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Abstract

Background: Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the
development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent
experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for
yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere
suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and
to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy.

Methods: Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated
under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with
epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha
(TGFa). Immunofluorescence assays were conducted for phenotype characterization.

Results: The TGFa group presented a number of spheres significantly higher than the bFGF group. Although
mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in
otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear
progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells.

Conclusions: Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to
mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal
guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the

differentiation potential observed for the mouse organ of Corti at the same developmental stage.

Introduction

The sense of hearing, one of the five primary senses, is
mediated through a complex sensory system that allows
the perception and reaction to a huge variety of sound
stimuli. Hearing makes feasible individual interaction
with the environment and is essential for communica-
tion. Typically, the auditory system comprises a highly
specialized sensory epithelium, the organ of Corti. It
contains mechanosensory hair cells as the primary trans-
ducers of auditory stimuli, and supporting cells that
provide a structural and physiological supporting epithe-
lium. One end of hair cells interacts with physical inputs
and transmits these signals to the neural circuits, linked
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to the opposite end of the cell by a synapsis [1]. Most
types of congenital and acquired hearing loss arise from
damage and irreversible loss of cochlear hair cells or
their associated neurons[2].

A remarkable characteristic of highly differentiated
and specialized mammalian cells, including cochlear
sensory hair cells, is that after birth they are held in a
post-mitotic state which contributes to their terminal
differentiation and inability of repair[3]. A complex net-
work of cyclin-dependent kinases and negative cell cycle
regulators are involved in blocking cell cycle reentry,
progression and differentiation in mammalian inner ear,
maintaining the cell cycle arrest[4-7]. However, it has
been reported that supporting cell proliferation and hair
cell regeneration spontaneously occurs in vitro after
aminoglycoside ototoxicity in the vestibular sensory
epithelia of adult mammals, including guinea pigs and
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humans[8,9]. In these instances, new hair cells seem to
originate from supporting cells that reenter the cell
cycle and subsequently divide asymmetrically; or they
may arise after transdifferentiation from supporting cells
of the vestibular system, but not from cochlea[10,11].

It is now known that mouse adult vestibular sensory
epithelia and neonatal organ of Corti tissue harbor cells
that, when subjected to suspension culturing, are able to
generate floating clonal colonies, the so-called spheres
[12,13]. These spheres demonstrated capacity for self-
renewal, and express inner ear precursor markers such as
nestin and Sox2[14]. However, the sphere formation abil-
ity of the dissociated mouse cochlea decreases during the
second and third postnatal weeks, in a way substantially
faster than the vestibular organ, which maintains its stem
cell populations up to more advanced ages[13]. These
findings suggest that in the organ of Corti the stem cell
properties become limited along the development. Stan-
dardization of procedures for cell culturing and charac-
terization is a major step toward the study of cochlea
progenitor cell differentiation and the definition of strate-
gies for inner ear molecular, gene and cell therapy[15].
However, the establishment of dissociated organ of Corti
suspension culture is still challenging. Although the gui-
nea pig has been widely adopted as an animal model for
cochlea experimental surgery[16], it has not been demon-
strated as an appropriate source of cells for suspension
culturing of the organ of Corti. The aim of this study was
to compare conditions and outcomes of suspension cul-
tures of dissociated organ of Corti from neonatal mouse
and guinea pig, and to evaluate the guinea pig as a poten-
tial cochlea donor for preclinical cell therapy.

Methods

The experimental protocol was previously approved by
the Internal Review Board on Ethics in Animal Research
from the Medical School and the Institute of Biosciences
of the University of Sdo Paulo. All experiments were con-
ducted in accordance with the guidelines for the care and
use of laboratory animals established by the American
National Research Council[17]. In this study, we used
postnatal day 3 (P3) C57BL/6] mouse (Mus musculus)
and guinea pig (Cavea porcellus), obtained from specia-
lized breeders (Biotério de Camundongos Isogénicos do
Instituto de Ciéncias Biomédicas, USP and Centro de
Desenvolvimento de Modelos Experimentais para Medi-
cina e Biologia, CEDEME, UNIFESP, Sao Paulo, Brazil).
Animals presenting acute or chronic ear infection or con-
genital malformations were excluded from the study.
Animals were sacrificed in a carbon dioxide chamber.

Tissue isolation and dissociation
After bathing the animals in absolute ethanol, they were
decapitated and had the temporal bones removed and
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maintained in Leibovitz’s L-15 medium (Sigma-Aldrich,
St Louis MO). Cochlear sensory epithelia containing the
organ of Corti were surgically isolated using micro-
mechanical dissection technique under a stereo-
microscope (Tecnival, SQF-F); stria vascularis and spiral
ganglion were removed. The epithelia containing the
organ of Corti were isolated, transferred to a flask con-
taining 1 mL of HBSS solution (Hank’s Balanced Salt
Solution, 137 mM NaCl, 5.4 mM KCl, 0.3 mM
Na,HPO,, 0.4 mM KH,PO,, 4.2 mM NaHCOs, 5.6 mM
glucose, 300 mM HEPES pH 7.4) and 0.05 U/mL elas-
tase (Sigma-Aldrich, St Louis MO), and incubated for
15 minutes at 37°C. Further enzymatic dissociation of
organ of Corti was achieved by adding CaCl, to 3 mM
and 600 U/mL collagenase type II (Invitrogen, Carlsbad
CA) and incubating for extra 15 minutes at 37°C. Tryp-
sin dissociation of tissue was sequentially performed
with 0.05% Tryple (Invitrogen, Carlsbad CA) for 15 min.
at 37°C. Tissue was precipitated by gravity within the
microtube, and the supernatant was discarded by aspira-
tion. After washing the sample twice with HBSS, cells
were mechanically dissociated by passing through fire-
polished Pasteur pipettes with decreasing calibers and
filtered through a 100-pm cell strainer (BD Falcon™) to
remove cell debris. Twenty pL of the supernatant were
used for cell morphology observation and counting at
an Axiovert 40C microscope (Zeiss, Germany). Cell sus-
pension was centrifuged at 200 x g, 4°C, for five min-
utes. The supernatant was discarded and the cells were
resuspended in complete medium.

Suspension cell culture of dissociated organ of Corti

To obtain suspension cultures, 10* cells were plated into
a well of a 96-well dish previously coated with poly-
HEME (Sigma-Aldrich, St Louis MO) to prevent cell
attachment[18]. Cultures were maintained in a defined
medium composed of DMEM-F12 (1:1), supplemented
with 1X B27, 1X N2, 1X glutamine, 1X insulin, transfer-
rin and selenium (ITS, all from Invitrogen, Carlsbad
CA), ampicillin at 0,3 pg/mL (Teuto Brazilian Labora-
tory, Brazil), 20 ng/mL human epidermal growth factor
(EGF), and either 10 ng/mL basic fibroblast growth fac-
tor (bFGF) or 20 ng/mL transforming growth factor
alpha (TGFa, Invitrogen), at 37°C and 5% CO,. Fifty
percent of the culture medium was replaced every
48 hours[19].

Establishment of subcultures

The primary sphere cultures were maintained for seven
days in vitro (DIV); while for first (P1) and second (P2)
passages cells were cultured for five and three DIV,
respectively. Passages were performed by adding Tryple
(Invitrogen) to each well at a ratio of 1:1, at 37°C and
5% CO,, for ten minutes, followed by mechanical
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dissociation with Pasteur pipettes. After spinning the
cell suspension at 200 x g, 4°C, for four minutes, cells
were resuspended with complete medium, counted, and
plated at 10* cells per well.

Otosphere differentiation

For analysis of cell differentiation, otospheres were trans-
ferred into poly-L-ornithine (0.1 mg/mL) and fibronectin
(5 ug/mL) treated eight-well culture slides (BD Falcon™)
and allowed to attach for 24 hours in wells filled with
defined medium without growth factors. After the cells
were attached, we replaced eighty percent of the medium
DMEM-F12 (1:1) and repeated this procedure every sec-
ond or third day. Differentiated cells were analyzed after
seven DIV by indirect immunofluorescence.

Indirect immunofluorescence and phenotypic

sphere characterization

For sphere analyses and characterization by indirect
immunofluorescence, P1 or P2 cells were transferred to
coverslips within wells of a 24-well dish, previously
coated with 30 pug/mL poly-D-lysine (Sigma) and
2 pg/mL laminin (Sigma). After plating, dishes were
maintained for two hours, at 37°C and 5% CO,, and
centrifuged at 200 x g, at 4°C, for two minutes[20]. The
remaining medium was removed and sphere attachment
to the coverslips was monitored microscopically. Cells
were fixed in 4% paraformaldehide in HBSS for one
hour at 37°C, rinsed in HBSS, and permeabilized in
0,3% triton X-100 for 20 minutes at room temperature.
Cells were blocked in 10% goat serum (Santa Cruz Bio-
technologies, Santa Cruz CA) and incubated with pri-
mary antibodies diluted in 3% bovine serum albumin
(BSA, Invitrogen) in HBSS, for one hour at room tem-
perature. Primary antibody dilutions were 1:100 for
monoclonal anti-nestin (Chemicon), 1:100 for monoclo-
nal anti-sox2 (Chemicon) or 1:50 for polyclonal anti-
sox2 (Santa Cruz), 1:50 for polyclonal anti-myosinVIla
(Affinity BioReagents, ABR), 1:50 for polyclonal anti-
jaggedl (Santa Cruz), 1:50 for monoclonal anti-p27kip1l
(Abcam), 1:50 for polyclonal anti-jagged2 (Santa Cruz).
Cells were rinsed in HBSS and incubated with secondary
antibodies, diluted in HBSS-BSA, for one hour at room
temperature: Cy3-conjugated anti-mouse (1:1000, Invi-
trogen), Alexa Fluor 488-conjugated anti-mouse, anti-
goat and anti-rabbit (1:400, Invitrogen), Alexa Fluor
546-conjugated anti-goat and anti-rabbit (1:400, Invitro-
gen). Samples were mounted in ProLong Gold Antifade
reagent (Invitrogen) containing DAPI (4’,6-diamidine-2-
phenyl indol) for nuclear identification. Images were
acquired by fluorescence microscopy (Axioplan, Carl
Zeiss, Germany) using a software to collect digital
images (Isis Fish Imaging Meta System), and confocal
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microscopy (LSM410 or LSM510, Carl Zeiss, Germany),
as indicated.

Study groups and variables

Mouse and guinea pig organ of Corti suspension cul-
tures were maintained overall for 15 DIV with EGF,
and either bFGF or TGFa, for initial comparative ana-
lyses. Quantitative analysis was performed through
direct counting the spheres from 20 consecutive
microscope fields for each coverslip. For each growth
factor treatment, bFGF or TGFa, two variables were
examined: the number of spheres per coverslip and the
number of cells in each sphere, each of them deter-
mined by confocal counting of DAPI-positive nuclei.
These variables were compared between mouse and
guinea pig cultures. We also observed the overall dis-
tribution of nestin and sox2.

Statistical Analysis

The results were expressed as the mean + standard
deviation of the percentage of labeled cells in each
growth factor treatment condition, EGF plus bFGF or
EGF plus TGFa. The continuous variables were com-
pared by Student’s ¢-test. The level of statistical signifi-
cance was set at p < 0.05. Statistical analysis was
performed using the GraphPad Instat program.

Results

The most appropriate growth factor combination to
provide a synergistic effect suitable for sphere forma-
tion is still a matter of research. Our choice was to use
epidermal growth factor (EGF) in combination with
either basic fibroblast growth factor (bFGF) or trans-
forming growth factor alpha (TGFa), according to pre-
vious results from the literature[21]. We used
dissociated mouse or guinea pig organ of Corti at post-
natal day three (P3) in suspension cultures to compare
the above conditions. We found a significant difference
between groups regarding the number of sphere when
data was combined for both animals, with more
spheres observed in the TGFa group (23.3 + 8.5) than
in the bFGF group (9 + 1, p = 0.044, Student’s t-test).
In addition, the TGFa group (37.6 + 23.5) tended to
present more cells in each sphere than the bFGF
group although this comparison did not reach statisti-
cal significance (16.3 + 4.1, p = 0.098, Student’s ¢-test,
Figure 1 and Table 1).

When we analyzed the sphere number between organ-
isms, we observed no difference in sphere number
between mouse (18.5 + 11) and guinea pig (11.5 + 4.9)
cultures (p = 0.458, Student’s t-test). On the other hand,
mouse cultures (32.6 + 30.5) yielded a higher number of
cells per spheres than guinea pig cultures (12.5 + 5.8,
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Figure 1 Images represent analyses taken at a Zeiss Axiovert 40C inverted microscope and an Axiocamera MRC5 (Zeiss, Germany) of
spheres observed with phase contrast while culturing of dissociated mouse or guinea pig cochleas, with either bFGF or TGFq, as

p = 0.041, Student’s t-test). We concluded therefore that
TGFa in the presence of EGF increases the number of
spheres in cultures of dissociated organ of Corti, when
compared to bFGF. Our data also shows that at the neo-
natal period mouse cochlea yields more cells per sphere
than the guinea pig ones.

We analyzed the expression of two markers in the
otospheres, nestin and sox2. The former is an inter-
mediate filament expressed in neuroepithelial stem cells,
during embryogenesis, employed as a marker of imma-
ture neurons and neuroblasts[22]. Sox2 is a transcription
factor involved in sensory inner ear development, cell
fate determination and stem cell maintenance. In cul-
tures from both species, we detected sox2-positive and
nestin-positive cells in all spheres analyzed, in a cyto-
plasmic distribution in roughly 40% of cells (Figure 2,
arrows). Therefore, comparing mouse and guinea pig,
we may consider that cochlea from both organisms

yielded approximate numbers of spheres containing cells
expressing markers of pluripotency.

We further investigated other stem/progenitor cell
properties in the otospheres, such as self-renewal, pro-
liferation and differentiation. As observed in Figure 3,
passage of the primary cultures successfully yielded
novel spheres. On the first day after subculturing cells
were isolated or within floating colonies of two or
three cells. Three days later, they had independently
established multicellular floating colonies, otospheres
(Figure 4). These are indirect evidences supporting the
ability of those cells for self-renewal and proliferation,
as the increasing size of otosphere along culturing
time (Figure 3) suggests that cells dissociated from
otospheres at passage may proliferate and form new
otospheres.

Conditions for in vitro differentiation of otospheres
into hair cells or supporting cells have been reported

Table 1 Comparison of otosphere size parameters between treatment groups and species

Groups EGF + bFGF EGF + TGFa p Mouse* Guinea pig* p
Number of spheres per coverslip 9+1 233 +£85 0.044 185+ 11 11.5+£49 0458
Number of cells in each sphere 16.3 + 4.1 376+ 235 0.098 326 + 305 125+ 58 0.041

Values represent the mean * 1 standard deviation; p is from Student’s t-test; and * considers both growth factor treatment together.
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Figure 2 Indirect immunofluorescence of mouse or guinea pig otospheres from first or second passage, cultivated in the presence of
either bFGF or TGFq, as indicated. The neural stem cell markers, sox2 and nestin, were used to label the cells. DAPI identifies cell nuclei. Scale

Guinea pig

[12]. We cultured P1/P2 otospheres under adherent
conditions in medium composition favoring differentia-
tion into hair and supporting cells. We demonstrate the
presence of cells expressing markers for either support-
ing (p27kipl and jaggedl) or hair cells (myoVIIa and
jagged2) from mouse otospheres (Figure 4). As no
adherence could be obtained for guinea pig otosphere,
we could not observe cell differentiation. This may be
explained by the low number of cells observed for gui-
nea pig otosphere comparatively to the mouse.

Discussion

Progenitor cells have been shown to be present in verte-
brate sensory epithelia, based on a number of evidences:
(1) sphere formation was demonstrated from inner ear
sensory epithelia of birds[23,24], fish[25], neonatal rat
cochlea[26], postnatal mouse cochlea and vestibular sys-
tem[12,13], and adult human and guinea pig spiral
ganglion[27]; (2) spheres were shown to be clonal and
capable of self renewal[12,13]; and (3) spheres were able
to differentiate into cell types corresponding to all three

germ layers, ectoderm, endoderm, and mesoderm, indi-
cating that these are pluripotent stem cells[28]. Cells in
the spheres could differentiate into hair cells and neu-
rons with inner ear cell properties[13,29]. This raises
the possibility that, if properly stimulated, they can be
induced to differentiate in vivo as the basis for future
therapies, including replacement of cells in the inner
ear [28].

More recent data from mammals suggests that sup-
porting cells or a subset of supporting cells can act as
precursors for hair cells, and several studies suggest that
supporting cells have stem cell characteristics. Those
properties may vary among the different supporting cell
types, which have distinct morphologies and gene
expression profiles[14,18,30,31]. Stem cell markers such
as Sox2, Nestin, Musahi, Notch, Prox1, Isletl were
demonstrated to be expressed in postnatal supporting
cells[32-37].

Nestin is an intermediate filament protein expressed
by stem and progenitor cells early in development, and
throughout the early postnatal period in the central and
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Figure 3 Images of analyses taken at a Zeiss Axiovert 40C inverted microscope and an Axiocamera MRC5 (Zeiss, Germany) of spheres
observed with phase contrast while culturing of dissociated mouse or guinea pig cochleas, with either bFGF or TGFo, as indicated. PO
and P1 indicate primary culture and first subculturing, respectively. Arrows indicate otospheres obtained from guinea pig. Scale bar 50 um.

TGFa

peripheral nervous systems, being considered a neural
stem cell marker. It has been previously described in the
organ of Corti of both developing and mature cochlea,
suggesting the presence of immature precursor cells in
the inner ear[14,33,38]. Nestin-positive cells expanded in
culture from proliferating and floating spherical colonies
have been shown to incorporate bromodesoyuridine into
the DNA indicating their proliferation ability. In addi-
tion, they retain the ability to differentiate into cells dis-
playing morphological features and expression of
markers of hair cells and supporting cells[14,39]. Sox2, a
transcription factor, is another marker of the inner ear
prosensory domain. In developing central and peripheral
nervous systems, Sox2 expression is associated with pro-
genitor and stem cell populations and with the sensory
progenitors of the cochlea. Sox2 is widely expressed in
the otocyst, but as the inner ear develops and proneural
cells delaminate, its expression becomes restricted to
prosensory domains[40]. In experiments using fluores-
cent activated cell sorting (FACS) for isolation and puri-
fication of inner ear progenitor cells, from embryonic
and postnatal cochlea, it was demonstrated that this spe-
cific population expresses cochlear sensory precursor

markers as Sox2 and Nestin, and can differentiate in
vitro into cells expressing markers of hair cells and sup-
porting cells in vitro[18,31].

Culturing organ of Corti progenitor cells under non-
adherent conditions is challenging, because in vitro cell
density and proliferation are low. Several growth factors
may promote the proliferation of vestibular sensory
epithelial cells after damage, including EGF, bFGF,
TGFa, insulin-like growth factor 1 (IGF1), and others
[41-43]. A nonadherent culture typical for mouse organ
of Corti, established at postnatal day three, with
approximately 10* cells at seeding, contains 4 + 2.08
spheres after six DIV without further growth factor sup-
plementation[21,44]. According to Zine et al, after six
DIV there were significantly more spheres formed, 41.25
+ 3.50 spheres, when the same amount of dissociated
cells was maintained in EGF plus TGFa supplemented
medium[21]. After the sixth DIV 50% of sphere cells
presented Abcg2 staining, an epithelial progenitor cell
marker[21]. The effects of these two growth factors on
sphere formation are consistent with the results of our
experiments, and with previous studies that have impli-
cated the EGF and TGFa growth factor family in
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Figure 4 Images represent analyses taken at a Zeiss Axiovert 40C inverted microscope and an Axiocamera MRC5 (Zeiss, Germany) of
spheres observed with phase contrast while culturing of dissociated mouse or guinea pig cochleas, as indicated. Data shown was
obtained with TGFa-supplemented medium. Similarly, otospheres cultivated in culture medium with bFGF presented the same pattern of self-
renewal (not shown). All images are from passage-one cells, cultivated for one (1DIV) or four (4DIV) days in vitro. Arrows indicate otospheres.

in vitro proliferation within sensory regions of mature
utricles and organ of Corti explants[43-45]. Li et al
observed that a combination of EGF plus IGF1 had a
partially addictive effect resulting in a higher incidence
of sphere formation, 68 + 24 spheres per 10> plated
cells, compared with single supplements, either EGF,
bEGF or IGF1 alone, which provided 40 spheres per 10°
plated cells[12]. Kuntz and Oesterle showed through
autoradiographic techniques after tritiated thymidine
labeling that simultaneous infusion of TGFa and insulin
directly into the inner ear of adult rats stimulated DNA
synthesis in the vestibular sensory receptor epithelium,
with the production of new supporting cells and puta-
tive hair cells; however the infusion of insulin alone or
TGFa alone failed to stimulate significant DNA synth-
esis[43]. Yamashita and Oesterle tested the effects of
several growth factors on progenitor cell division in cul-
tured mouse vestibular sensory epithelia and observed
that cell proliferation was induced by TGFa in a dose-
dependent manner, and by EGF when supplemented
with insulin, but not by EGF alone[45]. Zheng et al
examined the possible influence of 30 growth factors on
the proliferation of rat utricular epithelial cells in culture
and found that IGF1, TGFa and EGF stimulated cell
proliferation[41]. Our experiments show that culture
medium supplemented with TGFa has an additional
effect on the number of forming spheres, 2.5 times
higher when compared with bFGF group, in agreement

with some observations of other authors. No significant
difference was observed on cells numbers per sphere;
however, there was a tendency toward higher values in
the TGFa group. We were unable to demonstrate direct
proliferative activity by BrdU labeling due to unspecific
signals in immunofluorescence assays (data not shown).
On the other hand, we registered during the culturing
period the size expansion of otospheres from both
organisms, which is suggestive of cell proliferation
(Figure 3). In conclusion, our findings suggest that the
combination of EGF and TGFa in the culture medium
is a good alternative for otosphere production due to its
higher rate of sphere formation.

Dissociated guinea pig cochlea produced otospheres
in vitro, expressing sox2 and nestin similarly to mouse
otospheres. The presence of cells labeled for these two
markers is supporting evidence for the presence of inner
ear progenitor cells in the postnatal guinea pig, retaining
an undifferentiated phenotype, as observed in the
mouse. Our results clearly show the staining for protein
markers for both hair cells and supporting cells upon
culturing of mouse otospheres under conditions favoring
cell differentiation (Figures 5 and 6). All markers
employed, myosin VIIa and jagged2 for hair cells and
p27kipl and jaggedl for supporting cells, presented
their expected subcellular distribution (myosinVIIa in
cell processes, jagged 1 and 2 in the plasma membrane,
and nuclear localization for p27kip1). This confirms the
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Figure 5 Indirect immunofluorescence of mouse otospheres from second passage, cultivated in the presence of bFGF, and submitted
to dish adherence and cell differentiation. Myosin Vila, a marker for hair cells, is labeled by Alexa 488 and shown in panel A. Arrows indicate
plasma membrane processes, underneath which there is an enrichment of myosinVlla. P27kip1 and Jagged 1, markers for supporting cells give
the expected green staining of plasma membrane and red labeling of nuclei, respectively, shown in panels B and C. DAPI stains in blue nuclear

undifferentiated phenotype of the otospheres and its
commitment to the cell types from the inner ear. We
believe that the lack of demonstration of hair cell and
supporting cell differentiation for guinea pig spheres is
most probably due to their limited cell number (Figure
1 and Table 1). It may also be related to the relatively
earlier maturation of guinea pig cochlea, which has been
studied before. Comparisons between fetal and neonatal
guinea pigs revealed that cochlear microphonics and
endocochlear potential may be recorded in the prenatal
period and reach adult levels at birth[46]. It has also
been described that maturation of marginal cell junc-
tions in guinea pigs occurs during the first few postnatal
days, along with postnatal morphologic maturation of
the organ of Corti and the stria vascularis, approxi-
mately one week after birth[47,48]. In mice, evoked
potentials are compatible with hearing at 12 days after

birth, while auditory maturation of guinea pig should
occur 12-15 days before birth{49]. Oshima et al
obtained few cells with potential to form spheres in the
organ of Corti of 21-day-old mice, corresponding to
nine days after the maturation of the auditory pathway
[13]. As P3 guinea pigs should have had auditory
maturation 15 days before, cells with sphere-forming
ability may indeed be found. If the major drawback is
their limited number, it is worth pursuing the best
growth factor combination that potentially leads to
increased cell survival, proliferation and differentiation.
It may be likely, however, that a very small number of gui-
nea pig cochlea progenitors impairs their viability in vitro.
On the one hand, the cell viability, though partial, that we
report here for P3 guinea pig cochlea progenitors rein-
forces this organism as an experimental animal model in
studies searching for the mechanisms for organ of Corti
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Figure 6 Indirect immunofluorescence of mouse otospheres from second passage, cultivated in the presence of TGFa, and submitted
to dish adherence and cell differentiation. Jagged 2 (panel A) and Myosin Vlla (panel B) are hair cell markers, here labeled in red and green,
respectively. Arrows indicate their concentration near the plasma membrane, especially in membrane ruffles. P27kip1 labels supporting cell
nuclei, as shown in panel C. DAPI identifies the cell nucleus in blue. Scale bar 10 pum.

regeneration. On the other hand, the limited sphere cell
number and restricted differentiation potential observed
by us for guinea pigs are evidences of their earlier cochlear
maturation when compared to mouse.

Conclusions

Dissociated guinea pig cochlea produced otospheres
in vitro, expressing sox2 and nestin similarly to mouse
otospheres. Culture medium supplemented with EGF
plus TGFa yielded a higher number of spheres than
medium containing EGF plus bFGF for both animals.
Compared to culturing of dissociated guinea pig organ
of Corti, mouse cultures yielded a higher number of
cells per sphere. This lower number of cells for guinea
pig spheres may relate to its lack of differentiation in
vitro, as opposed to the strong differentiation potential
observed in vitro for mouse otospheres.
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