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Abstract

Viral CCR5 usage is not a predictive marker of mother to child transmission (MTCT) of HIV-1. CXCR4-using viral
variants are little represented in pregnant women, have an increased although not significant risk of transmission
and can be eventually also detected in the neonates. Genetic polymorphisms are more frequently of relevance in
the child than in the mother. However, specific tissues as the placenta or the intestine, which are involved in the
prevalent routes of infection in MTCT, may play an important role of selective barriers.
The virus phenotype of the infected children, like that of adults, can evolve from R5 to CXCR4-using phenotype or
remain R5 despite clinical progression to overt immune deficiency. The refined classification of R5 viruses into
R5narrow and R5broad resolves the enigma of the R5 phenotype being associated with the state of immune defi-
ciency. Studies are needed to address more in specific the relevance of these factors in HIV-1 MTCT and pediatric
infection of non-B subtypes.

Maternal viral co-receptor usage is not prognostic
of transmission
The comparison of the co-receptor usage of viral var-
iants obtained from transmitting and non-transmitting
HIV-1 infected mothers demonstrated that most mater-
nal viral isolates used CCR5 to infect target cells, alone
or in association with other co-receptors, thus indicating
that CCR5 usage is not a predictive marker of mother to
child transmission (MTCT) of HIV-1 [1-4].
The high proportion of women carrying R5 virus

prompted us to investigate if the intrinsic variability of
these viruses may contribute to identifying a correlate of
protection of MTCT. We made use of the newly intro-
duced and refined R5 viral characterization, in which
viruses are further classified in R5broad or R5narrow

according to their capacity to use or not CCR5/CXCR4
chimeric receptors besides the wild-type CCR5 [5]. In
particular, it was shown that during disease progression
of infected adults R5 viruses evolved to multiple chi-
meric receptor usage, which in turn correlated with the
CD4+ T cell decline in the patient. The use of chimeric
receptors was interpreted as the evolution to an
extended flexibility in the use of the CCR5, as R5broad

viruses have higher infectivity with the wild-type CCR5
than isolates with the R5narrow phenotype.
Against our expectations we showed that mothers har-

bouring R5broad viruses were not at a higher risk of
transmission than those with R5narrow viruses [6], thus
again supporting that the R5 phenotype is not predictive
of transmission. However, the maternal viral phenotype
(either R5narrow or R5broad) was generally preserved dur-
ing transmission and predictive of the phenotype of the
viral variant transmitted to the newborn.
Our original studies showed that the syncytium-indu-

cing (SI), CXCR4-using viral variants were involved in
MTCT of HIV-1 [4,7]. Indeed, HIV-1 infected mothers
who harbor virus able to replicate in cell lines (rapid/
high virus) and form syncytia in MT-2 cells had a higher
although not significant risk of transmission than
mothers with slow/low and non-SI viruses [4,7]. The
number of mothers analyzed is however limited, and
focused on subtype B HIV-1 infections.
A limited number of studies analyzed the role of the

viral phenotype in MTCT within non-B HIV-1 subtypes.
Indeed, subtype C followed by A, D, G and some circu-
lating recombinant forms of HIV-1 are predominant in
the world and specially in high endemic areas [8]. In
pregnant women the major co-receptor for HIV-1
remains CCR5 also for viruses of subtypes A, C and G
[9,10]. In addition isolates of these latter subtypes used
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frequently alternative chemokine receptors as for exam-
ples CXCR6 or CCR1, and rarely CXCR4 [1,11]. If these
alternative chemokine receptor have a relevance is not
yet clarified. It is of interest that CXCR6 is expressed on
trophoblasts and may thus play a role for in utero trans-
mission [12]. Further studies are needed to address if
co-receptors others than CCR5 may have any relevance
in HIV-1 MTCT of non-B subtypes.

Selection or no selection: which virus is
transmitted?
The very first studies comparing the genetic sequence of
viruses from mother and child showed that the maternal
viral population is more heterogeneous than that of the
child [7,13-15]. If only a limited number of variants are
originally transmitted and/or are initially replicating in
the child is still a matter of discussion. On the one hand
it was shown that a minor viral variant of the mother
constituted the dominant variant in the child, on the
other also a major maternal variant could be detected in
the child [7,13,16-18]. If selective infection occurs, one
could argue that an association between viral phenotype
and transmission exist, however, all viral phenotypes,
though to a different proportion, were detected in verti-
cally infected children. On the other hand it was shown
that selection may occur in relation to the different
transmission routes, in utero vs. intra partum. Indeed, a
major maternal virus variant as well as subtype C var-
iants compared to A and D are associated with in utero
transmission [14,15,19].
Indeed, R5 isolates are preferentially isolated from off-

spring [3,7,20-22], however, this could be a direct conse-
quence of the higher frequency of mothers carrying R5
compared to X4 viruses. A more sophisticated analysis
of the mother’s R5 viruses and of their child allowed us
to pinpoint that the phenotype, either R5narrow or
R5broad, was usually maintained during the transmission
event [6]. These data lend support to the lack of restric-
tion in transmission of R5broad viruses and favor the
possibility that the maternal viral R5 phenotype is pre-
dictive of the transmitted variant.
On the contrary, the maternal R5X4 phenotype can be

lost during transmission [6]. Mothers with an R5X4
virus transmitted virus with a whole array of pheno-
types, i.e. R5narrow, R5broad or R5X4. A definitive expla-
nation for the inefficient transmission of X4 variants
was not cleared yet. One possibility is that X4 variants
are transmitted but rapidly deleted in the offspring, or
that susceptibility of the child’s cells to infection by the
mother’s isolate favors R5 variants, as discussed below.
It is important to notice, that CXCR4 using variants
were isolated from the children when the mother also
carried such phenotype at delivery, indicating that trans-
mission of X4 variants can occur with appropriate

conditions. A recent study supports these data in non-B
subtype virus infection [23]. Here the Authors demon-
strate that in five Ugandan mother-child pairs X4 and
R5X4 viruses are transmitted before, during or shortly
after delivery, and thus, establish vertical transmission as
an important source of CXCR4-using viruses in infants.
Another interesting observation comes from the study

by Casper et al. [1], which shows that in HIV-1 infected
children the emergence of the X4 phenotype during dis-
ease progression occurs when the mother carried an X4
virus. The same group was able to demonstrate that in
these two children the X4 virus developed from their
own R5 population, and not from a transmitted mater-
nal X4 variant [24]. It is tempting to speculate that the
transmitted virus has an intrinsic propensity to evolve to
CXCR4 usage or that the similar genetic background of
the mother and the child may favor such evolution.

Viral phenotype correlates with pediatric disease
progression
Children with perinatally acquired HIV-1 infection exhi-
bit a widely variable clinical outcome: approximately
one-forth of infants become symptomatic and develop
AIDS within the first months of life, whereas the others
remain asymptomatic or have only mild symptoms for
several years [25,26]. A whole array of parameters, like
the gestational period in which fetal infection occurs,
and the child’s or the mother’s immunocompetent sta-
tus, may influence infection outcome, and one of the
crucial viral factors besides the viral load is the biologi-
cal phenotype.
The virus phenotype of the infected children, like that

of adults, can evolve from R5 to CXCR4-using pheno-
type or remain R5 despite clinical progression to overt
immune deficiency [1,27-32]. Children progressing
rapidly within a few years of age to disease may harbor
R5 viruses but possibly have an elevated and fast
increasing viral and proviral load associated [20,32].
X4 viruses are rarely isolated from neonates, and their

predictive value of a rapid AIDS outcome showed dis-
cordant results [28,29,32-34]. Most of these reports
unfortunately analyzed a limited number of children as
to provide conclusive answers. Kopka et al. character-
ized 62 viral isolates of a cohort with an unusual high
percentage (18%) of SI variants within the first 5 months
of age, and showed that the presence of HIV-1 variants
with rapid replication capability and/or an SI phenotype
is indicative of a poor prognosis favoring CD4+ T cell
depletion and rapid progression to AIDS [35]. On the
contrary, in another study accurate sampling throughout
the disease showed that CXCR4-using viruses possibly
emerge in some children as a consequence of the severe
immune deficiency [1]. In a recent study of a large
cohort of 126 children and adolescent, included in the
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Hemophilia Growth and Development Study cohort, the
baseline CXCR4 usage of their isolates predicted pro-
gression to clinical AIDS [36]. It can be argued that the
two transmission routes, from the mother or through
blood products, has different outcomes. However, if it is
now well established knowledge that the CXCR4-using
phenotype is associated with a severe state of immune
deficiency, its predictive value is still controversial.
Increasing evidences are emerging showing that the

classical dichotomy of the viral phenotype into R5 and
X4 is not sufficient to explain the large phenotypic var-
iation of HIV-1 [5]. Further classification of R5 viruses
into R5narrow and R5broad permitted to explain why some
children progress more rapidly than others, despite the
early presence of an R5 phenotype close to birth [6].
Our recent study performed on 28 infected newborns
demonstrated that the presence of viruses with R5broad

phenotype close to birth was significantly associated
with a fast progression to severe immunological failure
within 3 years of age (Figure 1). Thus, infection in chil-
dren established by R5broad viral variants with an envel-
ope conformation that allows for a more efficient CCR5
use, determine detrimental effects similar to those

known for CXCR4 using viruses. The refined classifica-
tion of R5 viruses into R5narrow and R5broad resolves the
enigma of the R5 phenotype being associated with the
state of immune deficiency. These data support the find-
ing by Casper et al. [1], who suggested that the immu-
nological deterioration in HIV-1 infected children
precedes the viral phenotypic switch to CXCR4 usage.
One could argue that pre-existing R5broad viruses may
have caused the worsening of the disease in the cohort
analyzed by this study.
We documented also the phenotypic evolution from a

wild-type R5 to broad chimeric receptor using viruses of
HIV-1 infected children during disease progression [37]
(and unpublished results), which is paralleled by an
increase of CCL5/RANTES resistance of the virus
in vitro. Our hypothesis is that virus variants may evolve
towards a more efficient CCR5 usage and improved
binding properties, possibly due to selection pressure
exerted by the presence of chemokines abundant in
HIV-1 infected persons [38,39]. Accordingly, R5broad

viruses may be considered escape variants as much as
CXCR4 using viruses. It is desirable that this different
sensitivity of R5broad viruses to CCR5 ligands is further

Figure 1 The R5broad phenotype is predictive of early immunological failure in children. Categories are defined according to the Centers
for Disease Controls [111]: CDC 3 = severe immune suppression. Narrow and broad refer to viruses with R5 phenotype detected at or close to
birth. Viruses able to exclusively use wild type CCR5 receptor are defined narrow, whereas those using chimeric receptors besides the wild type
CCR5 are defined broad. Statistical analysis was performed to detect the influence of the virus with R5broad phenotype on disease progression
of the children; p = 0.0218 (Pearson’s chi Square).
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investigated since clinical trials introducing small CCR5
inhibitors for the treatment of pediatric HIV-1 infec-
tions are forthcoming.

Relevance of co-receptor expression on HIV-1 cell
targets
Since R5 viruses are predominant in MTCT of HIV-1,
the interaction of R5 viruses with CD4+CCR5+ T cells
may play an important role in the pathogenesis of
pediatric AIDS. In neonates the memory CD4+ T cells
(CD45RO+), which express high levels of CCR5, are 6
to 7 times less represented than the naïve CD4+ cells
(CD45RA) [40]. The latter predominantly express
CXCR4 [40-43] and were shown to be primarily
infected by CXCR4 using viruses [44]. The paucity of
memory CD4+ T cells in cord blood imply that CCR5-
positive cells are relatively uncommon [42]. However, at
later age, in infants and children, the majority of the
HIV-1-infected CD4+ T cells in the blood display a
memory (CD45RO+) phenotype [43]. The more efficient
use of the wild-type CCR5 by R5broad compared to
R5narrow viruses [5,37] supports the hypothesis that the
R5broad viruses may infect, in addition to memory cells,
also CD4+ naïve cells despite the limited expression of
the CCR5 molecule on their surface. Interestingly,
although HIV-1 infected neonates in general had 10 to
100 fold higher number of infected CD4+ memory than
naïve cells, those children who rapidly progressed
towards disease had high proviral load in the CD4+
naïve cells [43,45]. It remains to be solved why CXCR4
using viruses are not maintained during transmission,
despite the high prevalence of CXCR4+ naïve cells in
neonates.
Besides CD4+ T lymphocytes HIV-1 infects also other

cells of the immune systems, like macrophages and den-
dritic cells (DCs). The infection of monocytes/

macrophages is of major importance since these cells
act as reservoir of the virus. Cord blood derived mono-
cyte/macrophages have an increased susceptibility to
HIV-1 infection in vitro with R5 but not X4 virus com-
pared to adult cells [46]. DCs, which are also abundant
at mucosal sites, may have a relevant role being the
intestine the preferential route of MTCT of HIV-1.
Immature DCs do not express CXCR4 and allow infec-
tion through a CCR5-mediated process (cis infection),
which would be in favor of a preferential R5 infection.
However, DCs support transfer of virus, independent of
co-receptor usage, via DC-SIGN (trans infection) [47].
All these studies underline the relevance of the

expression of the different receptors for HIV-1 in cells
derived from the peripheral blood, but little is known
on cellular HIV targets in relevant tissues, as for exam-
ple the gut or the placenta, of newborns and children
(see chapter below).

Genetic polymorphisms: determinants of
expression of relevant receptors
Polymorphisms implicated in MTCT and pediatric dis-
ease progression are summarized in Table 1.
Particularly interesting is a 32-nucleotide deletion

(Δ32) of the CCR5 gene that renders the co-receptor
non functional when homozygote or expressed to lower
levels when heterozygote [48-51]. The incidence of the
Δ32 CCR5 allele is high in Caucasian population,
approximate 1% are homozygous and 20% heterozygous,
but appears only sporadically in Asian and African
populations [52]. A study on MTCT, described that the
homozygous mutation confers resistance to infection
[53]. However, in adults despite this genotype the pro-
tection is not absolute and some rare cases of HIV-1
infection were reported possibly due to transmission of
CXCR4-using viruses. In MTCT there are no studies

Table 1 Effect of genetic polymorphisms of HIV-1 receptors and ligands on HIV-1 mother–to-child transmission and
pediatric disease progression

Gene Polymorphism Influence on Ref.

MTCT risk Disease
progression

CCR5 delta32 Decreased Delayed 53,63

CCR5 59029A Augmented Accelerated 62

CCR2 64I Contradicting results Delayed 63-65

CX3CR1 I249 No effect Accelerated 67

CD4 C868T Augmented, when heterozygously expressed in the
children

unknown 69

DC-SIGN p-336C and p-201A Augmented, when expressed in the children unknown 70

DC-SIGN exon 4 : R198Q, E214D, R221Q, and
L242V

Augmented, when expressed in the children unknown 70

DC-SIGNR H1 and H3 Augmented unknown 71

CCL3 Copy number variation Augmented, when present in the children unknown 72

SDF-1 3’UTR 801A Augmented, when present in the mother Accelerated 62, 73-76
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reported in this regard. The heterozygous form of this
same 32-basepair deletion of the CCR5 gene, when
detected in the HIV-1 infected mother does not
decrease the risk of transmission [54-61]. It appears,
however, to exert a protective effect against MTCT in
those children exposed to a low maternal viral burden
of an R5 virus isolate [2].
In sub-Saharan Africa, where MTCT remains an

important route of infection but the Δ32 CCR5 deletion
is rare, Singh et al. recently showed that the single
amino acid substitution (G to A or C to T) at position
59029 or 59353 of the CCR5 promoter is significantly
associated with risk of MTCT [62]. The association per-
sists also when adjusted for CD4 counts and antiretro-
viral treatment of the mother. It is of utmost relevance
to notice that the CCR5 mutation 59029 was differently
represented in the three cohorts analyzed in this study,
being the frequency highest in the South African chil-
dren compared to the Malawian and Ugandan ones [62].
This underlines the variation depending on ethnicity
and the importance of designing studies with appropri-
ate control populations.
Several studies tried to find a correlation of the Δ32

CCR5 polymorphism with disease progression in
infected children. The largest one, an international
meta-analysis study, associated this genetic polymorph-
ism with a decreased risk of death among Caucasian
perinatally infected children, but only for the first year
of life, whereas thereafter the effect was not any longer
evident [63].
Chemokine receptors other than CCR5 were studied.

A single nucleotide substitution of a valine residue for
an isoleucine at position 65 in the CCR2 receptor
(CCR2-64I) showed contradicting results when analyzed
in relation to MTCT [64,65] but exerted a protective
effect on disease progression in perinatally infected chil-
dren [63]. Structural variants of the chemokine receptor
CX3CR1, used by HIV-1 as co-receptor in the central
nervous system [66], such as I249 and M280 affecting
two amino acids (isoleucine-249 and methionine-280),
were associated with rapid progression to AIDS in
infected adults. However, in children only the CX3CR1-
I249 genotype appears to be relevant for fast progression
[67]. Furthermore, either these two chemokine recep-
tors, CCR2 and CX3CR1, when studied specifically in
sub-Saharan African populations do apparently not have
a direct role in MTCT [62]. However, a Nairobi-based
study suggests that the maternal CCR2-64I may partially
protect against MTCT of HIV-1 by reducing baseline
plasma HIV-1 viral load [68]
A polymorphism (C868T) of the CD4 gene, which is

highly prevalent among Africans, plays a significant role
in determining a two-fold increase of MTCT when het-
erozygously expressed in Kenyan children [69]. This

same mutation had apparently no effect when expressed
in the mother. If the change of the tertiary structure of
CD4 induced by this single-nucleotide polymorphism
may have a different effect on the association with the
co-receptors and thus, selectively influence the binding
and entry of R5 viruses compared to X4 viruses is not
known.
DC-specific intracellular adhesion molecule-3-grabbing

nonintegrin (DC-SIGN) and DC-SIGNR are C-type lec-
tins that serve as HIV-1 receptor in addition to being
cell adhesion and pathogen recognition receptors. DC-
SIGN is expressed also on placental macrophages. Two
promoter variants (p-336C and p-201A) as well as four
protein modifying mutations in exon 4 (R198Q, E214D,
R221Q, and L242V) of this gene, studied in Zimbab-
wean children born to HIV-1 positive mothers, are
associated with intra partum, in utero and post partum
HIV-1 transmission [70]. DC-SIGNR is expressed on the
human placenta in the capillary endothelial cells. DC-
SIGNR single nucleotide polymorphism, H1 and H3,
studied in a large cohort of children born to HIV-1
infected mothers in Zimbabwe, is associated with
increased infection during pregnancy and at birth [71].
Interestingly, this mutation produced lower levels of
DC-SIGNR in placental tissue. The Authors speculate
that this low production of DC-SIGNR may have impli-
cations on alternative infection mechanisms with loss of
the protective role of the placental barrier, and possibly
favor HIV-1 binding to CCR5, instead of DC-SIGNR,
facilitating migration of maternal infected cells across
the placental barrier.
The naturally occurring host genetic variants of the

chemokine-chemokine receptor axis may have relevance
in altering the receptor expression and the host immune
response to HIV-1. One possible hypothesis is that the
chemokine production of the fetus or child may affect
transmission or disease progression. CCL3, 4 and 5 are
the natural ligands of CCR5. CCL3 in humans is
encoded by two functional genes CCL3 and CCL3-L1;
their low copy number in the children but not in the
mothers were shown to be associated with transmission
of the virus [72]. A particular single nucleotide poly-
morphism in the CCL3 gene was encountered more fre-
quently in infected children compared to exposed
uninfected ones.
The homozygous mutation at position 881 of the

3’untranslated region of the SDF-1 gene (SDF-1 3’A),
the ligand for the CXCR4, of the mother but not the
infant was associated with MTCT [73]. Another study
showed that the protective effect of the heterozygous
form of the Δ 32 CCR5 is restricted by the SDF-1
genotype in HIV-1 infected children [74]. We showed
that the presence of the SDF-1 3’A gene correlates
with accelerated disease progression in HIV-1-
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infected children born to seropositive mothers but
does not protect against MTCT of HIV-1 [75]. These
data may indicated that the genetic polymorphism
may allow for appearance of CXCR4-using virus var-
iants during disease progression of the children, but
that the same mutation does not have any effect on
transmission given that most mothers carry CCR5
using viruses.
In studies conducted in Africa the mutated SDF-1

gene instead had no protective effect at all or some
effect but only in postpartum transmission [62,73]. In
addition, in a Kenyan study neither the Δ 32 CCR5 nor
the SDF-1 3’A polymorphism were detected in a cohort
of HIV-1 infected long term survivor and non-progres-
sor children above 8 years of age [76]. This again under-
lines the need to identify different prognostic markers
according to genetic background.

Cellular targets in different routes of MTCT
Taken in consideration that transmission from the
mother to the child occurs mainly through ingestion of
infected fluids in utero, intra partum or via breast milk,
or through the placenta it may very well be that HIV-1
utilizes receptor(s) other than CCR5 to infect cells pre-
sent at the fetus/infant’s mucosal sites. Indeed alterna-
tive receptors used by HIV-1 were identified on mucosal
epithelial cells. Intestinal enterocytes and M-cells were
shown to selectively transcytoze virus through binding
with galactosyl ceramide (GalCer) [77,78] or Fc receptor
[79]. If enterocytes appear to favor in vitro the transport
of R5 viral variants, M-cells instead favor X4 viruses.
Rescigno et al. demonstrated in vitro and in vivo that
DCs can penetrate through tight junctions of the intest-
inal enterocytes and favor transport of enterobacteria,
invasive or not, from the intestinal lumen. Interestingly,
CX3CR1 expressed on DCs was shown to be involved in
the elongation of the DC’s cellular processes [80]. If
HIV-1 utilizes a similar mechanism to invade the intest-
inal mucosa, and if it could select for a particular viral
phenotype, remains to be determined.
Tonsils may also be a portal of entry for HIV-1 by

ingestion. The tonsils mucosa contains M cells that lie
above regions where DCs are juxtaposed with CD4+ lym-
phocytes [81,82]. In adults oral transmission occurs rarely
[83,84] and HIV binding to tonsil epithelium exhibits
limited progression to primary infection [85]. In the pri-
mate MTCT model, infection was shown to occur
through the surface mucosa of the tonsil [86], where
transmission of the virus may involve specialized M cells
and DC capable of transporting HIV to the interior of
the tonsil. Tonsil lymphoid cells have an increased sus-
ceptibility to infection with HIV-1 compared to PBMC,
which may in part by ascribed to the increased expres-
sion of the viral co-receptor CXCR4 [87].

The other portal of entry specific for in utero MTCT of
HIV-1 is the placenta possibly through a transannexial or
transplacental passage. HIV-entry into trophoblastic cells
has still to be elucidated, as primary trophoblastic cells
express CXCR4 and CCR5 but not always CD4 on the
surface [12]. HIV-1 was detected mostly in syncytiotro-
phoblasts, Hofbauer cells and placental macrophages of
both early and late placentae [88-93], unless the mother
underwent antiretroviral therapy from early on in preg-
nancy [94]. Trophoblastic cells derived from the outer
layer of the healthy placenta or malignant trophoblastic
cell lines are permissive to infection by laboratory
strains of HIV-1 in vitro [95-97]. In vitro, HIV-1 can
transcytose across a trophoblastic barrier or, alterna-
tively, the infected monocytes and lymphocytes can
rapidly fuse with trophoblastic cells independently from
the viral chemokine-receptor usage [98]. DC-SIGN and
ICAM-1 were implied to play a role in the passage of
HIV from placental cells to Hofbauer cells or T-lym-
phocytes [99,100]. Furthermore, the maternal deciduals
cells are more permissive to infection with R5 than X4
viruses. Moreover, those cells interact directly with the
placental cells, which are permissive to cell-to-cell infec-
tion, especially during the first trimester of pregnancy.
Despite this potential risk, in utero transmission is rare
during this period, suggesting that a natural control of
the virus may occur [101].
Human term placental cells express the recently dis-

covered second receptor for CXCL12/SDF-1a CXCR7
(RDC1) [102,103], which is known to be a coreceptor
for HIV-1, HIV-2 and SIV [104]. Somatic cells expres-
sing CXCR7 show enhanced internalization of the
chemokine suggesting that CXCR7 acts as a sink for
SDF-1a [105]. If these mechanism may influence a pre-
ferential transmission of CCR5 using viruses at placental
level remains to be elucidated.
Controversial data were reported regarding the expres-

sion levels of CCR5 on placental cells and the risk of
vertical transmission. Indeed, up-regulation of CCR5
expression in the placenta was associated with MTCT of
HIV-1 [106]. The same study revealed that HIV-1
infects primarily CXCR4-expressing cells in the placenta
from non-transmitting women, but predominantly
CCR5-expressing cells in those from transmitting
women. However, a recent study did not find any corre-
lation between the expression of CCR5 in human pla-
centa and MTCT of HIV-1 in a cohort of mothers from
Malawi [107]. Interestingly maternal malaria infection
corresponded to a higher expression of CCR5 in the
placenta, thus indicating that environmental factor are
involved in the regulation of this molecule. In two Afri-
can studies it was shown that Plasmodium falciparum
infection profoundly modifies the placenta cytokine
environment [108], and that placental malaria infection
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is associated with an increase in peripheral and placental
HIV-1 load [109]. Indeed, the role of malaria infection
in favoring MTCT of HIV-1 is still a matter of debate
and needs further investigation. According to the latest
estimates of WHO/UNAIDS in those areas where
malaria is endemic were born the majority of the
430.000 newly HIV-1 infected babies [110].

Conclusion
As to day viral phenotype was not identified as a predic-
tive marker of MTCT of HIV-1. Genetic polymorphisms
are more frequently of relevance in the child than in the
mother. Mucosal tissues of the intestine or placenta
appear to be involved in the selection of viral pheno-
types, due to expression of specific receptors for HIV-1.
The driving mechanisms need still further investigation.
The enigma of the R5 phenotype being associated with

the state of immune deficiency has been solved with the
refined viral characterization, in which viruses are
further classified in R5broad or R5narrow. Indeed, R5broad

viruses have detrimental effect as much as CXCR4-using
viruses, and are predictive of fast disease progression in
infected children.
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