-
enced patients and recently received approval for use in
treatment-naïve patients. Other coreceptor antagonists
are under development, and a critical aspect of treat-
ment with these agents is assessment of the presence of
CXCR4-using viruses, which is a contraindication to
treatment with CCR5 antagonists. Therefore, assays
for coreceptor use have received considerable attention.
The two approaches used to detect CXCR4 use are
phenotyping of viral Envs in CCR5 or CXCR4-expres-
sing indicator cells, and predictive algorithms based on
sequences in the Env V3 domain, which is a principal
determinant of coreceptor use [14,39,40]. Phenotyping
of cloned plasma-derived Envs in indicator cells is pre-
sently utilized most frequently [41].
Both approaches have limitations, however. Bulk phe-

notyping assays may not be sensitive enough to detect
minor variants that use CXCR4 [42-44]. Furthermore,
our studies of primary cells compared with cell lines
show that indicator cell coreceptor use may not necessa-
rily predict coreceptor use on primary cells. On the
other hand, while viral sequence algorithms are gener-
ally accurate at defining single coreceptor R5 and X4
variants or predicting certain qualities of these viruses,
like the ability to induce syncytia formation, they fre-
quently fail to identify R5X4 viruses. In one study, a
number of common sequence algorithms were used to
predict the coreceptor use of viral strains that had been
phenotyped as R5X4 on cell lines in vitro. The sequence
algorithms varied markedly in the prediction of corecep-
tor use, and failed to predict CXCR4 use for 10% to
over 50% of the R5X4 clones analyzed, depending on
the particular algorithm used for analysis [45].
A second consideration regarding sequence algorithms

is that they have traditionally been used to predict core-
ceptor use by viral strains on indicator cell lines, but the
success of these algorithms in predicting coreceptor use
on primary cells is of central importance if they are to
be used in clinical settings. To this end, we determined
the viral phenotypes predicted by a widely used

position-specific scoring matrix (PSSM) algorithm [46]
for a panel of R5X4 viruses for which coreceptor used
had been determined on CD4+ lymphocytes (Fig 4).
This analysis showed that those R5X4 variants with sig-
nificantly more efficient CCR5 use on primary CD4+
lymphocytes were likely to be incorrectly labeled as NSI,
and thus erroneously presumed to be CCR5-restricted,
by V3 sequence-based PSSM prediction. In contrast,
R5X4 strains that were restricted in their ability to use

B.

A.

Figure 4 R5X4 HIV-1 CCR5 use on CD4+ lymphocytes is
associated with the predicted viral phenotype. (A) Predicted
NSI/SI phenotype of the R5X4 HIV-1 viruses. V3 sequences from
each virus were analyzed using the NSI/SI PSSM algorithm. The
table shows the SI or NSI prediction and coreceptor use on cell
lines and primary lymphocytes for each R5X4 virus from Figures 1
and 2, respectively. The strains shown in the table are found in the
following references: [63-68] (B) Mean CCR5 use on CD4+
lymphocytes by R5X4 HIV-1 grouped by predicted viral phenotype.
R5X4 viruses were grouped by SI or NSI phenotype from (A) with
CCR5 use for each virus represented by black circles. The mean
lymphocyte CCR5 use for each group was calculated, and the
means were compared using a two-tailed, unpaired t-test in
GraphPad Prism 4 software (***p<0.0001).
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lymphocyte CCR5 were typically categorized as syncy-
tium inducing (SI) by PSSM (Fig 4 A and 4 B). Thus,
using sequence algorithms, a number of R5X4 strains
would be classified as R5 viruses, and this failure to
detect CXCR4 could have important implications for
entry blocking therapy as discussed below.
While phenotypic and sequence based approaches do

not accurately determine coreceptor use by R5X4 strains
on primary cells, it may be possible to modify these
methods to increase their reliability. As mentioned
above, indicator cells used in phenotyping assays typi-
cally over-express CD4, CCR5 and CXCR4, which may
contribute to the inaccuracy of this method in predict-
ing coreceptor use by R5X4 strains on primary lympho-
cytes and macrophages. The use of primary cells for
routine viral phenotyping would be ideal, but this
approach would be expensive, labor intensive and time
consuming. Alternatively, a system that closely mimics
coreceptor expression on CD4+ lymphocytes and
macrophages might be a more feasible option, and our
results using Affinofile cells suggest that cell lines with
receptor levels approximating those on primary cells
may more accurately reflect coreceptor use on primary
cells. Thus, the development and utilization of cell lines
that reflect the cellular landscape of primary targets may
enhance the fidelity of in vitro viral phenotyping assays.
These data further suggest that it will be difficult to

exclude R5X4 variants in patients considered for entry
blocker therapy using sequence algorithms. However,
among viruses defined phenotypically as R5X4, the
strong relationship between predictive algorithms and
relative dependence on each pathway for primary lym-
phocyte entry indicate that sequences within Env regu-
late the efficiency of CCR5 use and, consequently,
coreceptor use in the context of primary cells. Identifi-
cation of the specific elements within the R5X4 Env that
regulate the efficiency of coreceptor use on primary
cells would be necessary to improve the accuracy of
these predictive algorithms before they could be used as
the basis for entry therapy selection.

Conclusions: R5X4 HIV-1 primary cell coreceptor
use and implications for coreceptor blocking
treatment
Addition of CCR5 antagonists to lymphocyte cultures in
vitro does not block R5X4 replication [11], and a phase
2b study of Maraviroc safety and efficacy in patients
infected with CXCR4-using viruses confirmed no change
in plasma viral load between placebo and Maraviroc-
treated groups [47]. CCR5 is expressed on a small per-
centage of peripheral blood CD4+ lymphocytes [12,30],
however, many CCR5+ lymphocytes express CXCR4 as
well [31]. Thus, when CCR5 is blocked, the CCR5+ sub-
set of CD4+ lymphocytes can still be infected by R5X4

strains using CXCR4 for entry. In clinical trials that
attempted to exclude patients with CXCR4-using
viruses, treatment with CCR5 blockers was generally
successful [48,49]. However, some patients failed ther-
apy, and while some strains acquired the ability to use
antagonist-bound CCR5, a more common cause of
treatment failure was the emergence of viruses able to
use CXCR4 [42,49]. In this study and a similar trial with
another small molecule antagonist, detectable CXCR4-
using viruses appeared between screening and the start
of therapy in some patients, while in other patients, the
phenotypic screening assay failed to detect minor
CXCR4-using variants [42,43]. In patients with pre-
existing CXCR4-using viruses, suppression of the R5
variant may be closely tied to the rapid emergence of
CXCR4-using strains, which can occur in less than 2
weeks in some patients [43,44]. R5X4 variants are typi-
cally the first CXCR4-using strains to emerge, so it is
likely that these variants play a central role in emer-
gence of populations that are insensitive to CCR5 entry
blockers. Since ~99% of plasma viremia is produced in
CD4+ T cells [50-52], coreceptor selectivity in this pri-
mary target cell will be the principal determinant of
plasma virus response to treatments. One caveat is that
CD4+ T cells in other compartments such as lymphoid
tissues and gut mucosa are an important site of viral
replication, and CCR5 is expressed on a higher propor-
tion of CD4+ T cells in these compartments than in
blood [53-55]. Thus, further studies will be needed to
extend the characterization of coreceptor use by R5X4
variants to cells from these compartments.
In contrast, one would anticipate that a drug regimen

that includes CCR5 blockers should reduce infection of
macrophages by R5X4 HIV-1, since infection of these
cells mediated by CXCR4 alone is typically less than
that when both pathways are available. The relative cor-
eceptor preference on macrophages can differ between
R5X4 strains, and consequently, the extent of reduced
infection would depend on how effectively the R5X4
strain used macrophage CXCR4. Treatment with CCR5
antagonists may also impact how R5X4 viruses use
CXCR4 on macrophages. In the absence of entry block-
ing therapy, it has been reported that in vitro sensitivity
to CXCR4 antagonist decreases as disease progresses,
suggesting CXCR4 use becomes more efficient at later
stages of disease [56]. One might speculate whether
inhibiting CCR5 use on dual coreceptor-expressing
macrophages may create pressure that accelerates the
evolution of more efficient CXCR4 use.
Reduced infection of macrophages by R5X4 HIV-1 may

also impact other specific aspects of HIV-1 disease. Neu-
rological complications of HIV-1 infection are a result of
damage induced by the release of neurotoxic factors from
infected macrophages in the brain [57,58]. While most
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variants in the central nervous system are R5, R5X4
viruses have been found in this compartment, although
less frequently than R5 strains [59]. The limited informa-
tion available suggests that CCR5 blockers penetrate the
central nervous system (CNS) at concentrations consider-
ably lower than that in plasma [60]. Thus, on one hand,
even at the lower concentrations found in the CNS, CCR5
antagonists may be somewhat effective in suppressing
replication by R5 variants in macrophages found in this
compartment. Alternatively, incomplete suppression of
macrophage-dependent replication in the brain might
enable emergence or expansion of insensitive variants, par-
ticularly if R5X4 species are present. Macrophages are also
thought to be a source of HIV-1 in other tissues [61,62],
where CCR5 blocking therapy might reduce macrophage-
supported replication.
Antiretroviral therapy has made tremendous strides in

recent years, and coreceptor entry blocking makes an
important and unique contribution to the armamentar-
ium of anti-HIV therapies. However, unlike agents tar-
geting other steps in the replication cycle, coreceptor
blockers carry unique considerations and greater con-
text-dependent variation due both to differences in tar-
get cell coreceptor expression and viral coreceptor
utilization. While exclusion of patients with certain
types of virus may be possible, it is sometimes difficult
to identify dual coreceptor-using variants. Coreceptor
use by R5X4 HIV-1 differs on primary macrophages and
lymphocytes; consequently, the impact of entry blocking
therapy may differ as well. Thus, it is important to con-
tinue defining the role of coreceptor use in primary tar-
get cells and the consequences for pathogenesis,
particularly by R5X4 viruses, in order to understand
how new entry blocking agents may impact disease.
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