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Abstract

Background: Selection of effective viral siRNA is an indispensable step in the development of siRNA based antiviral
therapeutics. Despite immense potential, a viral siRNA efficacy prediction algorithm is still not available. Moreover,
performances of the existing general mammalian siRNA efficacy predictors are not satisfactory for viral siRNAs.
Therefore, we have developed “VIRsiRNApred” a support vector machine (SVM) based method for predicting the
efficacy of viral siRNA.

Methods: In the present study, we have employed a new dataset of 1725 viral siRNAs with experimentally verified
quantitative efficacies tested under heterogeneous experimental conditions and targeting as many as 37 important
human viruses including HIV, Influenza, HCV, HBV, SARS etc. These siRNAs were divided into training (T1380) and
validation (V345) datasets. Important siRNA sequence features including mono to penta nucleotide frequencies,
binary pattern, thermodynamic properties and secondary structure were employed for model development.

Results: During 10-fold cross validation on T1380 using hybrid approach, we achieved a maximum Pearson
Correlation Coefficient (PCC) of 0.55 between predicted and actual efficacy of viral siRNAs. On V345 independent
dataset, our best model achieved a maximum correlation of 0.50 while existing general siRNA prediction methods
showed PCC from 0.05 to 0.18. However, using leave one out cross validation PCC was improved to 0.58 and 0.55
on training and validation datasets respectively. SVM performed better than other machine learning techniques
used like ANN, KNN and REP Tree.

Conclusion: VIRsiRNApred is the first algorithm for predicting inhibition efficacy of viral siRNAs which is developed
using experimentally verified viral siRNAs. We hope this algorithm would be useful in predicting highly potent viral
siRNA to aid siRNA based antiviral therapeutics development. The web server is freely available at http://crdd.osdd.
net/servers/virsirnapred/.
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Background
Viruses like Influenza, Hepatitis, Dengue, SARS corona-
virus (SARS-CoV), Human Immunodeficiency Virus
(HIV) etc. remain a public health concern worldwide
due to their emerging and re-emerging nature [1]. Due
to lack of therapeutics against majority of viruses, there
is always a need to develop more effective antiviral
agents [2]. Lately, RNA interference (RNAi) has emerged
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as a potential therapeutic tool for targeting human viruses.
RNAi or gene silencing is a process by which sequence-
specific degradation of mRNA takes place [3]. In this
process, long dsRNA precursors are chopped into shorter
(19–23 resides) units by a ribonuclease enzyme called
dicer. These short interfering RNAs (siRNAs) possess two
terminal nucleotide 3′ overhangs. After that a ribonucleo-
protein machinery called RNA induced silencing complex
(RISC) incorporates one of the siRNA strands and cleaves
the complementary target mRNA using ATP [4].
Researchers have extensively used RNAi process to tar-

get a number of viral genes to suppress their expression
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[5,6]. siRNAs targeting different regions of the HIV ge-
nome in infected cells showed promising results in inhi-
biting viral replication [7,8]. Also, siRNAs targeting the
influenza virus nucleocapsid and RNA transcriptase genes
restricted its transcription and replication [9,10]. Similarly,
siRNAs directed against the Hepatitis B virus surface
regions prevented the virus production [11]. siRNAs
employed against SARS-CoV envelope and genes were
able to effectively block their expression [12]. In another
study, siRNAs targeting Dengue virus genes were able to
impede the viral infection [13]. In addition, siRNAs have
been shown to curb many other viruses like Human papil-
lomavirus (HPV) [14], West Nile virus (WNV) [15] etc.
RNAi methodology has many desirable features to use

as antiviral agents. It can target diverse types of viral
genomes, whether it be double/single stranded DNA
or RNA, which make it a suitable candidate for broad-
spectrum antiviral therapy [16]. Also, siRNA aims at small
length of the target mRNA instead of a functional domain
of a protein, therefore, even a small viral genome can lend
many targetable regions [5]. Further, many siRNAs may
be expressed simultaneously to increase inhibition in a
coordinated manner [17]. They are also harnessed to
degrade mRNAs which generate disease causing proteins
[6]. siRNA based drugs have also entered the clinical trials
for various human diseases e.g. kidney disorders, LDL
lowering, ocular/retinal disorders, cancer and viral dis-
eases [18]. Specifically for Respiratory syncytial virus
(RSV), ALN-RSV01 has completed Phase II trial. Yet
another drug named SPC3649, developed by Santaris
Pharma targets Hepatitis C virus (HCV) and was also
under Phase II clinical trial [19,20]. Many researchers have
further reviewed the importance of RNAi in inhibiting
viral infections [20,21].
To predict effective siRNAs, a number of general siRNA

design rules as well prediction algorithms been developed
since every siRNA designed against a given mRNA are not
equally effective [22,23]. The earliest guidelines for siRNA
design were based on presence and/or absence of specific
nucleotide residues at different positions in siRNA as
proposed by Elbashir [24], Reynolds [23], Ui-Tei [25],
Amarzguioui [26] and Jagla [27]. Naito et al. have used the
guidelines of Ui-Tei, Reynolds and Amarzguioui to select
effective siRNAs against viruses [28].
Subsequently, machine learning techniques like SVM,

ANN etc. have been utilized to predict effective mammalian
siRNAs [29,30] or their efficacy [31,32]. Performance of
these methods was better than the general siRNA design
rules [33]. Saetrom used boosted genetic programming to
predict mammalian siRNA efficacy on a modest dataset of
581 siRNAs [34]. Later Huesken et al. reported the screen
method of functional siRNAs by using an artificial neural
network [35]. Holen reported siRNA rules based on appa-
rent overrepresentation or underrepresentation of certain
nucleotides at different positions [36]. Researchers have
utilised many siRNA features like nucleotide composition
[37], thermodynamic parameters [38], nucleotide position
[39] etc. to predict the efficiency of siRNAs. Many other
workers have also used a combination of features using
different machine learning techniques to predict mamma-
lian siRNA efficacy [40-42].
When we used best of these existing algorithms for pre-

diction of viral siRNA, their performance was far from sat-
isfactory. It could be because none of these methods were
developed using virus specific siRNAs. Therefore, this
prompted us to make virus specific siRNA efficacy predic-
tion algorithm using experimentally validated viral siRNA
dataset. Here we employed machine learning techniques
to predict the inhibition efficacy of siRNAs. This will help
the researchers to select the best siRNAs for use as poten-
tial therapeutics against important human viruses.

Methods
Algorithm development
Data collection
We have chosen our dataset from Viral siRNA database
(VIRsiRNAdb) which contains over 1358 siRNA se-
quences targeting different human viruses and HIV siRNA
database (HIVsirDB) having over 750 entries. From these
databases we selected 927 and 240 sequences of 19mer
which were having numerical (quantitative) efficacy. In
addition 1204 sequences from patents were also used. In
addition 67 more siRNAs were collected from the litera-
ture. This combined dataset of 2294 siRNAs was reduced
to 1725 sequences after removal of redundant sequences.
From this dataset we randomly selected 345 sequences for
validation (V345) and the rest 1380 sequences were used
in training (T1380).

siRNA sequence features
In total 12 different parameters were employed including
four siRNA sequence features as nucleotide frequencies,
binary pattern, thermodynamic properties, secondary struc-
ture features and their combinations or hybrids.

1. Nucleotide Frequencies

In the past many scientists have utilised nucleotide com-
position to predict siRNA potency. [31,40,42]. Nucleotide
frequency is the number of each nucleotide in a siRNA.
Since the length of our siRNAs was constant, we used nu-
cleotide frequency instead of composition. The objective
of calculating nucleotide frequencies of siRNA sequences
is to transform any length of nucleotide sequence to fixed
length feature vectors. This is important while using
machine-learning techniques because it requires fixed
length pattern. The information of each siRNA can be en-
capsulated to a vector of 4, 16, 64, 256, 1024 etc. multi-
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dimensions using frequencies of its mononucleotide, di-
nucleotide, triinucleotide, tetranucleotide and pentanu-
cleotide sub sequences respectively.

2. Binary Pattern

Previous reports have used nucleotide positions to pre-
dict the RNAi activity of siRNAs [31,39]. We employed
binary pattern to extract siRNA features based on the
occupancy of nucleotides at each position of siRNA se-
quences. Four binary patterns used for each nucleotide
are follows A = 1000, C = 0100, G = 0010, U = 0001 and
this resulted in generation of 76 patterns for each 19-
mer siRNA.

3. Thermodynamic Properties

Thermodynamic stability of the siRNA has been con-
sidered by previous workers as an important feature in
siRNA design [37]. They were calculated by the method
of Khvorova et al. [43]. The thermodynamic dimensions
correspond to the Gibbs free energy stability of the nu-
cleotide pairs of the siRNAs. In total 21 features were
used to calculate the energies of the different sets of
interacting nucleotides. These features include the bind-
ing free energies and stabilities of the folded structures.

4. Secondary Structure

Secondary structure represents the capability of a sin-
gle molecule of nucleic acid sequence to form intra mo-
lecular contacts, thereby stabilizing certain sequence
parts as double stranded. Secondary structure was calcu-
lated using RNAfold programme of Vienna RNA package
as implemented by Peek [31]. It predicts the minimum
free energy (MFE) secondary structure and equilibrium
base-pairing probabilities of single sequences [44]. The
secondary structures predicted by RNAfold are depicted
as brackets and dots indicating ‘paired’ and ‘unpaired’
nucleotides respectively. These categorical attributes
are made readable to SVM by converting them into
numeric data representing the structural features as
vectors.

5. Hybrid Approaches

In hybrid approach, besides the features being used in-
dividually, combinations of siRNA sequence parameters
were used in order to increase the performance of the
prediction method as done by earlier researchers [27,42].
We have used four hybrid methods notably mono-di-tri-
tetra-penta-binary which makes a vector of total 1440
and mono-di-tri-tetra-penta-binary-thermo which makes
a vector of total 1489 features.
6. Leave one out cross validation (LOOCV)

In this method each siRNA is kept for testing iteratively
while remaining viral siRNAs are used for training the
respective predictive models. Besides LOOCV, we have
also carried out Leave one virus out cross validation
(LOVOCV) strategy. In this approach, siRNAs from each
virus are iteratively excluded and SVM is trained on the
remaining virus siRNAs followed by testing on the ex-
cluded siRNAs of that individual virus.

7. Viral siRNA target conservation

Target site conservation analysis of all experimental 1725
viral siRNA sequences was done by matching each siRNA
sequence with its respective reference viral genome se-
quences taken from NCBI. For this purpose, we have used
ALIGN0 algorithm [45], which computes the alignment of
two DNA sequences without penalizing for end-gaps.

Algorithm and server implementation
Support vector machines (SVMs) were trained with the
selected sequence features to predict siRNA potency. SVM
allows choosing a number of parameters and kernels The
SVMlight software package (available at http://svmlight.
joachims.org/) was used to construct SVM classifiers. In
this study, we used the radial basis function (RBF) kernel:

k �x; �yð Þ ¼ exp ‐γð k �x‐�yk2Þ

where ¯̄x̄ and ¯̄ȳ are two data vectors, and γ is a training
parameter.
Artificial Neural Network (ANN) was implemented using

Stuttgart Neural Network Simulator (SNNS) package (avail-
able at http://www.ra.cs.uni-tuebingen.de/SNNS/) while
K-Nearest Neighbour (KNN) and Reduced Error Pruning
(REP) Tree algorithms were implemented using Weka
machine learning software suite (available at http://www.
cs.waikato.ac.nz/ml/weka/).
The server is implemented on Red Hat Linux and

Apache (2.2.17) in back-end and front-end of web inter-
face is implemented with PHP (5.2.14).

Validation
In order to evaluate performance of our models, we used
Pearson’s correlation coefficient (R). All models were eval-
uated using ten-fold cross validation technique.
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Where n is the size of test set, Ei
pred and Ei

act is the pre-
dicted and actual efficacy respectively.
Results
Performance evaluation of predictive models during
10-fold cross validation
Viral siRNA prediction modelshave been developed using
various siRNA sequence features including mono, di, tri,
tetra, penta nucleotide frequencies, binary pattern of
nucleotides, thermodynamic properties and secondary
structure. During 10-fold cross validation using SVM we
achieved a maximum correlation of 0.19, 0.32, 0.42, 0.43,
0.46, 0.19, 0.26, 0.07 respectively for the above-mentioned
individual features, between predicted and actual efficacy
of viral siRNAs. We employed different features like nu-
cleotide frequency (mono to penta) and positional (binary)
as well as structural and thermodynamic features on
viral siRNA training dataset consisting of 1380 (T1380)
sequences. During 10-fold cross validation using SVM,
the Pearson Correlation Coefficient (PCC) increased from
0.19 to 0.46 while moving from individual mono to pen-
tanucleotide frequency features respectively. The binary
feature performed similar to mononucleotide frequency.
The thermodynamic properties showed marginal corre-
lations with siRNA inhibition while secondary structural
features did not work. Also, we found that hybrid models
(frequency-binary and frequency-binary-thermo) performed
better compared to other features used individually.
Amongst the hybrid models, PCC was found to increase
Table 1 Ten-fold cross validation performance of predictive m
using SVM, ANN, KNN and REP Tree machine learning techniq

Predictive model no. siRNA features No. of siRNA fe

1 Mononucleotide frequency 4

2 Dinucleotide frequency 16

3 Trinucleotide frequency 64

4 Tetranucleotide frequency 256

5 Pentanucleotide frequency 1024

6 Binary 76

7 Thermodynamic features 21

8 Secondary structure 28

9 1 + 2 + 3 + 4 + 5 1364

10 6 + 9 1440

11 6 + 7 + 9 1461

12 6 + 7 + 8 + 9 1489

*Pearson Correlation Coefficient (PCC) is the correlation between experimental and
#T1380 is the training dataset of experimental viral siRNA. Predictive Models 1-8 wer
hybrid siRNA features.
by combining frequency, binary and thermodynamic fea-
ture vectors (0.55) as compared to hybrid frequency
(0.48), hybrid frequency-binary (0.50) or hybrid fre-
quency-binary-thermo-secondary structural features (0.53)
as shown in Table 1.
We also used other machine learning algorithms like

ANN, KNN and REP Tree to check their performance on
the experimental viral siRNA data using the above men-
tioned features. During 10-fold cross validation, PCC
increased from 0.10 to a maximum of 0.30 from mono to
pentanucleotide frequency in all the three cases. Here also
the binary and secondary structural features did not
perform well, confirming our earlier results using SVM.
However while using a combination of features (frequency-
binary and frequency-binary-thermo) in hybrid models, the
correlation performance increased from 0.30 to 0.46 for
ANN, 0.31 to 0.48 for KNN and 0.31 to 0.35 for REP Tree
(Table 1). However SVM performed better compared to
other machine learning algorithms in all the cases and
was thus chosen for model development.
Performance evaluation of predictive models on
independent 345 viral siRNA dataset
Besides 10-fold cross validation, we also checked the
performance of our algorithms on independent dataset
of 345 siRNAs (V345) on the above models as shown in
the Table 2. Here again, the binary and secondary struc-
tural features did not perform well while the model
based on thermodynamic features showed a marginal
odels on viral siRNA dataset of 1380 sequences (T1380)
ues

atures
Pearson correlation coefficient* on training (T1380) dataset#
during 10-fold cross validation

SVM ANN KNN REP Tree

0.19 0.10 0.11 0.10

0.32 0.29 0.29 0.29

0.42 0.28 0.30 0.28

0.43 0.28 0.30 0.30

0.46 0.29 0.30 0.30

0.19 0.10 0.11 0.11

0.26 0.22 0.21 0.20

0.07 0.04 0.04 0.04

0.48 0.30 0.31 0.31

0.50 0.36 0.41 0.32

0.55 0.46 0.48 0.45

0.53 0.42 0.44 0.42

predicted viral siRNA efficacy.
e developed on individual siRNA features while models 9-12 were based on



Table 2 Evaluation of performance of predictive models on validation dataset of 345 viral siRNAs(V345)

Predictive model no. siRNA features No. of siRNA features
Pearson correlation coefficient* on validation (V345) dataset#
during 10-fold cross validation

SVM ANN KNN REP Tree

1 Mononucleotide frequency 4 0.16 0.08 0.09 0.08

2 Dinucleotide frequency 16 0.30 0.23 0.22 0.24

3 Trinucleotide frequency 64 0.39 0.25 0.24 0.26

4 Tetranucleotide frequency 256 0.40 0.26 0.27 0.28

5 Pentanucleotide frequency 1024 0.42 0.27 0.28 0.29

6 Binary 76 0.03 0.02 0.02 0.01

7 Thermodynamic features 21 0.19 0.15 0.18 0.15

8 Secondary structure 28 0.02 0.02 0.02 0.02

9 1 + 2 + 3 + 4 + 5 1364 0.48 0.32 0.34 0.30

10 6 + 9 1440 0.48 0.32 0.34 0.32

11 6 + 7 + 9 1461 0.50 0.33 0.35 0.31

12 6 + 7 + 8 + 9 1489 0.45 0.32 0.33 0.30

*Pearson Correlation Coefficient (PCC) is the correlation between experimental and predicted viral siRNA efficacy.
#V345 is the validation dataset of experimental viral siRNA not used in training. Predictive Models 1-8 were developed on individual siRNA features while
models 9-12 were based on hybrid siRNA features.
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correlation of 0.19. As expected, the hybrid frequency,
hybrid frequency-binary and hybrid frequency-binary-
thermo-secondary structural features gave a better cor-
relation with PCC values 0.48, 0.48 and 0.45 respectively.
The best performing hybrid model with frequency-binary-
thermo feature vectors gave a correlation of 0.50 and thus
performed better on the validation dataset. Other machine
learning techniques performed in a similar trend but their
correlation was less as compared to SVM. Their best cor-
relations were achievedwhile using the hybrid frequency-
binary-thermo model. The PCCs were 0.33 for ANN, 0.35
for KNN and 0.31 for REP Tree (Table 2).

Comparison with existing siRNA prediction algorithms
We also compared our models with existing siRNA effi-
cacy prediction servers (some servers are not currently
working or have become outdated) although they are not
optimized to predict viral siRNA efficacy and are rather
used for general mammalian siRNA prediction. These pre-
diction servers were mainly developed using two mam-
malian siRNA datasets of Saetrom (581 siRNA) [34] and
Huesken (2431 siRNA) [35]. Saetrom dataset was tested
under heterogeneous experimental conditions while Hues-
ken dataset was tested under homogenous experimental
conditions. On both of these datasets (19 mer), we have
also developed earlier a ‘siRNApred’ algorithm with PCC
of 0.56 and 0.68 respectively during 10-fold cross vali-
dation [46]. We checked performance of ‘siRNApred’ on
viral siRNA datasets of V345, T1380and (V + T)1725 and
observed PCC of 0.10, 0.16 and 0.14 respectively. Detailed
comparisons with other methods are shown in Tables 3
and 4.
The siRNA efficacy prediction methods developed
using heterogeneous siRNA datasets are listed in Table 3.
Their correlation performance during cross validation
on the training set varied between 0.46 and 0.56 and for
the test set their PCC was between 0.40 and 0.52 which
shows the performance of these methods is almost simi-
lar. However, no siRNA efficacy prediction web server
based on heterogeneous siRNA datasets was presently
available/working except our ‘siRNApred’ which showed
maximum PCC of 0.10 on V345 viral siRNA dataset.
The siRNA efficacy prediction algorithms developed

using homogeneous siRNA datasets are given in Table 4.
Their PCCs ranged from 0.66 to 0.85 on training during
10-fold cross validation and 0.55 to 0.71 on validation
datasets. However on viral siRNA dataset V345 their per-
formance dropped drastically in the range of 0.05 to
0.18. These results showed that the mammalian siRNA
efficacy prediction methods developed using the homo-
geneous datasets performed better than those developed
using the heterogeneous datasets. However, all such
general mammalian siRNA efficacy prediction methods
did not perform appropriately in predicting viral siRNA
inhibition.

Performance evaluation using Leave one out cross
validation (LOOCV)
We also checked the performance of our method using
LOOCV technique by employing earlier mentioned
siRNA features (Table 5). Here also the performance was
increased while using mono to penta nucleotide fre-
quency and further using hybrid features. The perform-
ance is improved modestly in comparison to 10-fold



Table 3 Comparison of VIRsiRNApred with existing siRNA efficacy prediction algorithms developed using
heterogeneous siRNA dataset

S.no Reference Url Technique siRNA
data set

Pearson correlation coefficient*

Train1 Val2 V345#

1 [34] NA GPBoost, SVM 581 0.46 0.40 Server not available

2 [37] NA ANN 653 0.55 0.50 Server not available

3 [32] http://biodev.extra.cea.fr/DSIR/DSIR.html linear 653 0.48 0.44 Server not working

4 [36] NA linear 526 0.55 0.52 Server not available

5 [38] http://www.med.nagoya-u.ac.jp/
neurogenetics/i_Score/i_score.html

linear 419 0.51 0.44 Server not working

6 [46] http://www.imtech.res.in/raghava/
sirnapred

SVM 581 0.56 0.47 0.10

7 VIRsiRNApred http://crdd.osdd.net/servers/virsirnapred/ SVM 1380 0.58 0.55 0.55

*Pearson Correlation Coefficient (PCC) is the correlation between experimental and predicted viral siRNA efficacy.
1Performance on n-fold training dataset of the study.
2Performance on validation data set of the study.
#V345 is the validation dataset of experimental viral siRNA. Algorithms from S.No. 1-6 used mammalian heterogeneous siRNA datasets while S.No. 7 used
experimental viral siRNA dataset.
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cross validation. Using this technique we achieved a
maximum correlation of 0.58 on the training dataset
T1380 and 0.55 on the validation dataset V345 using the
hybrid model combining hybrid nucleotide frequency,
binary and thermodynamic features.

Performance evaluation using Leave one virus out cross
validation (LOVOCV)
To further check our SVM based method on the best per-
forming features combining hybrid composition (mono to
Table 4 Comparison of VIRsiRNApred with existing siRNA effi
homogeneous siRNA dataset

S.No Reference Technique Url

1 [35] ANN http://www.biopredsi.org

2 [32] Linear http://biodev.extra.cea.fr/DSIR

3 [47] Rule, SVM, RFR http://www.bioinf.seu.edu.cn/
index.htm

4 [38] Linear http://www.med.nagoya-u.ac
neurogenetics/i_Score/i_scor

5 [31] SVM NA

6 [39] Linear http://rna.chem.t.u-tokyo.ac.jp
siexplorer.htm

7 [46] SVM http://www.imtech.res.in/ragh
sirnapred

8 [40]. SVM http://predictor.nchu.edu.tw/

9 [41] Linear http://biodev.extra.cea.fr/DSIR

10 [42] SVM NA

*Pearson Correlation Coefficient (PCC) is the correlation between experimental and
1Performance on n-fold training dataset of the study.
2Performance on test data set of the study.
#V345 is the validation dataset of experimental viral siRNA.
penta nucleotide frequency), binary and thermo properties
for each virus in the 1725 viral siRNA dataset, we used
LOVOCV method. The results are shown in Table 6.
In the LOVOCV method, 252 siRNAs from Influenza
A Virus were excluded and the model trained with
remaining 1473 siRNAs from 36 viruses. It showed a PCC
of 0.48 and 0.46 on the training and validation dataset
respectively. Similar performance PCC is observed for dif-
ferent viruses like Influenza A Virus (0.48 and 0.46), HCV
(0.51 and 0.44), SARS (0.53 and 0.48), Measles Virus (0.56
cacy prediction methods developed using mammalian

siRNA
data set

Pearson correlation coefficient

Train1 Val2 V345#

2431 0.66 0.60 Server not available

/DSIR.html 2431 0.67 0.57 Server not working

siRNA/ 3589 0.85 0.59 0.12

.jp/
e.html

2431 0.72 NA 0.05

2431, 0.78 0.71 Server not available

/ 702 0.77 0.60 0.18

ava/ 2280 0.68 0.66 0.10

siPRED/ 2431 0.77 0.53 0.09

2182 0.67 NA Server not working

2431 0.80 0.71 Server not available

predicted viral siRNA efficacy.

http://www.biopredsi.org
http://biodev.extra.cea.fr/DSIR/DSIR.html
http://www.bioinf.seu.edu.cn/siRNA/index.htm
http://www.bioinf.seu.edu.cn/siRNA/index.htm
http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
http://rna.chem.t.u-tokyo.ac.jp/siexplorer.htm
http://rna.chem.t.u-tokyo.ac.jp/siexplorer.htm
http://www.imtech.res.in/raghava/sirnapred
http://www.imtech.res.in/raghava/sirnapred
http://predictor.nchu.edu.tw/siPRED/
http://biodev.extra.cea.fr/DSIR
http://biodev.extra.cea.fr/DSIR/DSIR.html
http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
http://www.imtech.res.in/raghava/sirnapred
http://www.imtech.res.in/raghava/sirnapred
http://crdd.osdd.net/servers/virsirnapred/


Table 5 Performance of the SVM models using leave one out cross validation (LOOCV) method

Predictive model no. siRNA features No. of siRNA features Pearson correlation coefficient*

Training (T1380) Validation (V345)

1 Mononucleotide frequency 4 0.32 0.29

2 Dinucleotide frequency 16 0.36 0.32

3 Trinucleotide frequency 64 0.45 0.41

4 Tetranucleotide frequency 256 0.48 0.44

5 Pentanucleotide frequency 1024 0.52 0.48

6 Binary 76 0.26 0.14

7 Thermodynamic features 21 0.29 0.24

8 Secondary structure 28 0.10 0.06

9 1 + 2 + 3 + 4 + 5 1364 0.52 0.49

10 6 + 9 1440 0.54 0.51

11 6 + 7 + 9 1461 0.58 0.55

12 6 + 7 + 8 + 9 1489 0.58 0.54

*Pearson Correlation Coefficient (PCC) is the correlation between experimental and predicted viral siRNA efficacy.
# T1380 is the training dataset of experimental viral siRNA. Predictive Models 1-8 were developed on individual siRNA features while models 9-12 were based on
hybrid siRNA features.
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and 0.51), JEV (0.58 and 0.51) etc. on the training and val-
idation dataset respectively. Overall, the training dataset
performance during 10-fold cross validation ranged from
PCC value of a minimum 0.43 to a maximum 0.58 with
an average 0.54. While the validation performance ranged
from PCC 0.40 to 0.53 with an average 0.48.

Viral siRNA target conservation
Results of the viral siRNA target site conservation among
reference viral genome sequences is provided in the
Additional file 1: Figure S2. The analysis shows the num-
ber of nucleotide differences or mismatches (0, 1, 2, 3, 4
and >4) between each siRNA and the respective reference
viral genome sequences in the alignment using Align0
algorithm. Overall percentages of the 0, 1, 2, 3, 4 and >4
mismatches were 36.75, 15.64, 9.01, 8.08, 7.76 and 23.68%
respectively as shown in Additional file 1: Figure S2 (a).
We have also checked the conservation of 322 highly
effective siRNAs with inhibition above 80% and an equal
number of least effective siRNAs with inhibition less than
4.0% from the main dataset. The effective and ineffective
siRNAs had similar number of 1, 2, 3 and 4 mismatches
with more differences for 0 and >4 mismatches as shown
in Additional file 1: Figure S2 (b).

Webserver
The web server is freely available via the url http://crdd.
osdd.net/servers/virsirnapred. The strategy used to deve-
lop VIRsiRNApred models is shown in Figure 1. Besides,
overview of VIRsiRNApred web server functionality in-
cluding input and output interfaces are shown in Figure 2.
To predict the best performing siRNAs to silence a spe-
cific viral gene, the user needs to paste a fasta sequence of
the corresponding mRNA/gene region and choose the
desired model and click submit. The sequence should not
contain non-nucleotide characters or symbols. The output
shows the recursive siRNAs chopped from the mRNA &
their inhibition. We have also displayed useful links poin-
ting to BLAST, alignment and off-target score for each
siRNA. The user can sort the results in increasing/
decreasing order. The output also shows graph depicting
the inhibition and off-target scores in a pictorial manner
(Figure 2).

Analysis tools
The analysis tools help the user to select the best antiviral
siRNAs for the desired gene/region. First, the user needs
to sort the siRNAs with “inhibition” and choose the
siRNAs with high inhibition values. Then the user needs
to look for the off-target using the two provided options:
a) the user should select the siRNAs with least number
of seeds/off-targets which are also shown pictorially by
different colours as green (minimum), yellow (medium)
and red (maximum) and b) the user can BLAST each
siRNA sequence against human genome to ascertain
that it does not affect other human genes. Besides,
VIRsiRNAdb-BLAST helps the user to find similar
siRNAs reported in the VIRsiRNAdb database.
Subsequently, to check the conservation of siRNA

among different viral strains, our web server provides
the “siTarConserve” tool. In this tool, user provided
siRNA sequence is matched against selected reference
viral genome sequences. There are options to search for
conservation using individual virus as well as its family.
The option to analyse conserved siRNA target regions
using BLAST and Smith-Waterman algorithm has also

http://crdd.osdd.net/servers/virsirnapred
http://crdd.osdd.net/servers/virsirnapred


Table 6 Performance of the SVM model for each virus in the 1725 viral siRNA dataset using leave one virus out cross
validation (LOVOCV) method

S.no. Virus No. of siRNA Pearson correlation coefficient*

Training Validation Training# Validation

1 Influenza A Virus 1473 252 0.48 0.46

2 Human Papillomavirus 1513 212 0.43 0.40

3 John Cunningham Virus 1517 208 0.43 0.41

4 Respiratory Syncytial Virus 1577 148 0.45 0.41

5 Human Immunodeficiency Virus 1590 135 0.46 0.42

6 Metapneumovirus 1610 115 0.48 0.43

7 Hepatitis B Virus 1638 87 0.51 0.45

8 Hepatitis C Virus 1645 80 0.51 0.44

9 Ebola Zaire Virus 1652 73 0.49 0.43

10 Human Coxsackievirus 1653 72 0.50 0.47

11 West Nile Virus 1685 40 0.51 0.47

12 Bovine Papillomavirus 1689 36 0.52 0.48

13 Influenza B Virus 1689 36 0.52 0.46

14 SARS Coronavirus 1691 34 0.53 0.48

15 Herpes Simplex Virus 1704 21 0.54 0.48

16 Human Rhinovirus 1704 21 0.54 0.46

17 Orthopoxvirus 1705 20 0.55 0.49

18 Measles Virus 1709 16 0.56 0.51

19 Hepatitis Delta Virus 1710 15 0.56 0.51

20 Reovirus 1712 13 0.56 0.51

21 African Swine Fever Virus 1714 11 0.55 0.49

22 Dengue Virus 1714 11 0.56 0.49

23 Hazara Nairovirus 1714 11 0.56 0.49

24 Enterovirus 1717 8 0.56 0.50

25 Epstein-Barr Virus 1719 6 0.56 0.52

26 Hepatitis A Virus 1719 6 0.56 0.51

27 Human Metapneumovirus 1719 6 0.58 0.51

28 Hepatitis E Virus 1720 5 0.58 0.53

29 Japanese Encephalitis Virus 1720 5 0.58 0.51

30 St. Louis Encephalitis 1720 5 0.58 0.53

31 Junin Virus 1721 4 0.58 0.52

32 Yellow Fever Virus 1721 4 0.58 0.52

33 Lassa Virus 1722 3 0.58 0.52

34 Rotavirus 1723 2 0.58 0.53

35 Sendai Virus 1723 2 0.58 0.51

36 Marburg Virus 1724 1 0.58 0.52

37 Polio Virus 1724 1 0.58 0.53

*Pearson Correlation Coefficient (PCC) is the correlation between experimental and predicted viral siRNA efficacy.
#During 10-fold cross validation training, best performing viral siRNA sequence feature combining composition (mono to penta nucleotide frequency), binary and
thermo features: 6 + 7 + 9) were used.
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been incoporated. This tool will be useful in selecting
those siRNAs which are highly conserved in reference
viral strains. Also while predicting siRNA efficacy, the
user can check for siRNA conservation by clicking on
the siTarConserve link provided against each siRNA on
the prediction result page.



Figure 1 Workflow of the VIRsiRNApred model development.
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Discussion
Researchers working in the field of siRNA based thera-
peutics for viruses have generated a vast amount of data
over the years. However, bioinformatics resources in the
field were lacking and there was no viral siRNA efficacy
prediction method available. In this direction, we have re-
cently developed a comprehensive viral siRNA database
“VIRsiRNAdb” [48] and another “HIVsirDB” [49] exclu-
sively for HIV. Now we have developed VIRsiRNApred -a
viral siRNA efficacy prediction algorithm.
Although many mammalian siRNA prediction algo-

rithms have been developed in the past [33], these methods
Figure 2 Web server and its functionality (top) submit page (bottom)
either classify a siRNA as effective/non-effective [29] or
predict the inhibition efficacy of a siRNA [31,32]. How-
ever, there is limited success in predicting siRNA effi-
cacy due to limited size and diversity of available siRNA
datasets [50].
Mammalian siRNA efficacy prediction methods were

initially developed using siRNA tested under heteroge-
neous experimental conditions like Saetrom (581 siRNA),
Shabalina (653 siRNA) or Holen (526 siRNA) etc. and
achieved a PCC of 0.46-0.56 and subsequently methods
were developed using siRNAs tested under homogenous
experimental conditions like Heusken (2431 siRNA) and
result output.
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Katoch (702 siRNA) to achieve a PCC of 0.66-0.80.
Though the mammalian siRNA prediction methods deve-
loped on homogenous siRNA datasets performed better
than those developed on heterogeneous siRNA datasets,
however all such methods did not perform well in predic-
ting viral siRNA efficacy with PCC as low as 0.05-0.18.
We have developed our algorithm using a heteroge-

neous dataset of 1725 experimentally validated siRNA col-
lected from 161 studies and targeting more than 200
mRNAs of over 40 diverse human viruses. Earlier Reyn-
olds [23] has reported that 16.3% of randomly selected
siRNAs have greater than 80% efficacy in targeting two
mammalian genes (human cyclophilin B and firefly lucif-
erase). Similarly, in 1725 viral siRNA dataset, only 17.1%
were able to inhibit the virus above the 80% level despite
majority of these siRNAs were designed using existing
siRNA prediction methods before their testing in the wet-
lab. This further verifies that the available mammalian
siRNA efficacy prediction methods do not perform satis-
factorily in predicting siRNAs targeting viruses.
Mammalian siRNA design rules are suitable for getting

effective sequences for specific genes but they might some-
times prove unsuitable for selecting sequences for many
other genes [51]. Therefore if these rules were used to
design siRNAs for say, viral genes, many sequences might
be wrongly selected as potential candidates. Even within
mammalian siRNA prediction methods, the nucleotide
positional preferences are not consistent (Additional file 1:
Figure S1) with increase in heterogeneity of the data.
Hence, designing functional siRNAs that target viral se-
quences is problematic because of their extraordinarily
high genetic diversity. Therefore we need an algorithm to
be developed on diverse viral siRNA dataset to tackle this
issue.
However, in the past there have been attempts to predict

viral siRNA. Naito et al. in 2006 published siVirus to clas-
sify a given viral sequence as siRNA based on earlier pub-
lished guidelines of Ui-Tei et al., Reynolds et al. and
Amarzguioui et al. for a few viruses [28]. Later, ElHefnawi
in 2011 also provided a guideline to design siRNA against
Influenza A virus using earlier published guidelines of
Tuschl et al., Reynolds et al., Amarzguioui et al., Ui-Tei
et al., and Hsieh et al., to select the siRNA [52]. However
these methods just predict the viral siRNA as effective or
non-effective based on earlier siRNA design rules. But
they did not utilize any machine learning based methods
which perform better than general siRNA design guide-
lines [33]. Moreover these methods were not developed
using any experimental viral siRNA dataset and also do
not predict quantitative efficacy of siRNA.
In the present study we made an effort to enhance the

in silico prediction of highly effective human viral siRNA
using manually curated datasets. Our model employed
various siRNA sequence features particularly nucleotide
frequencies, binary patterns, thermodynamic features,
secondary structure and their hybrids as these parame-
ters play a vital role in predicting efficient viral siRNAs.
Mononucleotide composition can, for example, account
for GC contents separately while higher nucleotide com-
positions can account for presence of any long GC
stretch. Similarly trinucleotide composition can be useful
in codon preference considerations. Studies have sug-
gested that thermodynamic features of nucleotides at the
beginning and at the end of the siRNA strands are im-
portant to their potency [53]. An increase in Pearson
Correlation Coefficient (PCC) from 0.19 to 0.55 was
observed using different approaches. The increase in
performance could be attributed to the fact that as we
increase the length of siRNA fragment (e.g., from 4 pat-
terns in mono to 1024 patterns in pentanucleotide fre-
quencies) more and more input information is available
for processing not only in terms of composition but also
other features like base stacking and positional effect to
a significant extent. However secondary structural fea-
tures of nucleotides showed minimal performance du-
ring training and were thus not included in the final
model. Hence, the sequence frequencies combined with
binary and thermodynamic features as hybrid approach
we could achieve a maximum PCC of 0.58 during
LOOCV. Thus, individual siRNA features provide mar-
ginal but cumulative increase in the probability of select-
ing a potent siRNA which is consistent with previous
findings [32,33].
The LOVOCV method showed similar performance

for most of the viruses; however Performance PCC im-
proved with increasing number of siRNAs in the training
dataset. Since viruses are known to be genetically diverse
[54] some variation in performance is expected, however,
the hybrid features allow different siRNA features to
complement each other during the training process,
which eventually makes the efficacy prediction better
than when the features are used individually. LOVOCV
performances are similar to that of PCC (0.55 and 0.50)
of 10-fold cross validation of T1380 training and V345

validation datasets using best hybrid siRNA features re-
ported in Table 1. Despite exclusion of individual virus
siRNAs from the training dataset, SVM model predicts
siRNA appropriately for that particular virus. Therefore,
VIRsiRNApred would function as a general viral siRNA
efficacy predictor even for viruses currently not included
in the training and testing. Besides, we also checked the
performance of general mammalian siRNA predictors
(siRNApred and siExplorer) on the above datasets and
their performance PCC ranged from 0.10 to 0.16 only.
This again accentuate that VIRsiRNApred perform com-
petently for prediction viral siRNA efficacy.
Since viruses are known to be genetically diverse [54],

some researchers have used conserved target sites to
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design siRNAs [28]. ElHefnawi has used this approach to
design siRNAs against the influenza A virus [52]. Similarly
Rosales et al. predicted siRNAs against NS4B and NS5 of
Dengue virus [55] and Raza et al. predicted siRNAs against
HA and NA genes of Influenza virus A based on sequence
conservation and alignment [56]. Importance of selection
of conserved regions targeted by siRNA in HIV-1 has been
discussed by Naito et al. [28,57].
In the overall conservation analysis of 1725 viral siRNAs

with their respective reference genomes only around 37%
were fully conserved (0 mismatch). It could be because of
high viral genome heterogeneity. Besides that the re-
searchers often target a particular viral strain and the tar-
get site may not be conserved among all other strains.
However conservation analysis of highly and least effective
siRNAs showed that number highly effective siRNAs are
more in the fully conserved regions (0 mismatch) whereas
the number of ineffective siRNAs is more in the least
conserved regions (>4 mismatches). This suggests that
siRNAs selected in the conserved regions tend to be more
effective. However siRNAs designed from highly con-
served virus genome regions as available in our expe-
rimental dataset display all ranges of siRNA inhibition
efficacies ranging from 0-100%. This implies that not all
siRNAs chosen from conserved regions are highly effec-
tive as many other factors like nucleotide frequencies,
binary and thermodynamics features etc. contribute to the
efficacy of a siRNA besides conservation as used in the
VIRsiRNApred development. Nevertheless, selecting po-
tential siRNAs from conserved genome regions is advan-
tageous as it will target multiple viral strains.
This regression model can be useful in selecting

siRNA molecules targeting viral genes for therapeutic
purpose. Using our web-server researchers can target
any given viral mRNA and get a list of highly perfor-
ming siRNAs which have a greater chance to fully de-
grade the viral gene. In addition the ‘VIRsiRNApred’
server also offers an updated list of the experimentally
validated siRNAs along with their numerical inhibition
values reported in scientific literature that have been
used against diverse types of viral genes. Also our web-
server offers predicted siRNAs against important genes
of HIV, Influenza, HCV, HBV and SARS. As siRNAs
have been used against many viruses targeting a variety
of genes and a few are already in different stages of cli-
nical trials so they can serve as useful tools to develop
potential antiviral drugs.
Currently the data availability for viral siRNAs comes

from a wide range of studies due to which the overall
performance of the model is affected. As more homoge-
neous data is generated from high-throughput studies,
we will be interested in updating our prediction models
in accordance with the new information to further im-
prove the predictive power of our algorithm.
Conclusions
In this study we have reported the first viral siRNA effi-
cacy prediction algorithm developed on experimentally
verified viral siRNAs targeting as many as 37 diverse
human viruses since existing general mammalian siRNA
prediction methods are not able to effectively predict viral
siRNA activity. VIRsiRNApred web-server will be helpful
to select potent virus inhibiting siRNAs that can increase
the knock down success rate and thus shorten the
validation time in the development of antiviral siRNA
therapeutics.

Additional file

Additional file 1: Figure S1. Comparison of highly and least effective
siRNAs using two sample logo. Figure S2. Viral siRNA target
conservation.
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