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Abstract

Background: Chikungunya fever (CHIKF) is a recently re-emerged mosquito transmitted viral disease caused by the
chikungunya virus (CHIKV), an Alphavirus belonging to the family Togaviridae. Infection of humans with CHIKV can
result in CHIKF of variable severity, although the factors mediating disease severity remain poorly defined.

Methods: White blood cells were isolated from blood samples collected during the 2009-2010 CHIKF outbreak in
Thailand. Clinical presentation and viral load data were used to classify samples into three groups, namely non
chikungunya fever (non-CHIKF), mild CHIKF, and severe CHIKF. Five samples from each group were analyzed for
protein expression by GeLC-MS/MS.

Results: CHIKV proteins (structural and non-structural) were found only in CHIKF samples. A total of 3505 human
proteins were identified, with 68 proteins only present in non-CHIKF samples. A total of 240 proteins were found
only in CHIKF samples, of which 65 and 46 were found only in mild and severe CHIKF samples respectively. Proteins
with altered expression mapped predominantly to cellular signaling pathways (including toll-like receptor and
PI3K-Akt signaling) although many other processes showed altered expression as a result of CHIKV infection. Expression
of proteins consistent with the activation of the inflammasome was detected, and quantitation of (pro)-caspase 1 at
the protein and RNA levels showed an association with disease severity.

Conclusions: This study confirms the infection of at least a component of white blood cells by CHIKV, and shows that
CHIKV infection results in activation of the inflammasome in a manner that is associated with disease severity.
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Background
Chikungunya fever (CHIKF) is a mosquito transmitted
viral disease caused by the chikungunya virus (CHIKV), an
Alphavirus of the family Togaviridae that is transmitted by
mosquitoes of the Aedes genus, principally A. aegypti and
A. albopictus [1]. The genome is a positive sense single
stranded RNA of approximately 11.8 kb that encodes two
open reading frames. The first open reading frame encodes
the non-structural proteins (nsP1 to nsP4) required for
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replication of the virus, while the second open reading
frame encodes the structural proteins (C, E1 and E2) and
two small peptides (E3 and 6 k) of uncertain function [2].
Although CHIKV has long been circulating at low levels

in many African and Asian countries [3,4], CHIKV recently
explosively re-emerged in many countries around the
Indian Ocean, notably in India, leading to millions of cases
of infection [2,5], and autochthonous transmission was
reported in Italy [6] and France [7] and more recently in
the Caribbean [8]. CHIKF is normally characterized by
fever, headache, rash, myalgia and arthralgia which resolves
in a few days or weeks, but occasionally the disease is asso-
ciated with prolonged (months or years) arthralgia and
neurological complications [2,5].
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A number of cellular targets of CHIKV have been im-
plicated in the disease process including epithelial, endo-
thelial and fibroblast cells [9], muscle satellite cells [10],
cells of the joint synovium [11] as well as immune cells
such as monocytes [12] and macrophages [13], and the
virus is believed to enter cells through a process of receptor
mediated [14] clathrin-independent but Eps-15 dependent
endocytosis [15].
CHIKV infection of mammalian cells results in the

induction of apoptosis [16-18], a process that may facili-
tate the spread of the virus to other tissues or organs
while evading immune clearance through the presence
of the virus in apoptotic blebs [16], although the onset
of apoptosis is delayed by the induction of autophagy in
the host cell [19]. The induction of autophagy is believed
to facilitate virus replication [20,21], as has been pro-
posed with a number of other viruses including dengue
virus [22,23]. The induction of these and other pathways
is associated with the altered expression of a large num-
ber of proteins, and several studies have investigated
alteration in the cellular proteome in either cell culture
or in an animal model system [24-26]. In the earliest
study, Dhanwani and colleagues [25] used a mouse
model system and 2D-gel electrophoresis and identified
35 differentially expressed proteins in liver and 15 in
brain, with proteins predominantly belonging to stress,
inflammation, apoptosis and energy metabolism. Using a
similar methodology Thio and colleagues [26] identified
50 differentially regulated proteins predominantly asso-
ciated with mRNA processing, translation and energy
production and cellular metabolism in CHIKV infected
WRL-68 (human hepatic Hela derived) cells. In a study
using the more sensitive technique of GeLC-MS/MS,
Abere and colleagues [24] identified some 90 differen-
tially regulated proteins of diverse cellular pathways.
However, none of these studies have investigated the
changes occurring in clinical materials. In this study we
determined alterations in the proteome of white blood
cells isolated from acute phase chikungunya patients
suffering from different disease severities.

Methods
Ethics statement
This study was approved by the Mahidol University Insti-
tutional Review Board (COA.NO.MU-IRB 2010/251.3018)
and by the Ethics Review Board of Pang Nga Hospital
and written informed consent was obtained from all
participants.

Sample collection and preparation
Patients were classified into 3 groups which were non-
chikungunya fever (non CHIKF), mild CHIKF and severe
CHIKF as previously described and includes samples from
patients described previously [27]. After centrifugation to
obtain plasma, red blood cells were eliminated by using
red cell lysis buffer. White blood cell (WBCs) pellets were
collected after centrifugation and the supernatant removed
before storage at -80°C. For protein isolation cell pellets
were resuspended in sterile distilled water and sonicated
six times for five minutes and proteins precipitated with
acetone before centrifugation at 9,200 × g for 30 minutes.
The pellets were resuspended in 0.5% SDS and the protein
concentration was determined using Bradford reagent
(Bio-Rad, Hercules, CA). A total of 20 μg of protein from
5 samples per group (non CHIKF), mild CHIKF and
severe CHIKF) were separated by 12.5% SDS-PAGE. Gels
were stained with colloidal coomassie blue and each lane
was cut into 13 slices according to the size of the sepa-
rated proteins. Each gel slice was cut into 1 mm3 and the
proteins inside the gel plugs were subjected to tryptic
digestion as previously described [24].

LC MS/MS
After tryptic digestion, the dry samples were dissolved in
12 μl/well of 0.1% formic acid in LC-MS grade water
and analysis of tryptic peptides was performed using a
SYNAPTTM HDMS mass spectrometer (Waters Corp.,
Manchester, UK). For all measurements, the mass spec-
trometer was operated in the V-mode of analysis with a
resolution of at least 10,000 full-width half-maximum.
All analyses were performed using the positive nanoelec-
trospray ion mode. The time-of-flight analyzer of the
mass spectrometer was externally calibrated with [Glu1]
fibrinopeptide B from m/z 50 to 1600 with acquisition
lock mass corrected using the monoisotopic mass of the
doubly charged precursor of [Glu1]fibrinopeptide B. The
reference sprayer was sampled with a frequency of 20 sec.
Accurate mass LC-MS data were acquired with data direct
acquisition mode. The energy of trap was set at a collision
energy of 6 V. In transfer collision energy control, low
energy was set at 4 V. The quadrupole mass analyzer
was adjusted such that ions from m/z 300 to 1800 were
efficiently transmitted. The MS\MS survey is over range
50 to 1990 Da and scan time was 0.5 sec.

Protein quantitation and identification
For proteins quantitation, DeCyder MS Differential Ana-
lysis software (DeCyderMS, GE Healthcare) was used and
data from DeCyderMS were submitted to database search
using the Mascot software (Matrix Science, London, UK)
as described previously [24]. The data was searched against
the NCBI database for protein identification. Database
interrogation was; taxonomy (Homo sapiens or Alpha-
virus); enzyme (trypsin); variable modifications (carba-
midomethyl, oxidation of methionine residues); mass
values (monoisotopic); protein mass (unrestricted); pep-
tide mass tolerance (1.2 Da); fragment mass tolerance
(±0.6 Da), peptide charge state (1+, 2+ and 3+) and max
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missed cleavages (3). The maximum value of each group
was used to determine the presence or absence of each
identified protein.

Quantitative real time PCR
Total RNA was extracted from white blood cells ob-
tained from non-CHIKF febrile disease (n = 2), mild
CHIKF (n = 3) and severe CHIKF (n = 2) patients using
TRI Reagent® (Molecular Research Center, Inc., Cincinnati,
OH). Samples were treated with Dnase I (Promaga, Madi-
son, WI) to remove genomic DNA before cDNA gener-
ation using oligo-dT (Bio Basic, Inc.) and Improm-II™
reverse transcriptase enzyme (Promega). The generated
cDNA was use as template for quantitative real time PCR
performed based on the SYBR system using thekAPA
SYBR® FAST qPCRkit 2× Master Mix (Kapa Biosystems
Inc., Woburn, MA) in a Mastercycler® ep realplex real-
time PCR system (Eppendorf AG, Hamburg, Germany).
Synthesis was carried out at an initial 95°C for 3 min
followed by denaturation at 95°C for 10 seconds,
annealing at 60°c for 30 seconds and extention at 72°C
for 20 secs for 40 cycle using primers for caspase 1
(caspase-1fw: 5′-ACCAGGAAACGGAAACAGAGTG
GT-3′ and (caspase-1rv: 5′-CTGCCCACAGACATT-
CATACA-3′) and actin (Actinfw :5′-ACCAACTGG-
GACGACATGGAGAAA-3′) and (Actinrv: 5′-TAGC
ACAGCCTGGATAGCAACGTA-3′). The relative ex-
pression levels of caspase 1 mRNA was normalized to
actin using the comparative CT method (2-ΔCT method).
The fold change in expression between the non-CHIKF
patients and CHIKF patients was calculated as 2-ΔCT

(CHIKF patients)/ 2-ΔCT (non-CHIKF patients).

Results and discussion
Whole white blood cells were collected from 5 febrile
non-CHIKF patients, 5 mild and 5 severe CHIKF patients.
Figure 1 Hierarchical clustering analysis of differentially expressed Al
against the Mascot Alphavirus database. CHIKV proteins were identified only e
in non CHIKF (NC). Each lane represents one sample from one patient. The co
Samples were collected from a subset of patients exam-
ined for viral load by qRT-PCR as previously reported
[27]. The samples used in this study came from patients
with viral loads of log10 8.6 +/- 1.17 and log10 8.9 +/-
1.17 for mild and severe respectively, which was in
close agreement with the values of log10 8.3 +/- 1.1 and
log10 8.53 +/- 0.9 for mild and severe CHIKV patients
respectively as previously reported [27].
Proteins were isolated and separated by one-dimension

12.5% SDS-PAGE and each lane was cut into 13 slices
(See Additional file 1: Figure S1). The individual slices
were diced into 1 mm3 portions and proteins subjected to
in gel tryptic digestion. The resulting peptides were ana-
lyzed by MS/MS and the resulting data was analyzed with
DeCyder MS Differential Analysis software and submitted
to database search using the Mascot program.
The data was initially searched against the Mascot

Alphavirus database and multiple matches to Alphavirus
polyprotein and individual structural and non-structural
proteins were detected. The data was further sub-selected
to highlight matches to CHIKV proteins as shown in
Figure 1, and, importantly, matches were limited to cases
of mild and severe CHIKF. As shown in Additional file 2
peptide mass matches were found to peptides for all four
non-structural proteins. The matches with non-structural
proteins supports that at least a subset of the cells are per-
missive for viral replication as non-structural proteins do
not comprise any part of the CHIKV virion, and addition-
ally supports studies that have shown monocytes to be a
target cell for CHIKV [12].
A Mascot search of the Homo sapiens database re-

sulted in a total of 12,467 peptides which mapped to
3505 unique proteins. Of these 3505 proteins, 514 were
present in all samples analyzed, and no protein was
found to be differentially regulated with 100% concord-
ance (i.e. down regulated in all non-CHIKF samples and
phavirus proteins. Peptides identified after GeLC-MS/MS were searched
ither in mild CHIKF (MC) or severe CHIKF (SC) samples but not in detected
lor scale is shown by the bar at the top.
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up regulated in all CHIKF samples or vice versa). In
total 2886 proteins were present in at least one sample
in each of the three sample groups.
Using the criteria of not present in all non-CHIKF

samples and present in at least 1 CHIKF sample, at total
of 240 proteins were identified, with 65 being detected
only in mild CHIKF and 46 only in severe CHIKF sam-
ples (Figure 2). Using the criteria of absent in all CHIKF
samples and present in at least 1 non-CHIKF sample, 68
proteins were identified (Figure 2).
The 68 proteins found only in non-CHIKF cases are

proteins that are down-regulated in response to CHIKF
(Additional file 3) as compared to non-CHIKF fever
patients. These include extracellular matrix and cyto-
skeleton associated proteins (collagen alpha-1, laminin
subunit alpha-3, protocadherin, WAS protein) as well as
those involved in signal transduction (mitogen-activated
proteinkinase 8, interacting protein 1, serine/threonine-
proteinkinase Sgk1 isoform 4, Voltage dependent calcium
channel gamma 3 subunit) and mRNA processing and
regulation (60S ribosomal protein L36, DEAD box poly-
peptide 17, kIAA0020). Down regulation of mRNA pro-
cessing and regulation proteins in infected cells would
be consistent with studies that have shown that CHIKV
infection results in both transcriptional and translational
shut off through the action of either nsP2 or CHIKV cap-
sid protein [28,29] and down regulation of extracellular
matrix proteins could occur as a result of either cell
remodeling or alteration in cellular migration.
Many of the 240 proteins identified only in the in-

fected samples are poorly or incompletely characterized
(Additional file 4). Categorization of the proteins by
biological process using the Software Tool for Rapid
Figure 2 Summary of significant proteins of WBC samples.
Peptides identified after GeLC-MS/MS were searched against the
Mascot Homo sapiens database. A total of 3505 proteins were
indentified, with 68, 65 and 46 proteins detected only in non CHIKF,
mild CHIKF and severe CHIKF, respectively. A total of 240 proteins
were identified in CHIKF samples.
Annotation of Proteins (STRAP) bioinformatics suite
[30] showed that while the majority of proteins were
classed under “regulation” (24%) and “cellular processes”
(27%), other proteins mapped to “interaction with cells
and organisms” (9%), response to stimulus (7%) and im-
mune system (3%), all of which would be consistent with a
response to viral infection (Figure 3 and Additional file 5).
Analysis by cellular component showed that the proteins
identified mapped to 14 different components, includ-
ing cytoplasm, nucleus, cytoskeleton, plasma mem-
brane, endosome and peroxisome (Figure 3). A number
of proteins link to the processes of cytoskeleton remod-
eling, cell adhesion, migration, proliferation and vesicle
transport, including Plexin-B1, PAK1, Abelson tyrosine-
proteinkinase 2, tensin-3, supervillin, WASH complex sub-
unit FAM21A,kinesin-like proteinkIF16B, Dynamin-1
and spartin, suggesting that both cell motility and
vesicle trafficking are upregulated in response to infec-
tion. Alteration of cytoskeletal proteins of lymphocytes
has been reported as a fever associated phenomenon, as
has the activation of the ERK1/2 pathway which was also
found up regulated in this study [31]. Increases in vesicle
trafficking could be associated with increased vesicle for-
mation as a result of increased endocytosis or phagocyt-
osis. Given that CHIKV infection induces apoptosis
[16-18] increased phagocytic scavenging of apoptotic
bodies is likely to occur.
Surprisingly few proteins mapped to either the apop-

tosis or autophagy pathways, both of which have been
shown to be induced in response to CHIKV infection
[16-21]. This result either suggests that these processes
are less prominent in actual patient infections that cell
culture results would suggest, or that the control, febrile
non-CHIKV infection patients have similar processes
ongoing and so the analysis does not detect these as dif-
ferentially regulated.
A total of 34 (14%) of the 240 proteins up-regulated

in infected samples were enzymes which mapped to 27
different enzymatic processes. In particular multiple
enzymes associated with nucleotide synthesis (purine
and pyrimidine metabolism), amino acid synthesis (pyru-
vate, nitrogen, D-glutamine/glutamate, arginine/proline,
alanine/aspartate/glutamate metabolism) and energy
production (oxidative phosphorylation, TCA cycle, gly-
colysis/glucogenesis) were found to be up-regulated.
Up-regulation of purine metabolism has recently been
reported in Influenza A infection of human airway epi-
thelia cells [32] and remodeling of these and other
pathways to facilitate virus production would be con-
sistent with a response to viral infection.
As noted previously, 65 proteins were found only in mild

CHIKF cases and a further 46 were found only in severe
CHIKF patients. Protein ontology analysis showed remark-
ably little difference in either the protein biological function



Figure 3 Pie charts of biological process and cellular component annotation of proteins up-regulated in CHIKF samples. The biological
process (A) and cellular component annotation (B) of 240 proteins that were up-regulated in CHIKF samples were analyzed by STRAP software.
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or cellular component (Additional file 6: Figure S2). We
observed that four calcium regulated genes (KCNMB4,
CABIN1, G6B and SPTBN1) were found over-expressed
only in mild cases. A further 5 calcium regulated genes
(S110A12, CXCR1, ITPR2, PPP3CC and MYLK) were
found in both mild and severe CHIKF samples, but that
none were found only in severe cases. Calcium (Ca2+) is
a well known regulator of a number of cellular processes,
and while the majority of Ca2+ is sequestered, its release
can be mediated by inositol phosphates [33] and the re-
ceptor for inositol 1,4,5-trisphosphate was found up-
regulated in both mild and severe cases, suggesting that
calcium mediated signal transduction may play a signifi-
cant role in CHIKV infection.
Overall however, very little clear differences were seen

in the proteins uniquely expressed by either mild or severe
cases, given that both the functional and component
distribution of the unique proteins were so similar. This
could suggest that the course of the disease (mild or
Figure 4 Quantitation of caspase 1 expression. The relative expression
data (after normalization) in the gel slice centered on 45 kDa [as shown in
were determined by real time RT-PCR.
severe) is initiated very early in the infection process
and that similar but distinct processes are initiated that
lead to the distinctive patient disease courses. This is
further supported by the much larger number of pro-
teins that are shared between control and mild and
control and severe (Figure 2). The 190 proteins that are
expressed in both control and mild represent proteins
that are down regulated in severe CHIKF, and similarly
the 121 proteins shared between control and severe are
proteins that are down regulated in mild CHIKF cases.
The proteins uniquely up-regulated in mild or severe
cases have potential for future development as bio-
markers to predict the course of the disease.
Phosphatidylinositol-4,5-bisphosphate 3-kinase, a class

1 phosphatidylinositol 3kinase (PI3K) was found up reg-
ulated in mild and severe cases. Phosphatidylinositol-
4,5-bisphosphate 3-kinase regulates a number of cellular
processes [34] and several other proteins detected as
up-regulated also mapped to these pathways, including
level of pro-caspase 1 protein was determined from peptide intensity
Additional file 1: Figure S1], while expression levels of caspase 1 mRNA
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focal adhesion (Rap guanine nucleotide exchange factor
(GEF) 1, myosin light chainkinase, PAK1; p21 protein
(Cdc42/Rac)-activatedkinase 1 and MAPK10; mitogen-acti-
vated proteinkinase 10, B-raf, talin), T cell receptor signaling
(PAK1, PPP3CC and Bcl10), insulin signaling pathway
(RAPGEF1, PCK1, MAPK10 and PYGL, B-Raf) and osteo-
clast differentiation (MCF4, PPP3CC and MAPK10).
Other pathways with two other proteins up-regulated
include ErbB signaling, HIF signaling, PI3K-AKT signal-
ing, regulation of actin cytoskeleton, Toll like receptor
signaling, Natural killer cell mediated cytotoxicity, B cell
receptor signaling and chemokine signaling. All of these
pathways are consistent with a response to viral infection.
Toll-like receptor (TLR) 4 was found to be up-

regulated in some CHIKF samples. TLR4 is a cell surface
expressed [35] pattern recognition molecule that is
expressed by monocytes [36]. While TLR4 activation has
been primarily characterized in response to LPS, it has
also been associated with viral infection [37,38]. TLR4
activation results in the NF-κB mediated up-regulation
of pro-IL-1β and pro-IL-18 which are subsequently
processed by the inflammasome to the mature inflam-
matory cytokines IL-Iβ and IL-18 by caspase 1 [39].
There are several different inflammasomes and TLR4
activation leads to the activation of the Nlrp3 inflamma-
some [39], and NLRP3 was observed to be up-regulated
in mild CHIKV cases. A peptide corresponding to cas-
pase 1 was detected in all samples, in different molecular
weight gel slices. Analysis of this peptide intensity in the
gel slices corresponding to the full length procaspase 1
showed statistically significant differences between the
intensity of the peptide between mild CHIKF and severe
CHIKF (Figure 4). Using independent samples (2 non-
CHIKF, 3 mild CHIKF and 2 severe CHIKF) the expres-
sion of the caspase 1 message was quantitated by real
time RT-PCR. Results (Figure 4) showed a significant
difference in the expression of caspase 1 mRNA between
mild and severe CHIKF, which support activation of the
inflammasome in response to CHIKV infection.
Evidence is contradictory regarding the levels of IL-Iβ

in CHIKV patients. While in an earlier study reported
only low levels of IL-Iβ in both mild and severe cases of
CHIKF [27], others have reported significantly increased
levels of IL-Iβ in severe cases of CHIKF [40], which
would be consistent with the results of this study.

Conclusions
As this study was undertaken on limited clinical material
(white blood cells from acute fever patients), we were
not able to confirm the results seen here in western ana-
lysis. The small sample size (n = 5 for each condition) may
additionally result in overestimation of the significance of
the results [41]. Trying to re-capitulate the system using
infection of purified white blood cells from healthy
controls may offer some insights, but it would also tend to
exclude proteins whose regulation depend upon complex
factors encountered only in vivo as previously noted by
others [12]. Despite this significant limitation, the results
reported here support the direct infection of at least a
sub-set of white blood cells, and suggest that further
investigation of inflammasome activation and the presence
of IL-1β and IL-18 in CHIKF patients is warranted.
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Additional file 1: Figure S1. SDS-PAGE of WBC samples. A total of 20 μg
of total protein of each of 5 samples of groups non CHIKF (NC), mild CHIKF
(MC) and severe CHIKF (SC) were separated by 12.5% SDS-PAGE. Gels were
stained with colloidal coomassie blue (A, B) and each lane was cut into 13
groups according to size of separated proteins (C, D). Each slice of gel was
cut into 1 mm3 and these gel plugs were subjected to tryptic digestion.

Additional file 2: Full list of structural and non-structural CHIKV
peptides detected in CHIKF patients and control (non-CHIKF)
patients.

Additional file 3: Full list of proteins down regulated in mild and
severe CHIKF samples.

Additional file 4: Full list of proteins up-regulated in mild and se-
vere CHIKF samples.

Additional file 5: Full list of proteins up-regulated in CHIKF patients
identified by STRAP analysis as being involved with “Interaction
with cells and organisms” (tab 1), “Response to stimulus” (tab 2)
and “Immune system” (tab 3).

Additional file 6: Figure S2. Pie charts of biological process and cellular
component annotation of proteins up-regulated in only mild or severe CHIKF
samples. A total of 65 or 46 proteins were up-regulated only in mild or severe
CHIKF samples, respectively. The STRAP software was used to annotate these
proteins into the biological process (A, C) and cellular component (B, D).
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