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Abstract

in gastric progression remain unclear.

reversed all the effects of miR-362.

Background: According to cancer-related microRNA (miRNA) expression microarray research available in public
databases, miR-362 expression is elevated in gastric cancer. However, the expression and biological role of miR-362

Methods: miR-362 expression levels in gastric cancer tissues and cell lines were determined using real-time PCR.
The roles of miR-362, in promoting gastric cancer cell proliferation and apoptosis resistance, were assessed by
different biological assays, such as colony assay, flow cytometry and TUNEL assay. The effect of miR-362 on NF-kB
activation was investigated using the luciferase reporter assay, fluorescent immunostaining.

Results: MiR-362 overexpression induced cell proliferation, colony formation, and resistance to cisplatin-induced
apoptosis in BGC-823 and SGC-7901 gastric cancer cells. MiR-362 increased NF-kB activity and relative mRNA
expression of NF-kB-regulated genes, and induced nuclear translocation of p65. Expression of the tumor suppressor
CYLD was inhibited by miR-362 in gastric cancer cells; miR-362 levels were inversely correlated with CYLD
expression in gastric cancer tissue. MiR-362 downregulated CYLD expression by binding its 3" untranslated region.
NF-kB activation was mechanistically associated with siRNA-mediated downregulation of CYLD. MiR-362 inhibitor

Conclusion: The results suggest that miR-362 plays an important role in repressing the tumor suppressor CYLD and
present a novel mechanism of miRNA-mediated NF-kB activation in gastric cancer.
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Background

Gastric cancer is the fourth most common cancer and
the second leading cause of cancer death worldwide [1].
Surgery is the main treatment for operable gastric cancer;
however, recurrence and metastasis are very common
[2,3]. The combination of surgery and chemotherapy has
recently emerged as an effective strategy for gastric cancer
therapy, improving disease-free survival and reducing the
risk of recurrence and metastasis as compared with
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surgery only in multiple trials [4,5]. However, clinical
responses to chemotherapy vary greatly, which leads to
different curative effects for gastric cancer patients [6]. Al-
though anti-cancer drugs generally kill tumor cells by
inducing apoptosis, recent advances have shown that most
solid tumors are generally or particularly resistant to
chemotherapy-induced apoptosis [7-9]. Therefore, the
chemotherapy drug susceptibility of cancer cells with one
or more gene mutations and apoptosis pathway defects
directly influences the curative effects.

NF-«B is constitutively elevated in many human tu-
mors, both hematological and solid [10], including gas-
tric cancer [11]. Many studies have shown that activated
NE-«B signaling is highly associated with tumorigenesis,
tumor progression, and therapy resistance. It plays an
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important role in oncogenesis due to its anti-apoptosis
and pro-proliferation activities [12-15]. Many observations
indicate that NF-kB suppresses apoptosis through tran-
scriptional regulation of the expression of anti-apoptotic
genes, including TRAFI, TRAF2, c-IAPI, and c-IAP2,
which blocks caspase-8 activation, and the Bcl-2 homo-
logues A1/Bfl-1, Bcl-xL, IEX-1, and XIAP [12]. Over the
years, much progress has been made in the study of the
regulatory mechanisms of NF-«B signaling. Ubiquitin modifi-
cation has been proven to play a crucial role in NF-«B sig-
naling activation [16-18]. Conversely, ubiquitin deconjugation
mediated by deubiquitinases such as CYLD negatively reg-
ulates NF-«B signaling [19,20]. CYLD abrogates the acti-
vation of NF-«B signaling via its deubiquitinating activity
on multiple NF-kB signaling mediators, including TRAF2,
TRAF6, RIP1, TAK1, NEMO, and BCL3 [21-23]. Further-
more, multiple studies have demonstrated that CYLD is a
tumor suppressor associated with the inhibition of cell
proliferation and induction of apoptosis [24,25]. In hepa-
tocellular carcinoma cells, CYLD downregulation leads to
apoptosis resistance [26].

It has been demonstrated that aberrant microRNA
(miRNA) expression is associated with various diseases
and cancers [27]. Recent evidence revealed that miRNA
expression significantly correlates with the progression
and prognosis of gastric cancer [28]. In gastric cancer pa-
tients, upregulated miR-20b, miR-142-5p, miR-150, and
miR-375, and decreased miR-124a, miR-125a-5p, miR-
146a, and miR-45 were associated with shorter survival
times [29]. Several miRNAs appear to predict or affect the
response to chemotherapy. MiR-15b or miR-16 overexpres-
sion increases gastric cancer cell sensitivity to vincristine,
whereas miR-15b or miR-16 downregulation increases gas-
tric cell sensitivity to related drugs [30].

From public databases and datasets on gastric cancer—
related miRNA expression microarray, we found that
miR-362 is upregulated in gastric cancer. Though miR-
362 was reported to be upregulated in acral melanomas
as compared to non-acral melanomas [31], the function
and mechanism of miR-362 in gastic cancer remains un-
known. In the present study, we found that miR-362 was
significantly associated with cell proliferation and apop-
tosis resistance of gastric cancer. Moreover, miR-362
activated NF-«B signaling through directly targeting of
the 3" untranslated region (3'-UTR) and suppression of
CYLD in human gastric cancer cells. Thus, our results
suggest that miR-362 might play an important role in
promoting the development and progression of gastric
cancer.

Materials and methods

Cell culture

Primary normal human gastric epithelial cells (NGEC)
were established from gastric biopsy specimens obtained
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from upper gastrointestinal endoscopy and cultured as de-
scribed previously [32]. The gastric cancer cell lines SGC-
7901, BGC-823, HGC-27, MKN-28, and MGC-803 were
maintained in DMEM (Invitrogen, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (HyClone,
Logan, UT, USA).

Tissue specimens

Ten paired gastric tumor and adjacent non-tumor tissues,
and another 10 freshly collected gastric cancer tissues
were collected and histopathologically diagnosed at the
Departments of Gastrointestinal Surgery and Pathology,
The First Affiliated Hospital, Sun Yat-sen University. Pa-
tient consent and Institutional Research Ethics Committee
approval were obtained prior to the use of these clinical
materials for research purposes.

Plasmids, siRNA, and transfection

The gene for human miR-362 was PCR-amplified from
genomic DNA and cloned into a pMSCV-puro retroviral
vector (Clontech, Mountain View, CA). The primers used
were as follows: miR-362-up, 5'-GCCAGATCTACATGC
TTGGTCCCTACCC-3" and miR-362-dn, 5-GCCCTC
GAGCAGGTGCTGGATGTATTTGG-3'. The region of
human CYLD 3'-UTR, generated by PCR amplification
of SGC-7901 cell DNA, was cloned into pEGFP-C1
(Clontech, Mountain View, CA, USA) and pGL3 vectors
(Promega, Madison, WI, USA). The primers used (forward
and reverse) were as follows: CYLD-3'UTR-GFP-up,
5-GCCCTCGAGCTTGACTCCGTTCCCCTTCAGA
C-3’; CYLD-3'UTR-GFP-dn, 5'-GCCGGATCCAAC
CAAGGGCAGTTGAGTC-3" and CYLD-3'UTR-luc-up,
5'-GCCCCGCGGCTCCGTTCCCCTTCAGAC-3’; CYLD-
3'UTR-luc-dn, 5'-GCCCTGCAGAACCAAGGGCAGTTG
AGTC-3". The siRNAs used were CYLD siRNA#1: 5'-
GUACCGAAGGGAAGUAUAGUU-3" and CYLD siRNA#2:
5'-CGCGCUGUAACUCUUUAGCAUU-3". MiR-362 in-
hibitor and negative control were purchased from RiboBio
(Guangzhou, Guangdong, China). Plasmid and siRNA trans-
fection were performed using Lipofectamine 2000 (Invi-
trogen) according to the manufacturer’s instructions.

Western blotting

Western blotting was performed according to standard
methods as previously described [33] using anti-p65, anti-
p84, anti-GFP (Cell Signaling, Danvers, MA, USA), and
anti-CYLD antibodies (Abcam, Cambridge, MA, USA).
The membranes were stripped and reprobed with anti—a-
tubulin antibody (Sigma-Aldrich, Saint Louis, MO, USA)
as a loading control.

RNA extraction and real-time quantitative PCR
Total miRNA from cultured cells and freshly collected
gastric tissues was extracted using a mirVana miRNA
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Isolation Kit (Ambion, Austin, TX, USA) according to
the manufacturer’s instructions. cDNA was synthesized
from 10 ng total RNA using a TagMan miRNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA,
USA); Expression levels of miR-362 were quantified using
a miRNA-specific TagMan MiRNA Assay Kit (Applied
Biosystems). MiRNA expression was defined based on the
threshold cycle (Ct); relative expression levels were de-
rived using 271t of mik-362) — (Ct of UO)] 4 fier normalization
to reference U6 small nuclear RNA expression.

Total RNA was extracted from cells using TRIzol
(Invitrogen) according to the manufacturer’s instruc-
tions. RNA (2 pg) from each sample was used for cDNA
synthesis primed with random hexamers. The primers
(forward and reverse) used for gene expression were:
CCNDI, 5 -TCCTCTCCAAAATGCCAGAG-3" and 5'-
GGCGGATTGGAAATGAACTT-3"; MYC, 5 -TCAAG
AGGCGAACACACAAC -3’ and 5'-GGCCTTTTCATT
GTTTTCCA-3’; BCL2L1, 5'-TTCAGTGACCTGACAT
CCCA-3" and 5'-CTGCTGCATTGTTCCCATAG-3";
FLIP, 5'-TTTCTTTGCCTCCATCTTGG-3" and 5'-GGG
GGAGTTCGTCCTGTC-3'; XIAP, 5'-GACCCTCCCCT
TGGACC-3" and 5-CTGTTAAAAGTCATCTTCTCT
TGAAA-3’; TNE, 5'-CCAGGCAGTCAGATCATCTTC
TC-3" and 5'-AGCTGGTTATCTCTCAGCTCCAC-3’;
IL-8, 5'-TGCCAAGGAGTGCTAAAG-3" and 5'-CTCCA
CAACCCTCTGCAC-3; COX-2, 5'-GGCGCTCAGC
CATACAG-3" and 5'-CCGGGTACAATCGCACTTAT-3".
Expression data were normalized to the geometric
mean of the housekeeping gene GAPDH (forward and re-
verse primers: 5'-GACTCATGACCACAGTCCATGC-3’
and 5'-AGAGGCAGGGATGATGTTCTG-3') to con-
trol expression level variability and were derived using
2-l(Ct of gene) — (Ct of GAPDH)] " yhere Ct represents the
threshold cycle for each transcript.

MTT assay

Cells (2000) were seeded in 96-well plates and stained at
the indicated time points with 100 uL sterile MTT dye
(0.5 mg/mL, Sigma-Aldrich) for 4 h at 37°C. The culture
medium was removed and 150 pL. DMSO (Sigma-Aldrich)
was added. Absorbance was measured at 570 nm, with
655 nm as the reference wavelength. All experiments were
performed in triplicate.

Colony formation assay

Cells (1000) were plated in 6-well plates and cultured for
10 days. Colonies were fixed with 10% formaldehyde for
5 min and stained with 1.0% crystal violet for 30 s.

Flow cytometry analysis

Cells were harvested by trypsinization, washed in ice-cold
PBS, and fixed in 80% ice-cold ethanol in PBS. Before
staining, cells were pelleted using a chilled centrifuge
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and resuspended in cold PBS. Bovine pancreatic RNase
(Sigma-Aldrich) was added to a final concentration of
2 pg/mL and cells were incubated at 37°C for 30 min,
followed by incubation with 20 pg/mL propidium iodide
(PI, Sigma-Aldrich) for 20 min at room temperature. The
cell cycle profiles of 5x 10* cells were analyzed using a
FACSCalibur flow cytometer (BD, Bedford, MA).

TUNEL assay

Apoptotic DNA fragmentation was examined using an in
situ DeadEnd™ Fluorometric Terminal Deoxynucleotidyl
Transferase—Mediated dUTP Nick-End Labeling (TUNEL)
System Assay Kit (Promega) according to the manufac-
turer’s protocol. Briefly, 1 x 10° cells/well were plated in
24-well flat-bottom plates and treated with 20 pM cisplatin
for 36 h. Cells were fixed in 4% paraformaldehyde at 4°C
for 30 min, permeabilized in 0.1% Triton X-100, and la-
beled with fluorescein-12-dUTP using terminal deoxynu-
cleotidyl transferase. The localized green fluorescence of
apoptotic cells (fluorescein-12-dUTP) was detected by
fluorescence microscopy (Zeiss Axiovert 100 M, Carl Zeiss,
Germany).

Luciferase assay

Cells (4 x 10*) were seeded in triplicate in 24-well plates
and cultured for 24 h. NF-kB reporter luciferase plasmid
(100 ng), pGL3-CYLD-3"UTR (wt/mut), or control lucif-
erase plasmid, plus 5 ng pRL-TK Renilla plasmid (Pro-
mega) was transfected into the cells using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s rec-
ommendations. Luciferase and Renilla signals were mea-
sured 36 h after transfection using a Dual Luciferase
Reporter Assay Kit (Promega) according to the manufac-
turer’s protocol.

Nuclear/cytoplasmic fractionation

Cells were washed with cold PBS and resuspended in
buffer containing 10 mM HEPES (pH 7.8), 10 mM KCl,
0.1 mM EDTA, 1 mM Naz;VO, 1 mM DTT, 1:500 pro-
tease inhibitors (Sigma-Aldrich), and 0.2 mM PMSF and
incubated on ice for 15 min. Detergent was added and
cells were vortexed for 10 s at the highest setting. Nuclei
were separated by centrifugation at 4°C, resuspended in
buffer containing 20 mM HEPES (pH 7.8), 0.4 M NaCl,
1 mM EDTA, 1 mM NazVO, 1 mM DTT, and 1:500
protease inhibitors, and incubated on ice for 15 min.
Nuclear extracts were collected by centrifugation at
14,000 x g for 10 min at 4°C.

Annexin V binding assay

An ApopNexin™ FITC Apoptosis Detection Kit (Millipore,
Lake Placid, NY, USA) was used to detect apoptotic cells
according to the manufacturer’s instructions. Cells (3 x 10°)
were seeded in 6-well plates in triplicate and incubated with
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20 puM cisplatin or vehicle for 24 hours. Adherent and float-  high-throughput miRNA expression dataset (E-TABM-
ing cells were combined, followed by washing with PBS and 341, ArrayExpress). We found that miR-362 expression was
then with annexin V binding solution. Subsequently, significantly upregulated in human gastric cancer tissues
150 pL annexin V antibody in binding buffer was added to  (n=184) than that in normal gastric tissues (n=169)
each well and incubated for 15 min, followed by the (P <0.001, Figure 1A). Real-time PCR analysis showed
addition of 1.5 pL 1 mg/mL PI and further incubation for ~ marked upregulation of miR-362 expression in all five
5 min. Cells (10,000) were analyzed using a FACSCalibur  gastric cancer cell lines as compared with that in NGEC
flow cytometer (BD Biosciences). The data were analyzed  (Figure 1B). Comparative analysis indicated that miR-362
with CellQuest software to differentiate apoptotic cells  was increased in all 10 gastric tumor tissue specimens as
(annexin V-positive and Pl-negative) from necrotic cells compared with adjacent non-cancerous tissue specimens
(including late apoptotic cells). (Figure 1C). Taken together, these results demonstrate
that miR-362 is upregulated in human gastric cancer.
Statistical analysis
A two-tailed Student’s ¢-test was used to evaluate the signifi- ~ MiR-362 upregulation promoted cell proliferation and
cance of the differences between two groups of data in all  induced apoptosis resistance in gastric cancer

pertinent experiments; P < 0.05 was considered significant. To investigate the biological effect of miR-362 upregula-

tion on gastric cancer progression, the BGC-823 and
Results SGC-7901 gastric cancer cell lines were used to stably ex-
MiR-362 was upregulated in human gastric cancer cell press miR-362. MTT assay showed that miR-362 upregu-
lines and tissues lation significantly increased the rate of cell proliferation

To identify miRNAs that may be involved in gastric can-  (Figure 2A), and this was confirmed by colony formation
cer progression, we analyzed a published microarray-based, assay (Figure 2B). Flow cytometry revealed a dramatic
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Figure 1 MiR-362 upregulation in human gastric cancer cell lines and tissues. (A) High-throughput microarray analysis of published data
showing that miR-362 was elevated in gastric cancer tissues (n = 184) as compared with that in noncancerous gastric tissue (n = 169). (B) Real-time
PCR analysis of miR-362 expression in NGEC and gastric cancer BGC-823, HGC-27, MGC-803, MKN-28, and SGC-7901 cell lines. Transcript levels were
normalized to U6 expression. (C) MiR-362 expression in primary gastric cancer tissues (T) with paired adjacent normal tissues (ANT) from 10 patients.
Transcript levels were normalized to U6 expression. Experiments B and C were repeated at least three times. Bars denote the mean of three
independent experiments. *P < 0.05.
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increase in the percentage of S-phase cells in miR-362—
overexpressing BGC-823 (52.59%) and SGC-7901 cells
(50.82%) as compared with control BGC-823 (34.95%) and
SGC-7901 cells (30.64%), respectively (Figure 2C). Annexin
V and TUNEL staining (Figure 2D and 2E) demonstrated
that miR-362 overexpression augmented the resistance of
gastric cancer cells to apoptosis induced by the cisplatin
treatment. These results suggest that miR-362 plays an
oncogenic role in gastric cancer cells in vitro.

MiR-362 inhibition reduced cell proliferation and induced
apoptosis in human gastric cancer

We examined the effect of miR-362 inhibition on gastric
cancer progression. Consistent with the above results, the
MTT and colony formation assays showed that miR-362
suppression dramatically inhibited the growth rate of both
BGC-823 and SGC-7901 cells as compared with that of
control cells (Figure 3A and 3B). Flow cytometry showed
that miR-362 inhibition decreased the percentage of cells
in S-phase peak but increased that of G1/GO-phase cells
(Figure 3C), suggesting that miR-362 inhibition results in
G1/S arrest in gastric cancer cells. Annexin V and TUNEL
staining demonstrated that miR-362 inhibition decreased
resistance to apoptosis in cisplatin-treated gastric cancer
cells (Figure 3D and 3E).

MiR-362 activated the NF-kB pathway

We investigated the underlying molecular mechanism
that might be responsible for the oncogenic roles of
miR-362. As the NF-kB signaling pathway is frequently
found hyperactivated in gastric tumors [11,34,35], and
activation of NF-kB signaling induces cell proliferation
and apoptosis resistance [36], we investigated whether
miR-362 regulated NF-kB activity. NF-kB reporter lucifer-
ase activity and the expression levels of the eight NF-«xB
target genes were significantly increased in miR-362—over-
expressing cells, but were decreased in cells in which
miR-362 had been inhibited (Figure 4A and 4B). Though
miR-362 had no effect on the total NF-kB/p65 protein
expression, cellular fractionation and immunofluores-
cence staining showed that miR-362 overexpression
promoted nuclear accumulation of NF-«kB/p65, while
miR-362 inhibition reduced nuclear NF-kB/p65 expres-
sion (Figure 4C and 4D), indicating that miR-362 activates
the NF-kB pathway through promotion of nuclear NF-kB
accumulation. Inhibition of NF-«B signaling by the trans-
fection of an IkBa dominant-negative mutant led to a
dramatic decrease in S-phase peak cells but increased the
GO/G1-phase peak population (Figure 4E) and cisplatin
sensitivity in miR-362—overexpressing cells (Figure 4F),
suggesting that NF-kB pathway activation is function-
ally relevant to miR-362—mediated proliferation and anti-
apoptosis.
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MiR-362 targeted CYLD directly

CYLD deubiquitinase is a key negative regulator of
NE-kB signaling [21-23]. Analysis using publicly avail-
able algorithms (TargetScan, PicTar, miRanda) showed
that CYLD is a potential target of miR-362 (Figure 5A).
Western blotting analysis revealed that CYLD expression
was dramatically repressed by miR-362 overexpression, or
induced by miR-362 inhibition (Figure 5B). To examine
whether miR-362—induced CYLD downregulation was
mediated by the CYLD 3'-UTR, we subcloned the CYLD
3’-UTR fragment containing the miR-362 binding site
into pEGFP-C1 and pGL3 dual luciferase reporter vectors.
MiR-362 overexpression only decreased the expression of
the GFP vector containing the CYLD 3’-UTR (Figure 5C),
but had no effect on GFP—y-tubulin expression, suggest-
ing that miR-362 specifically affected the CYLD 3'-UTR.
Reduced luciferase activity was observed following miR-
362 overexpression in both BGC-823 and SGC-7901 cells,
whereas the repressive effect of miR-362 on luciferase ac-
tivity of the CYLD 3'-UTR was abolished by the miR-362
inhibitor (Figure 5D). MiR-362 overexpression had no ef-
fect on the luciferase activity of CYLD-3"UTR-mut, which
contained point mutations in the miR-362—binding seed
region of the CYLD 3’'-UTR (Figure 5E). Collectively, our
results demonstrate that CYLD is a bona fide target of
miR-362.

CYLD downregulation is critical for miR-362-mediated
NF-kB activation

To further investigate the role of CYLD repression in
miR-362-mediated NF-kB activation, we examined the
effects of CYLD downregulation on NF-kB activation in
BGC-823 and SGC-7901 cells. As expected, CYLD
knockdown by the two CYLD-specific siRNAs signifi-
cantly increased NF-kB reporter luciferase activity and
the expression levels of the eight NF-«B target genes
(Figure 5F and Additional file 1: Figure S1A). However,
further miR-362 overexpression in the CYLD-silenced
cells did not have a significant additive effect on NF-xB
reporter luciferase activity nor NF-kB target genes ex-
pression (Figure 5F and Additional file 1: Figure S1A).
Importantly, CYLD downregulation abolished the miR-
362 inhibition that induced repression of NF-«B activity
and target gene expression (Figure 5G and Additional
file 1: Figure S1B). Overall, our results demonstrate that
CYLD plays an important role in miR-362—mediated
NEF-kB activation.

Clinical correlation between miR-362, CYLD expression,
and NF-kB activation in gastric cancer tissues

We investigated whether the miR-362—induced CYLD
repression and NF-«B activation were clinically relevant.
MiR-362 levels in the 10 freshly collected gastric cancer
specimens were inversely correlated with CYLD expression



Xia et al. Journal of Translational Medicine 2014, 12:33 Page 7 of 12
http://www.translational-medicine.com/content/12/1/33

A —e— BGC-823-NC B
—=— SGC-7901-NC NC miR-362-in W NC
8 7 - —o— BGC-823-miR-362-in ] miR-362-in
§ g | —O— SGC-7901-miR-362-in S
8 2
o 5 (8]
a Q
Sa @
Es *
= 2 5 *
2 e
51 O
[T} o
© o BGC-823 SGC-7901
C
500 7 G1/G0=61.80% 500 G11G0=72.72% 900 G1/G0=64.58% 500 ] G1/G0=73.74%
| $=33.84% | $=21.65% | $=31.16% | $=20.27%
400 G2/M=4.36% 400 G2/M=5.63% 400 G2/M=4.26% 400 G2/M=5.99%
300 A 300 - 300 300 -
200 - 200 - 200 200 A
100 - 100 100 100 -
0 0 0 0
2N 4N 2N 4N 2N 4N 2N 4N
BGC-823-NC BGC-823-miR-362-in SGC-9701-NC SGC-9701-miR-362-in
D BGC-823 SGC-7901 =
= H NC
NC miR-362-in NC miR-362-in © ] miR-362-in
@ A 10 0 10° ©75r * *
$ :
-g 10 104 103 '3 =2
= @
5. g
=]
2 >
e £
& >
c
Annexin V-FITC & BGC-823 SGC-7901
E
TUNEL Pl Merge TUNEL PI Merge ENC _
) [0 miR-362-in

=]
o

*

NC
o
o

N
o

miR-362-in
TUNEL positive cell (%)

-y

o

BGC-823 SGC-7901

BGC-823 SGC-7901
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levels (r=-0.796, P < 0.001; Figure 6) but positively corre-
lated with nuclear p65 expression (r=0.670, P =0.034).
Altogether, our results suggest that miR-362 upregulation
activates NF-kB signaling by repressing CYLD, conse-
quently leading to cell proliferation and apoptosis resist-
ance in gastric cancer.

Discussion
MiRNAs are small noncoding RNAs that regulate the ex-
pression of a large number of intracellular target genes.

Overexpression of certain miRNAs are important in the
regulation of cell proliferation, apoptosis, and differenti-
ation in gastric cancer [37-39]. In the present study, miR-
362 expression was upregulated in gastric cancer tissues
and cell lines. This is the first study to report that miR-
362 overexpression or inhibition with lentivirus vector in
BGC-823 and SGC-7901 cells regulated NF-kB activity,
p65 protein level, and expression of the NF-kB-related
target genes CCNDI1, MYC, BCL2L1, FLIP, XIPA, TNF,
IL-8, and COX-2. Luciferase assay confirmed that miR-362
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directly binds the 3'-UTR of CYLD mRNA and inhibits
CYLD translation in gastric cancer cells.

The tumor suppressor CYLD is downregulated in many
types of cancer, including gliomas, basal cell carcinoma,
melanoma, T-cell leukemia, and colon and hepatocellular
carcinomas [20,40-43]. Several mechanisms have been
proposed to mediate CYLD downregulation in cancers. In
skin cancers such as basal cell carcinoma and melanoma,
CYLD was repressed at the transcriptional level by the ac-
tivation of Snail [40,41]. Conversely, CYLD expression in
T-cell leukemia was regulated by transcriptional repres-
sion by Hesl [42]. Importantly, a recent study reported
that CYLD is a direct target of miR-182, the increased

expression of which resulted in CYLD reduction and sus-
tained NF-kB activation in gliomas [20]. In the present
study, miR-362 directly targeted CYLD and led to cell pro-
liferation and apoptosis resistance, which we believe is a
novel mechanism for reducing CYLD in gastric cancer.

It is widely reported that NF-«kB activation is associ-
ated with gastric chronic inflammation and gastric can-
cer [44-46]. NF-kB activation is required for IL-8 release
and COX-2 activation, both of which induce the expres-
sion of plasminogen activator inhibitor 2 in inflammation
caused by Helicobacter pylori infection [44]. In gastric
cancer, plumbagin inhibits cell growth and enhances
apoptosis through suppression of the NF-kB pathway [34].
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Furthermore, miR-372 promotes cell growth and inhibits
apoptosis through TNFAIP1 downregulation and inhib-
ition of the NF-kB pathway [46]. However, the mechanism
of NF-«B activation in gastric cancer remains unclear. In
the present study, miR-362 directly targeted the CYLD
mRNA 3'-UTR and inhibited CYLD translation. The re-
duction of CYLD ultimately resulted in NF-«B activation.
Moreover, as CYLD can be transcriptionally induced by
the NF-kB pathway in a negative feedback pathway [47],
we may have uncovered a mechanism that leads to persist-
ent NF-«kB activation in gastric cancer.

Over the years, adjuvant and neoadjuvant chemother-
apy have been taken into account in the treatment strat-
egy for gastric cancer [4,5]. However, the curative effects
of chemotherapy in gastric cancer patients are debatable,
due to the loss of sensitivity to chemo-induced apopoto-
sis [6]. There is an urgent need to identify an effective
parameter that can predict the response to chemother-
apy and assist the establishment of individualized thera-
peutic strategies for gastric cancer patients. Our results
suggest that miR-362 overexpression in gastric cancer
enhanced cell proliferation and resistance to cisplatin-
induced apoptosis in gastric cancer cells. This suggests
that miR-362 levels may affect a patient’s sensitivity to
chemotherapy. MiR-362 may serve as a predictive factor
of patient response towards chemotherapy and may aid
in the selection of the optimal therapeutic strategy for
gastric cancer patients.

In the present study, miR-362 inhibition decreased cell
proliferation, induced apoptosis, and decreased nuclear
translocation of p65. This suggests that miR-362 acti-
vates the NF-kB pathway without any feedback effect,
resulting in persistent NF-«B activation. Although recent
discoveries have noted the important roles of many miR-
NAs in carcinogenesis and cancer progress, data on how
miR-362 functions and how it is regulated are scant.
In the present study, we identified a very important
relationship between miR-362 and NF-kB. As an upstream

regulator of the NF-kB pathway, miR-362 downregulation
may play an important role in NF-kB pathway suppression.

It was reported that blocking the NF-kB pathway using
an IkBa super-repressor such as TNF-a enhances the
susceptibility of cells to apoptosis [48]. NF-kB inhibitors
enhance the chemotherapeutic sensitivity of colon can-
cer cells [49]. However, an IkB inhibitor could not block
the NF-xB pathway for a prolonged period [48]. Lack of
specificity and potential side effects are the major issues
in NF-kB inhibitor treatment strategies [50]. Our study
presents a new possibility for improving the prognosis of
gastric cancer patients with the therapeutic effects of
miR-362 inhibition through CYLD downregulation and
persistent decrease of NF-«B activity.

Additional file

Additional file 1: CYLD plays an important role in miR-362-mediated
NF-kB activaton.
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