

POSTER PRESENTATION

Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4⁺CD45RO⁺CD25⁺CD127^{low} regulatory T cells

Gina J Walter^{1*}, Hayley G Evans¹, Bina Menon^{1,2,3}, Bruce W Kirkham², Andrew P Cope^{1,2,3}, Frederic Geissmann¹, Leonie S Taams¹

From 7th European Workshop on Immune-Mediated Inflammatory Diseases Noordwijk aan Zee, the Netherlands. 28-30 November 2012

Introduction

Despite the high frequency of CD4⁺ T cells with a regulatory phenotype (CD25⁺CD127^{low}FoxP3⁺) in the joints of patients with rheumatoid arthritis (RA), inflammation persists. Regulatory T cells (Tregs) can be converted into pro-inflammatory IL-17-producing cells by inflammatory mediators, particularly IL-1 β .

Aim

To investigate whether activated monocytes, which are abundantly present in the rheumatic joint and potent producers of IL-1 β , induce pro-inflammatory cytokine expression in Tregs and whether this impairs Treg function.

Materials and methods

The presence and phenotype of CD4⁺CD45RO⁺CD25⁺ CD127^{low} T cells (memory Tregs) and CD14⁺ monocytes in the peripheral blood (PB) and synovial fluid (SF) from patients with RA was investigated by flow cytometry. FACS-sorted memory Tregs from healthy controls were co-cultured with autologous *in vitro*-activated monocytes and anti-CD3 monoclonal antibody. Intracellular cytokine expression, phenotype and function were determined by flow cytometry, ELISA and proliferation assays.

Results

Patients with RA showed higher frequencies of CD4⁺ CD45RO⁺CD25⁺CD127^{low} Tregs and activated CD14⁺ monocytes in SF relative to PB. We demonstrate that activated monocytes induced an increase in the percentage of IL-17⁺, IFN γ^+ and TNF- α^+ , but also IL-10⁺ Tregs. Blocking and reconstitution experiments revealed that the observed increase in IL-17⁺ and IFN γ^+ Tregs was driven by monocyte-derived IL-1 β , IL-6 and TNF- α and was mediated by both CD14⁺CD16⁻ and CD14⁺CD16⁺ monocyte subsets. Despite enhanced cytokine expression, cells maintained their CD25⁺FoxP3⁺CD39⁺ Treg phenotype and showed enhanced capacity to suppress proliferation and IL-17 production by effector T cells.

Conclusion

Tregs exposed to a pro-inflammatory environment show increased suppressive activity.

Author details

¹Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK. ²Dept. Rheumatology, Guy's & St Thomas' NHS Foundation Trust, London, UK. ³Academic Dept. Rheumatology, King's College London, London, UK.

Cite this article as: Walter *et al.*: Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4⁺CD45RO⁺CD25⁺CD127^{low} regulatory T cells. *Journal of Translational*

Published: 28 November 2012

doi:10.1186/1479-5876-10-S3-P3

Medicine 2012 10(Suppl 3):P3.

¹Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK

Full list of author information is available at the end of the article

© 2012 Walter et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.