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Abstract
Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the
treatment of patients with cancer. In this review, the advantages and limitations of using antigen-
specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies
represent more readily available reagents, adoptive T cell therapy provides highly selected T cells
of defined phenotype, specificity and function that may influence their biological behavior in vivo.
Adoptive T cell therapy offers not only translational opportunities but also a means to address
fundamental issues in the evolving field of cancer immunotherapy.

Introduction
Augmentation of the immune response can be achieved
through in vivo vaccination or ex vivo expansion of anti-
gen-specific effectors followed by adoptive transfer. Both
modalities share many features. For example, the antigen-
presenting cell used for stimulating effector responses in
vivo and in vitro represents a crucial element responsible
for shaping the specificity and phenotype of the intended
immune response. Therefore, preclinical studies that
advance the engineering of robust antigen-presenting cells
may be translated for use with either strategy. The
cytokines necessary for augmentation and maintenance of
the immune effector function and survival, the costimula-
tory factors required, and the regulatory and inhibitory
mechanisms that must be overcome to achieve tumor
eradication must be addressed whether vaccine strategies
or adoptive T cell therapy is used. However, the behavior
and ultimate fate of effectors generated in vivo can be sub-
stantially different from those generated in vitro. It would
be naïve to assume that in vivo conditions could be repro-
duced completely by manipulating conditions in vitro

and there may be effectors of desired phenotype and func-
tion that can only be generated or more easily generated
in vivo than in vitro. On the other hand, when effectors
can be generated in vitro, their specificity, magnitude, sur-
face and functional phenotype can be far better defined
than those generated following in vivo immunization. For
this reason, the appeal of adoptive therapy is that the rea-
sons for success or failure of a given strategy can be deter-
mined with greater precision than with in vivo
vaccination. As more comprehensive and sensitive tools
become available to monitor the immune response [1,2],
this advantage may diminish; however it would be pre-
sumptuous to believe that immune monitoring can char-
acterize induced vaccine-elicited effectors to the same
degree as effectors elicited ex vivo. Although there is no
guarantee that infused T cells will behave in vivo in the
same manner as one would be able to predict in vitro,
effector cells can be manipulated and selected ex vivo,
prior to adoptive transfer, in a manner that can answer
questions that cannot be addressed by vaccination strate-
gies. When it is possible to generate an effector population
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of T cells of defined magnitude, the temptation however,
is to ignore the role of qualitative differences by adopting
a 'more is better' policy. The avidity, functional phenotype
and in vivo 'survivability' are equally if not more relevant
in mediating tumor eradication than numbers alone.
With this in mind, the following commentary provides
first a description of adoptive therapy strategies and then
a point-by-point discussion of its various features and
advantages in addressing challenges in immunotherapy.

Defining Adoptive Cellular Therapy
Adoptive therapy involves the transfer of ex vivo
expanded effector cells as a means of augmenting the anti-
tumor immune response. Depending on the method of ex
vivo selection, stimulation and expansion, varying
degrees of uniformity with respect to antigen-specificity
and phenotype may be obtained. This can range from a
diverse polyclonal population of effector cells to highly
selected T cell clones of defined phenotype, specificity and
tumor avidity. The following broad and somewhat arbi-
trary categories describing T cell expansion methods are
listed in order of increasing antigen specificity:

1. Non-specific expansion of peripheral blood lymphocytes.
Non-specific ex vivo expansion of peripheral blood T cells
by triggering the T cell receptor and costimulatory mole-
cules with antibodies and/or the use of cytokines to drive
T cells have been used in a number of clinical studies for
the treatment of patients with HIV and malignant diseases
[3-6]. In spite of the absence of a specific in vitro stimula-
tor, in vitro studies suggest that augmentation of existing
antigen-specific immunity can be achieved.

2. Ex vivo expansion of Tumor infiltrating lymphocytes. Expan-
sion of infiltrating lymphocytes harvested from tumor
sites yields a polyclonal population of T cells with broad
reactivity to a variety of autologous tumor antigens.
Although some degree of tumor-reactivity can be
achieved, there is little control over the specificity or phe-
notype of the effector population without further in vitro
manipulation [7]

3. In vitro stimulation to elicit antigen-specific T cells
from peripheral blood lymphocytes using cells engi-
neered for antigen presentation (peptide pulsed, RNA
transfected or viral transduced autologous stimulator cells
or artificial antigen presenting cells [8,9]) provides the
most precise control over the specificity, and phenotype
of the intended immune response [10,11]. Greater uni-
formity of effector specificity and phenotype may be
achieved using clonal T cells expanded ex vivo.

Although this discussion is limited to the treatment of
solid tumor malignancies, it should be noted that the
adoptive transfer of allogeneic effector cells including

donor lymphocyte infusions [12], minor antigen-specific
CTL [13] and strategies that exploit NK alloreactivity [14]
have been used successfully for the treatment of leukemia
following allogeneic stem cell transplant. In addition,
more refined approaches for the treatment of patients
with post-transplant lymphoproliferative disease or
Hodgkin's disease using EBV-specific T cells [15-17] have
led to durable complete responses that have yet to be
achieved with any notable degree in solid tumor immu-
notherapy. These studies are instructive for the solid
tumor immunotherapist in that they demonstrate the fea-
sibility of targeting specific tumor-associated viral anti-
gens and provide insight into the role that T cells can play
in eradicating life-threatening disease. Since solid tumors,
such as melanoma, in its advanced stages exhibit physical
and immunologic barriers distinct from tumors of hema-
tologic origin, the following is limited to a discussion of
immunotherapeutic strategies for the treatment of solid
tumors.

Different strategies in generating effector cells for adoptive
therapy influence not only the antigen-specificity, tumor
avidity and cellular phenotype, but also the behavior of T
cells in vivo i.e., longevity, trafficking, anti-tumor efficacy.
Although effector cells generated using the above proto-
cols can be considered in the following discussion, as a
counterpoint to vaccination strategies, it will be assumed
that the prototypic effector cells for adoptive therapy will
be ex vivo expanded antigen-specific T cells.

Antigen-specific Immunotherapy: Points to Consider
1. Magnitude and Persistence
The magnitude of the anti-tumor immune response has
been demonstrated in murine models of immunotherapy
to be a critical factor in tumor eradication [18]. Although
the frequency of antigen-specific T cells required to medi-
ate an anti-tumor effect in patients is not known and is
likely to vary widely depending on the antigen target,
tumor burden, stromal environment and many other fac-
tors, including, perhaps most importantly, qualitative fea-
tures of the effector cell. However, it may be agreed that
there is a threshold below which, it would be unreasona-
ble to predict a response, especially against established
tumors, but it is equally unlikely that that threshold need
be as great as 90% of all circulating CD8 T cells (unless
such large numbers of cells are required to compensate for
a paucity of desired effectors or a general qualitative
defect). Tumor-eradicating therapy in murine models sug-
gest that a frequency of antigen-specific T cells of at least
1–10% of CD8 T cells is required. In patients, this trans-
lates to a dose of 2 to 20 × 109 cells. The use of non-spe-
cific expansion methods (cytokines, TCR and
costimulatory molecule triggering) have been used to suc-
cessfully expand unselected peripheral blood mononu-
clear cells to > 1010 cells in vitro over a period of 2–4
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weeks [3,8]. In this case, however, the frequency of tumor-
reactive T cells in the final infused product is often not
known. Tumor-infiltrating lymphocytes after a 10–12
week period of in vitro culture with high-dose IL-2 yield
1010 - 1011 cells [7]; when expanded using anti-CD3 in
combination with irradiated feeder cells, similar numbers
can be achieved in less than half that time [19]. CD8 and
CD4 T cell clones of defined antigen specificity and phe-
notype expand 500 to > 5000 fold over two weeks and can
also achieve numbers > 1010 [11,20-22]. In vivo, T cell fre-
quencies of up to 5 % of all CD8 T cells in an unmanipu-
lated host can be achieved. Patients have received
adoptively transferred antigen-specific T cells numbering
> 1010 for a single infusion and often go on to receive mul-
tiple T cell infusions at intervals of days to weeks. In
murine models, repeated infusions may play a role in
'attacking' the tumor in geographically distinct regions
leading to tumor regression over time [23].

Equally important for successful therapy is the duration of
in vivo persistence of transferred T cells which can vary
from hours or days to weeks. This can depend in large part
on the manner in which T cells were generated in vitro and
under what conditions they are administered. Recent tri-
als using adoptively transferred antigen-specific T cells are
summarized in Table 1, Additional file 1 according to
method of CTL generation and expansion, number of cells
infused and immunomodulatory considerations such as
prior lymphodepletion and dose of IL-2 administered.
The methods for generating T cells varied with respect to
the antigen presenting cell (Drosophila cells vs. autologous
dendritic cells), in vitro dose of IL-2 ('T cell growth factor"
to low-dose IL-2 at 10 U/ml to as much as 6000 U/ml),
the number of cells infused and use of lymphodepleting
regimens. In cases where polyclonal populations were
used, as few as 108 antigen-specific CTL were infused;
these T cells could not be detected in the peripheral blood
(a Mitchell et al, Table 1, Additional file 1) [24]. The
absence of detectable T cells may be attributed to the
absence of requisite costimulatory signals not provided by
the gene-modified insect cells, absence of co-administered
IL-2, the relatively low cell dose and/or underestimation
of the actual frequency due to the use of limiting dilution
analysis instead of tetramer staining. Although up to ten-
fold higher doses of antigen – specific CTL clones were
administered in other studies (c Dudley et al) [25,26],
these transferred cells also did not persist in vivo. In this
case, T cells obtained from a previously vaccinated host
failing peptide vaccine therapy, stimulated in vitro with
the identical epitope and exposed to very high doses of IL-
2 (c&d Dudley et al)[25,26] are likely to behave very differ-
ently from T cells generated from a non-vaccinated host
under more physiologic conditions of cyclical antigen-
stimulation and low-dose cytokines (b Meidenbauer et al;
e Yee et al) [11,27,28]. In the former, adoptively trans-

ferred T cells experience a very short (< 48 hour) period of
in vivo persistence possibly due to the requirement for
supraphysiologic doses of IL-2 help in vivo and a starting
population of T cells that may have reduced proliferative
capacity due to prior in vivo vaccination. By contrast, T
cells generated in vitro under more physiologic condition,
can persist for more than 2 weeks in the presence of help
(exogenous low-dose IL-2). Is this duration of in vivo per-
sistence sufficient to mediate an anti-tumor response?
While no clinical complete responses by RECIST
(Response Evaluation Criteria In Solid Tumors) criteria
[29] were noted in this study of patients with metastatic
melanoma, what often escapes notice [30] is that patients
experienced partial responses, significant tumor regres-
sion and stabilization of disease for an average of > 11
months and up to 29+ months – beyond what would be
expected for patients with refractory disease following
conventional therapy (median survival < 6 months) [11].
Since several of the patients who eventually progressed
demonstrated evidence of outgrowth of antigen-loss
tumor variants, it is suggested that such immunoselective
pressure could not have occurred in the absence of effec-
tive antigen-specific immunotherapy [11].

One advantage of using ex vivo expanded T cells is that
patients may have cells collected at an earlier stage of dis-
ease or prior to immunomodulatory therapy for later use.
In one widely publicized study, TIL cells expanded using
methods developed for clonal T cell expansion, were
adoptively transferred to patients following lymphodeple-
tion [19]. Melanoma-reactive T cells accumulated in the
peripheral blood of these patients' reconstituting immune
system to reach an astounding 97% of CD8+ T cells
accompanied by tumor regression. Up to 50% of patients
in an updated report demonstrated evidence of a clinical
response and has been reported by its authors as a clear
example of the role of adoptively transferred T cells, in the
right setting to mediate dramatic clinical responses [31].
In corollary reports, the authors demonstrate that the level
of T cell persistence observed in responding patients was
significantly higher than that of nonresponding patients
at early (5–15 days post infusion) and later timepoints
(1–2 months post-infusion) suggesting that the duration
of persistence of T cells derived from transferred, ex vivo
expanded TIL play a role in the anti-tumor response [32].
Interestingly, although the infused product was com-
prised of several clonotypes, only a handful of T cell
clones (among both responders and non-responders) per-
sisted. This is an important study, but it leaves many ques-
tions unanswered and meaningful conclusions that
advance the field are difficult to draw due to confounding
variables in the design of this study. Without controlling
for the specificity, dose or phenotype, it is unclear what
type or dose of effector cells are required. Are CD4 T cells
essential? What are the features of the subpopulation of T
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cells that experienced prolonged in vivo persistence and
how do these differ from other T cells that were generated
in vitro? Was their survival a result of greater (or lesser)
avidity for their targets? Is it necessary to achieve the
degree of lymphodepletion used in this study (which led
to serious toxicities such as vision-threatening uveitis, and
life-threatening PTLD)? Is selective depletion of regulatory
cells or gentler preparative regimens to augment homeo-
static mechanisms supportive of transferred T cells suffi-
cient ? What role does high-dose IL-2 play in mediating
clinical responses in this setting? Unfortunately, these
answers cannot be divined from this study; rather, dissect-
ing the contribution of these components to the anti-
tumor response will be undertaken in carefully designed
trials that exploit the advantages of using selectively
expanded adoptively transferred T cells.

2. Phenotype
The effector cell phenotype can be described as either 1)
surface markers that are associated with specific (and non-
exclusive) effector function – for example, CD4+ T cells
are more likely to provide cytokine help than CD8+ T cells
which are more likely to be cytolytic; or 2), a functional
phenotype, such as tumor cell killing or TCR affinity. Vac-
cination strategies may be directed towards the induction
of CD4 or CD8 T cells on the basis of whether Class I or
Class II-restricted epitopes are used or whether the
method of antigen engineering or presentation favors
Class I or Class II MHC loading. However, more precise
selection of the intended phenotype can be achieved by in
vitro selection or enrichment of CD4 or CD8 T cells by
immunomagnetic bead selection for example. T cells gen-
erated following peptide vaccination may exhibit low
avidity for tumor cells, possibly as a result of preferential
expansion of lower affinity effectors by APC presenting
supraphysiologic concentrations of peptide MHC [2,33].
The use of altered peptide ligands may be capable of
inducing in vivo an effector population with greater affin-
ity for the tumor targets [34], but such ligands have not
been frequently described and T cells of defined affinity
cannot be selected. Perhaps part of the reason for the dis-
parity between T cell frequency and clinical response in
earlier vaccination studies is that attempts at immune
monitoring enumerated T cells regardless of avidity. The
study using the altered peptide ligand of CEA is one of
only a handful of vaccine studies that demonstrated corre-
lation with clinical response [34]. By contrast, T cells gen-
erated ex vivo with altered or natural peptide ligands or
any other tumor-derived APC can be selected on the basis
of the affinity of their TCR, overall tumor avidity or any
other measurable and selectable functional property, uni-
formly expanded and transferred at a desired T cell dose
[35-37].

One property of T cells that may be gauged by surface
expression of specific markers, is their proliferative capac-
ity, an important feature that will no doubt receive greater
attention in the design of clinical trials, and paradoxically,
may be inversely correlated with more routine measures
of cytolytic or effector capacity (Gattinoni L et al, ISBTC
abstract, 2004). In this aspect, although clones demon-
strate significant proliferative capacity under the right
conditions (e.g. IL-15 [38]), early effectors clearly exhibit
greater potential for durable in vivo persistence. Perhaps
studies demonstrating significant tumor responses [19]
are a result of the presence of some of these early effectors
in a polyclonal infusate of T cells or the adoptive transfer
of smaller numbers of carefully selected effectors on the
basis of proliferative capacity rather than tumor killing.
Whether such an approach will be more successful,
remains to be seen but represents the type of question that
could best be addressed by adoptive immunotherapy.

3. Specificity
As with vaccination strategies, the specificity of the
intended immune response can be controlled and multi-
valent targeting can be achieved by adoptive therapy.
However, eliciting responses by vaccination alone when
the frequency of such responses is low as in the case of
commonly shared tumor associated self antigens [39] or
when such responses are represented by subdominant
epitopes [40], may be limited by in vivo constraints. In
this case ex vivo manipulation provides for a greater like-
lihood of generating T cells of desired specificity and mag-
nitude by enriching for desired T cells in culture and
careful selection of T cell clones. Alternatively, the ability
to genetically modify T cells provides the opportunity to
fashion T cells of defined specificity for adoptive therapy.
T cell receptors cloned and sequenced from tumor-reac-
tive lines and efficiently transferred into peripheral blood
lymphocytes [41]. TCR-modified lymphocytes selected on
the basis of in vitro markers or enriched by iterative stim-
ulation have demonstrated the capacity to recognize and
kill specific tumor target cells. In this way, patients for
whom T cells of a given specificity are poorly represented
by their immune repertoire, are not precluded from adop-
tive therapy when TCR-modified autologous lymphocytes
can be used. Furthermore, mutant TCR can be designed to
enhance affinity for the target MHC complex thus endow-
ing genetically modified T cells with greater tumor avidity
[42]. Finally, a chimeric T cell receptor comprised of an
extracellular antibody binding a surface tumor target anti-
gen coupled with intracellular signaling sequence (e.g.
TCR-zeta) can also be used to endow peripheral blood
lymphocytes with novel specificity [43,44].
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4. Genetic modification as a safeguard mechanism, to facilitate 
tracking and to enhance function
Other advantages associated with the use of genetically
modified T cells for adoptive therapy over vaccination
strategies are the capacity to eradicate T cells in vivo
through the use of drug-inducible 'suicide' genes and to
track these cells using genetic markers [45,46]. Although T
cells transduced with early generations of the inducible
HSV thymidine kinase gene were effectively eliminated in
vivo following ganciclovir administration, they also suf-
fered from early peripheral clearance due to the induction
of an endogenous anti – HSV-TK response[47]. Later gen-
erations of suicide genes utilizing Fas-Fas dimerization
technology address this problem and are being evaluated
in pre-clinical studies [48]. T cell tracking with a unique
genetic marker, such as a resistance gene for example per-
mits unequivocal evaluation of T cell frequency, and
localization if a feasible biopsy can be obtained from
tumor or lymph node sites. Such cells can be analyzed
using fluorescent-tagged riboprobes corresponding to the
unique transgene or quantitative real-time PCR [45].
Dynamic T cell tracking in vivo, without the requirement
for serial biopsies may be achieved using TK-transduced T
cells that are designed to preferentially sequester radiola-
belled substrate and can then be analyzed by PET imaging
[49].

Genetic modification may also be used to enhance T cell
function, for example, by conferring a helper-independ-
ent phenotype to antigen-specific CD8+ T cells with the
use of a chimeric IL-2 receptor [50] or restoration of CD28
expression [51] enabling antigen-driven autocrine prolif-
eration.

5. Immune escape
Because T cells are isolated and expanded ex vivo, the clin-
ical and immune state of the patient does not necessarily
affect the ability to augment an immune response.
Patients whose immune system may be crippled by
tumor-suppressive factors or several rounds of chemo-
therapy and radiation may not be able to mount a robust
immune response following vaccination. In these
patients, ex vivo manipulation provides a means of isolat-
ing tumor-reactive T cells and expanding such cells for
adoptive therapy. The mechanisms responsible for inhib-
iting an afferent response may limit the capacity of vac-
cines to generate functional T cells of sufficient
magnitude. Ex vivo manipulation of T cells following
exposure to immunomodulatory cytokines or selective
depletion of regulatory cells (e.g. CD4, CD25+ T cells)
may facilitate the isolation and expansion of tumor-reac-
tive T cells for adoptive therapy. While it is possible to
delete regulatory cells in vivo or co-administer immu-
nomodulatory cytokines to augment a functional vaccine-
elicited response [52,53], such strategies represent greater

regulatory hurdles and can lead to unwanted effects. For
example, the use of IL-2 to expand effector cells during the
afferent phase of vaccine therapy can also lead to expan-
sion of regulatory T cells in vivo [54] and depletion of reg-
ulatory T cells using anti-CD25 antibody can lead to the
elimination of potentially beneficial CD25+ activated T
cells.

6. Feasibility considerations
The issue addressed here is the potential for adoptive T
cell therapy to become a clinically significant modality
that participates in the standard treatment of patients with
malignant disease. The isolation and expansion of anti-
gen-specific T cells is time and labor intensive, requires
infrastructure support to cultivate and qualify T cell prod-
ucts and can be prohibitively expensive in its current
experimental phase. Isolation and expansion of T cells for
adoptive therapy can take 4–16 weeks and for patients
with progressive disease, this may not be feasible. How-
ever, adoptive therapy can achieve T cell frequencies that
are equal and often greater than that possible over the
same period of time for patients receiving vaccines since
in vivo expansion may also require several weeks and
repeated boost administrations. Unlike vaccine reagents,
T cell products cannot be manufactured and distributed
easily; cryopreservation, storage, transport and reconstitu-
tion / thawing are problematic with a cell product. Vac-
cines can be made readily available in some forms to
many institutions thus facilitating recruitment for the
large-scale Phase II and Phase III studies needed to dem-
onstrate efficacy and superiority over conventional
modalities. In many ways, vaccination strategies have and
are likely to gain regulatory approval more readily. Limi-
tations to large-scale production of antigen-specific effec-
tors ex vivo are being addressed. Most of these advances
are related to adaptation of closed bag systems to elimi-
nate the labor and inefficiencies of handling large num-
bers of cells, and to the design of artificial antigen-
presenting cells to eliminate variability and reduce quality
control concerns associated with in vitro cultured autolo-
gous APCs [9]. Advances in the isolation of antigen-spe-
cific T cells by cell sorting or immunomagnetic bead
selection that can expedite the process, specialized rea-
gents and culture vessels that facilitate expansion and stor-
age and quality control measures that ensure product
fidelity are currently being developed and will decrease
many of these cost-related, and logistical issues.

Conclusion
Our current understanding of the requirements for suc-
cessful T cell-based therapy in the treatment of patients
with solid tumors remains largely undeveloped Advances
in this field will require judicious, step-wise translation of
promising pre-clinical strategies into carefully designed
clinical trials with discrete immunologic endpoints. This
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would be well-served by immunologic monitoring that
encompasses not only a characterization of the biologic
behavior of adoptively transferred or vaccine-elicited T
cells in vivo but also a comprehensive analysis of immune
escape mechanisms, especially those that develop with
more and more effective strategies. Rather than claim clin-
ical superiority of one modality over that of another on
the basis of one or two early phase studies, it would be
more instructive to exploit the individual advantages of
vaccine or adoptive T cell therapy in designing clinical tri-
als. Vaccine reagents can be easily produced and made
readily available for widespread administration. This is
particularly advantageous for later phase studies and mul-
tivalent approaches (especially where the antigen specifi-
city is not known). Effectors may be more easily elicited in
vivo; however, control over their desired features is less
and the the burden for sophisticated immunologic moni-
toring much greater for vaccine strategies, where identifi-
cation of T cells in vivo exhibiting such properties and
correlating their presence with antitumor activity will be
crucial. The implementation of adoptive therapy however
belies its experimentalistic origins: in cases where a popu-
lation of T cells of desired magnitude with defined pheno-
typic and functional properties is required, for example, to
validate findings arising from vaccine studies or provide
proof of principle for hypotheses based on pre-clinical
studies, this represents the optimal strategy. In addition to
extending exploratory research, there are translational
opportunities afforded to the ability to manipulate effec-
tors ex vivo that are otherwise not available to vaccines. In
the end however, the difference in these two modalities
can be considered largely arbitrary and there are comple-
mentary if not synergistic strategies utilizing both vaccina-
tion and adoptive T cell therapy [55] that will be essential
for addressing challenges in cancer immunotherapy.
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