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Abstract

Background: Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a favorable
prognostic factor in glioblastoma patients. However, reported methylation frequencies vary significantly partly due
to lack of consensus in the choice of analytical method.

Method: We examined 35 low- and 99 high-grade gliomas using quantitative methylation specific PCR (qMSP) and
pyrosequencing. Gene expression level of MGMT was analyzed by RT-PCR.

Results: When examined by qMSP, 26% of low-grade and 37% of high-grade gliomas were found to be
methylated, whereas 97% of low-grade and 55% of high-grade gliomas were found methylated by
pyrosequencing. The average MGMT gene expression level was significantly lower in the group of patients with a
methylated promoter independent of method used for methylation detection. Primary glioblastoma patients with a
methylated MGMT promoter (as evaluated by both methylation detection methods) had approximately 5 months
longer median survival compared to patients with an unmethylated promoter (log-rank test; pyrosequencing P =
.02, qMSP P = .06). One third of the analyzed samples had conflicting methylation results when comparing the
data from the qMSP and pyrosequencing. The overall survival analysis shows that these patients have an
intermediate prognosis between the groups with concordant MGMT promoter methylation results when
comparing the two methods.

Conclusion: In our opinion, MGMT promoter methylation analysis gives sufficient prognostic information to merit
its inclusion in the standard management of patients with high-grade gliomas, and in this study pyrosequencing
came across as the better analytical method.

Keywords: Glioma, Glioblastoma, MGMT, Methylation, Gene expression, Low-grade glioma, High-grade gliomas,
Pyrosequencing, qMSP, RT-PCR

Background
Gliomas are histologically divided into several sub-
groups including astrocytomas, oligodendrogliomas,
and oligoastrocytomas and are graded from I to IV
according to the WHO classification [1]. Prognosis is
highly variable depending on histopathology, grade,

patient age, and genetic tumor factors such as the pre-
sence of a 1p/19q co-deletion, IDH1 and IDH2 muta-
tions, and MGMT promoter methylation [1,2]. The
most common glioma subtype in adults is glioblastoma
(GBM) with an annual incidence of 3-4/100 000 [1].
This is also the subgroup with the least favorable prog-
nosis. In 2005, Stupp and coworkers reported a 2.5
months increase in median overall survival for GBM
patients when adding concomitant and adjuvant temo-
zolomide (TMZ) to postoperative radiotherapy [3]. It
should be noted, however, that clinical trials tend to
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report higher median overall survival rates than retro-
spective studies, possibly due to selection bias [1].
Therefore, it is not surprising that a retrospective
population-based Norwegian study reported a lower
median overall survival for GBM patients (9.9 months)
than that of the Stupp study patients (14.6 months and
12.1 months) [3,4].
About 5% of the DNA methylation induced by TMZ

is located at the O6-position of guanine and methylation
in this position is considered to be the main contributor
to the cytotoxic effect [5-7]. The DNA repair enzyme
O-6-methylguanine-DNA methyltransferase (MGMT)
removes methyl groups from the O6-position of guanine
and the expression of MGMT is therefore thought to
inhibit the cytotoxic effect of TMZ [5,6]. Even though
the first studies suggesting that MGMT promoter hyper-
methylation was an important molecular marker in
high-grade gliomas were published almost a decade ago
[8-10], the extent of its positive prognostic and predic-
tive value in the different grades of gliomas remains to
be determined [11]. Further, though several studies indi-
cate that MGMT promoter methylation is a prognostic
marker [11], there is no clear consensus as to which
detection method should be preferred or what constitu-
tes optimal threshold values for scoring samples as
methylation positive. As a result, a wide range of
reported glioma MGMT methylation frequencies can be
seen (Additional file 1: Tables S1 and S2) [11]. We have
used two independent quantitative methylation detec-
tion methods, quantitative methylation specific polymer-
ase chain reaction (qMSP) and pyrosequencing, to
analyze a large series of gliomas. We also analyzed the
gene expression level of MGMT in the majority of these
samples. To illustrate the variability in methylation fre-
quencies and methylation detection methods, we sys-
temized publications reporting MGMT promoter
methylation in a tabular overview (Additional file 1:
Tables S1 and S2).

Materials and methods
Patients and samples
Tumor samples from 134 glioma patients (diffuse
astrocytoma WHO grade II (n = 10), oligodendro-
glioma WHO grade II (n = 6), oligoastrocytoma WHO
grade II (n = 17), low-grade neuroepithelial tumour
not otherwise specified (n = 2), anaplastic astrocytoma
WHO grade III (n = 4), anaplastic oligodendroglioma
WHO grade III (n = 6), anaplastic oligoastrocytoma
WHO grade III (n = 3), glioblastoma WHO grade IV
(n = 86)) and four meningioma patients who under-
went surgery at the Department of Neurosurgery (Oslo
University Hospital) between January 2005 and January
2009 were included in this study. The meningioma
samples served as MGMT promoter methylation

negative controls [12]. Histological diagnoses were
reviewed by an expert neuropathologist (author D.S.).
Patients alive were included following written,
informed consent whereas permission to include
deceased patients was obtained from The National
Health Authorities. The study was approved by the
Regional Ethics Committee (S-06046) as well as the
Institutional Study Board.

DNA isolation and bisulfite conversion
DNA was extracted from fresh frozen tissue using a
standard phenol-chloroform procedure and its quantity
and quality was measured using a NanoDrop ND-1000
Spectrophotometer (Thermo Fisher Scientific).
Unmethylated cytosine residues were converted to uracil
by bisulfite treatment of 1.3 μg DNA using the EpiTect
Bisulfite Kit (Qiagen) according to the manufacturers’
protocol. After conversion, DNA was eluted in buffer
(Qiagen) to a final concentration of 30 ng/μl.

Quantitative methylation specific polymerase chain
reaction
MGMT promoter methylation was quantitatively
assessed by two qMSP assays, each covering 11 CpG
sites (CpGs). The two assays analyzed CpGs in partially
overlapping regions (Additional file 1: Figure S1), but
detected methylation on opposite DNA strands. Primers
(Medprobe) and 6-FAM labeled minor groove binder
(MGB) probes (Applied Biosystems, Life Technologies)
were modified from two previously reported assays
[13,14] to adjust the melting temperature to 60°C for
primers and 70°C for probes. Amplification of a part of
the ALU-element (ALU C4) was used for normalization
[15]. Primers and probe sequences are listed in Table 1.
Amplification reactions were carried out in triplicate in
384 well plates using the 7900HT Fast-Real time PCR
machine (Applied Biosystems, Life Technologies). The
total reaction volume was 20 μl and contained 30 ng
bisulfite treated DNA, 0.9 μM forward and reverse pri-
mer, 0.2 μM probe, and 1× TaqMan Universal PCR
Mastermix (No AmpErase UNG; Applied Biosystems,
Life Technologies). The PCR program included initial
denaturation at 95°C for 10 min followed by 45 cycles
of 95°C for 15 s and 60°C for 60 s. Results were pro-
cessed and exported using default settings in the soft-
ware SDS 2.2.2 (Applied Biosystems, Life Technologies).
Each plate included several non-template controls
(water), an unmethylated control (bisulfite treated nor-
mal leukocyte DNA), and a methylated control (bisulfite
converted in vitro methylated human DNA; Chemicon,
Millipore). To quantitate the amount of fully methylated
alleles in each reaction, a standard curve was generated
for each plate using a serial dilution of the methylated
control (32.5-0.052 ng).
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Samples with a Ct-value above 35 were censored
(resulting in a quantity of 0). The percentage of methy-
lated reference (PMR) was calculated for each sample
from the median quantity value from the triplicates by
dividing the MGMT/ALU quantity ratio in the target by
the MGMT/ALU quantity ratio in the methylated con-
trol, and multiplying by 100. A threshold value for scor-
ing methylation positive samples was defined based on
the qMSP result of four meningiomas, which all had
PMR values of zero in both qMSP assays. Only samples
with a PMR value above zero in both assays were scored
as methylation positive. Representative PCR products
from both reactions were sequenced in order to verify
the fragment identity.

Pyrosequencing
Five CpG sites in the MGMT promoter were analyzed
by pyrosequencing using the PyroMark MD System
(Qiagen). Bisulfite treated DNA was amplified in a PCR
reaction using primers from the PyroMark Q96 CpG
MGMT kit (part number 972032, Qiagen). In addition
to the samples, each run included a non-template con-
trol (water), an unmethylated control (bisulfite treated
normal leukocyte DNA), and a methylated control
(bisulfite converted in vitro methylated human DNA).
The amplification was carried out in 96-well plates and
the PCR reaction and cycling conditions were according
to the kit manual. Subsequent sample preparation and
pyrosequencing was performed as described in the Pyro-
Mark MD Sample Prep Guidelines. In brief, the double
stranded PCR products were denatured in NaOH and
washed before a sequencing primer was annealed. The

pyrosequencing reaction starts from the 3’-end of the
sequencing primer. Nucleotides (A, T, C, and G) were
dispensed into each sample well, one at a time. When-
ever a base complementary to the base in the PCR pro-
duct is added, it is incorporated into the growing DNA
strand, resulting in an enzymatic cascade and produc-
tion of light. The light intensity is measured at each
dispensation and presented graphically in a pyrogram.
The dispensation order was generated automatically by
the Pyromark CpG Software 1.0.11 and modified
according to recommendations by the provider (two
dispensations added). The dispensation order was
GTCGCTTAGTCTGTTCGTATCAGTCGTCA (extra
dispensations in bold). The extra C dispensation in the
beginning of the sequence served as a bisulfite control.
The additional T dispensation was included to remove
background noise in the following CpG site, thus the
peak was excluded as a reference peak in data analysis.
The minimal signal value was set to 100 as recom-
mended in the Pyromark CpG Software user manual.
Apart from these changes, the results were analyzed
using default software settings.
The pyrosequencing threshold was determined from

the mean methylation value in the five analyzed CpG
sites and the mean standard deviation (X + 2SD) in the
four meningiomas. Glioma samples were scored as
methylation positive by pyrosequencing if all five CpG
sites had methylation values higher than the resulting
threshold of 2.68%.

MGMT expression analysis by real-time reverse
transcriptase PCR
Total RNA was extracted from 81 of the 134 glioma
samples. The tissue samples were stored frozen in RNA-
later and total RNA was extracted using a standard TRI-
zol protocol. RNA quantity and integrity were examined
using a NanoDrop ND-1000 Spectrophotometer
(Thermo Fisher Scientific) and an Agilent BioAnalyzer
2100 (Agilent Technologies), respectively. Total RNA
was reverse transcribed using cDNA by random hex-
amer primers and the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Life Technolo-
gies) according to the manufacturers’ protocol. The real-
time PCR was carried out in triplicates in 384 well
plates using the 7900HT Fast-Real time PCR machine
(Applied Biosystems, Life Technologies). The total reac-
tion volume was 20 μl and contained 20 ng cDNA, 1×
TaqMan Universal PCR Mastermix (Applied Biosystems,
Life Technologies), and 1× TaqMan Gene Expression
assay (Applied Biosystems, Life Technologies; see
below). The PCR was run at 50°C for 2 min, 95°C for 10
min, and 40 cycles of 95°C for 15 s and 60°C for 60 s.
Each sample was analyzed with two different TaqMan
Gene Expression Assays for MGMT (Hs01037698_m1

Table 1 Primers and probes used for quantitative
methylation-specific polymerase chain reaction (qMSP)

Assay Sequence

MGMT qMSPa

Forward primer GCGTTTCGACGTTCGTAGGT

Reverse primer CACTCTTCCGAAAACGAAACG

Probe 6FAM-AAACGATACGCACCGCGA-MGB

MGMT_1 qMSPb

Forward primer CGAATATACTAAAACAACCCGCG

Reverse primer TTTTTTCGGGAGCGAGGC

Probe 6FAM-CGCGATACGCACCGTTTACG-MGB

ALU qMSPc

Forward primer GGTTAGGTATAGTGGTTTATATTTGTAATTTTAGTA

Reverse primer ATTAACTAAACTAATCTTAAACTCCTAACCTCA

Probe 6FAM-CCTACCTTAACCTCCC-MGB

Abbreviations: qMSP, quantitative methylation-specific polymerase chain
reaction; MGB, minor groove binder

a) Modified after Rivera et al., Neuro Oncol. (2010)

b) Modified after Hoque et al., J. Natl. Cancer Inst. (2006)

c) Weisenberger et al., Nucleic Acids Res. (2005)
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and Hs00172470_m1; part number 4331182, Applied
Biosystems, Life Technologies) as well as two endogen-
ous controls (ACTB; part number 4352935E, and GUSB
part number 4333767 F, Applied Biosystems, Life Tech-
nologies). The median result in each triplicate was used
for data analysis.
Each plate included several non-template controls and

a standard curve generated by a serial dilution of total
cDNA reverse transcribed from Universal Human Refer-
ence RNA (Stratagene, Agilent Technologies). Ct-values
were determined automatically with the default settings
in the software SDS 2.2.2 (Applied Biosystems, Life
Technologies) and converted to quantity using the stan-
dard curves. Samples with a Ct-value above 35 were
censored. The quantity was normalized by dividing the
quantity of MGMT expression by the average quantity
of ACTB and GUSB.

Statistical analyses
Statistical analyses were performed in SPSS 16.0. (SPSS
Inc.). We used McNemar’s chi-squared test for compari-
son of the two methylation detection methods and Krus-
kal-Wallis’ rank sum test to determine potential
differences in methylation level between high- and low-
grade gliomas. Overall survival analysis was performed
using the Kaplan-Meier procedure and included all pri-
mary glioblastoma patients who were treated with stan-
dard radiotherapy (2 Gy × 30) and concomitant, and in
some cases adjuvant, TMZ (n = 58). Patients’ date of
death was collected from the National Population Register.
Survival was calculated from date of first surgery. Log-rank
test was based on 24 months overall survival. T-tests for
independent samples were performed to compare average
gene expression of MGMT in samples with versus samples
without a methylated MGMT promoter. All P-values <
0.05 were considered statistically significant.

Results
MGMT promoter methylation status
The results of the two methylation detection methods,
qMSP and pyrosequencing, were compared (McNemar’s
chi-squared; P < .001). Using pyrosequencing, 66% of
the samples were scored as methylation positive,
whereas qMSP analysis resulted in 34% positive samples.
The percentage of methylated samples, the interquartile
range of the PMR values, and pyrosequencing results
are summarized in Table 2. All glioma samples scored
as methylated by qMSP were also found methylated by
pyrosequencing (n = 46). Likewise, another 46 glioma
samples scored as unmethylated by qMSP were also
found unmethylated by pyrosequencing. A total of 42
glioma samples were scored as methylated by pyrose-
quencing and unmethylated by qMSP. All samples with
PMR values above zero in one of the two qMSP assays

(n = 16) were detected as methylation positive by pyro-
sequencing. The methylation levels (amount of methyla-
tion) determined by pyrosequencing and the MGMT_1
qMSP assay were significantly lower in methylated low-
grade gliomas compared to methylated high-grade glio-
mas, P = .003 and P = .018, respectively. However, the
difference was not statistically significant when testing
methylation levels determined by the MGMT qMSP
assay (P = .208).

MGMT promoter methylation status and survival of
primary glioblastoma patients
Regardless of the method used to determine methylation
status, the 24-months overall survival curves for primary
glioblastoma patients receiving standard radiotherapy
and at least concomitant TMZ displayed a trend
towards better survival in the patient group with methy-
lated MGMT promoter than in the patient group with
unmethylated MGMT promoter (log-rank test, P = .06
and P = .02 for qMSP and pyrosequencing, respectively;
Figure 1A and 1B). Median overall survival in the
patient group with methylated MGMT promoter was
about 5 months longer than the median overall survival
for patients with an unmethylated MGMT promoter.
Patient characteristics and results from the overall survi-
val analysis are summarized in Table 3. Overall survival
for patients with conflicting MGMT promoter methyla-
tion results as assessed by qMSP and pyrosequencing
was intermediate when compared to the two groups of
patients with concordant results (Figure 1C).

MGMT gene expression in samples with and without
MGMT promoter methylation
The average gene expression value in samples with
methylated MGMT promoter was significantly lower
than the average gene expression value in samples with
unmethylated MGMT promoter (P < 0.01) regardless of
methylation detection method (Figure 2). The difference
was statistically significant also after elimination of the
most evident outlier. The scatter plots (Figure 3) show
the gene expression level in samples where we also had
access to karyotypic and/or CGH data [16,17] (author
H-S. S. Dahlback, unpublished data) (n = 52).

Discussion
Reported frequencies of MGMT promoter methylation
in subgroups of gliomas vary considerably, as shown in
Additional file 1: Tables S1 and S2. Various methylation
detection methods and different primer sets and thresh-
old values have been used. In the present study, we
report MGMT promoter methylation frequencies in
gliomas determined by qMSP (low-grade gliomas 26%
and high-grade gliomas 37%) as well as by pyrosequen-
cing (low-grade gliomas 97% and high-grade gliomas
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55%). It should be noted that the CpG sites interrogated
in the qMSP and pyrosequencing assays are only par-
tially overlapping (Additional file 1: Figure S1), and cau-
tion should therefore be made when directly comparing
the results. The MGMT promoter is typically reported
methylated in 30-60% of glioblastomas [11] and in 30-
90% of low-grade gliomas [12,18]. Compared to these
reports, our qMSP methylation frequencies are in the
lower range whereas the pyrosequencing methylation
frequencies are in the upper range.
The vast majority of previous studies of MGMT pro-

moter methylation in gliomas have used gel based
methylation-specific PCR (MSP), which is a qualitative
and time-consuming method. The manual methylation
scoring based on interpretation of gel band intensities
will vary in stringency level between labs, which, in
addition to the use of different primers, may in part
explain some of the observed difference in results

observed from MSP based studies. This is exemplified
by two works using the same primer sets but reporting
very different methylation frequencies of 23% and 44%
in newly diagnosed glioblastoma samples [19,20]. In
contrast to MSP, qMSP is a quantitative, standardized,
high-throughput method which is easy to perform and
the results are easy to evaluate. Thus, the method is
more suitable for use in routine testing. To detect
methylation by amplification of methylated alleles in
MSP and qMSP, all CpG sites on the same DNA strand
covered by the primers have to be methylated. Com-
pared with traditional MSP, qMSP is even more conser-
vative as it includes a methylation-specific probe and
thereby typically covers more CpG sites that all have to
be methylated. This may lower the sensitivity of the
assay, but more importantly, increases the specificity, as
underscored by Parella et al. who analyzed MGMT pro-
moter methylation using both MSP and qMSP assays. In

Table 2 MGMT methylation frequencies and methylation level in methylated glioma samples

Group qMSP results Pyrosequencing results

Median and IQR Median and IQR

calculated from PMR calculated from

Methylated samples MGMT
assay

MGMT_1
assay

Methylated samples mean CpG methylation

Low-grade gliomas 9/35
(25.7%)

3.30
(0.78-19.66)

0.50
(0.29-2.57)

34/35
(97.1%)

16.98
(10.97-38.29)

Astrocytoma
WHO grade II

2/10
(20.0%)

1.19
(0.85-1.54)

0.30
(0.29-0.30)

10/10 (100.0%) 12.56
(7.24-16.68)

Oligodendroglioma
WHO grade II

1/6
(16.7%)

0.78
-

0.87
-

5/6
(83.3%)

29.51
(24.23-33.17)

Oligoastrocytoma
WHO grade II

6/17
(35.3%)

11.72
(3.42-24.16)

1.54
(0.32-7.83)

17/17 (100.0%) 24.90
(14.41-47.52)

Low-grade neuroepithelial tumours
(not otherwise specified)

0/2
(0.0%)

- - 2/2
(100.0%)

6.83
(5.33-8.32)

High-grade gliomas 37/99
(37.4%)

9.18
(4.39-17.81)

5.59
(1.89-12.37)

54/99
(54.5%)

47.14
(18.50-62.87)

Anaplastic astrocytoma
WHO grade III

1/4
(25.0%)

24.19
-

22.35
-

2/4
(50.0%)

55.82
(52.95-58.70)

Anaplastic oligodendroglioma
WHO grade III

6/6
(100.0%)

19.30
(7.71-54.53)

11.61
(6.68-16.09)

6/6
(100.0%)

70.85
(52.98-82.52)

Anaplastic oligoastrocytoma
WHO grade III

1/3
(33.3%)

17.81
-

0.90
-

2/3
(66.7%)

52.99
(48.03-57.94)

Glioblastoma
WHO grade IV

29/86
(33.7%)

7.98
(4.00-14.55)

5.39
(1.89-11.37)

44/86
(51.2%)

43.31
(12.05-61.04)

Primary glioblastoma 27/80
(33.8%)

8.67
(3.85-15.33)

5.59
(1.80-11.48)

40/80
(50.0%)

40.68
(11.12-59.05)

Included in survival analysisa 19/58
(32.8%)

5.53
(2.58-10.42)

3.22
(1.14-10.26)

29/58
(50.0%)

34.88
(10.64-48.73)

Secondary glioblastoma 2/6
(33.3%)

5.76
(5.18-6.34)

2.75
(2.41-3.08)

4/6
(66.7%)

55.26
(42.67-63.93)

All glioma samples 46/134
(34.3%)

8.33
(3.40-18.55)

4.36
(0.88-11.54)

88/134 (65.7%) 34.03
(12.42-54.83)

Abbreviations: PMR, Percentage of methylated reference, qMSP, quantitative methylation specific PCR, IQR, interquartile range

a)Primary glioblastoma patients treated with standard radiation and at least concomitant temozolomide
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glioma samples the two methods showed good concor-
dance, whereas the results from normal brain samples
demonstrated that MSP may hold a higher risk of false
positive results [21]. In the present study, we used two
overlapping qMSP assays and only scored samples as
methylated if they had a positive PMR value in both
assays. The results from the two assays were generally
overlapping. Of the 134 analyzed gliomas samples only
16 of them had conflicting methylation status from the
qMSP assays. The PMR-values seemed to be somewhat
higher in one of the qMSP assays. This is probably a
result of the inclusion of different CpG sites in the two
assays (Additional file 1: Figure S1). The conservative
nature of the qMSP assay may explain why our qMSP
methylation frequencies are in the lower range of pre-
viously reported MSP results [11,12,18]. One of the pri-
mer/probe sets used in the present study corresponds to
the assay used by Parrella and coworkers [13,21]. The
second qMSP assay is modified after a recent publica-
tion by Rivera et al. [14] who found MGMT promoter
methylation in 24% of GBM patients, which is similar to
the methylation frequency found by us.
As expected, the MGMT promoter methylation fre-

quencies as measured by pyrosequencing were found to
be in the upper range compared to previous MSP based
findings. In contrast to MSP and qMSP, the pyrose-
quencing technique is able to detect low levels of
methylation because methylation in each CpG site is
measured independently of the methylation status in
surrounding CpG sites. Indeed, our methylation fre-
quency in high-grade gliomas (55%) is highly concordant
with the GBM methylation frequency recently deter-
mined in a pyrosequencing work by Dunn et al. (53%)
[22].
Choice of threshold values for scoring samples as

methylation positive or not may also explain some of
the differences observed in reported methylation fre-
quencies. Ideally, the threshold value should be deter-
mined using a test series of a large number of normal
tissue samples as well as tumor samples. The threshold
value can thereafter be chosen to give a high sensitivity
(with the risk of producing false positives) or a high spe-
cificity (with the risk of failing to identify all positive
cases as such). We have used high-quality DNA
extracted from fresh frozen tissue for all methylation
analyses. In some neurooncology centers sampling of
fresh frozen tissue is not a standard procedure, hence
formalin-fixed paraffin embedded (FFPE) tissue is a fre-
quently used DNA source. All MGMT promoter frag-
ments amplified in the present study are short (qMSPs
83-119 bp and pyrosequencing ~100 bp) and will most
likely be amplifiable also in DNA extracted from FFPE
tissue. Lacking access to normal brain tissue, we used
four benign meningioma samples to set the threshold
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Figure 1 Overall survival in primary glioblastoma patients
treated with standard radiotherapy and concomitant
temozolomide. (A) Methylation status based on results from qMSP.
Blue line; methylated, red line; unmethylated. (B) Methylation status
based on results from pyrosequencing. Blue line; methylated, red
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Abbreviation: qMSP, quantitative methylation specific PCR
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values for scoring samples as methylation positive. The
threshold values were determined so that all the menin-
giomas were scored as methylation negative. These
benign tumors showed little (pyrosequencing, mean
methylation range 1.39-1.55%) to no (qMSP, PMR 0% in
both assays) MGMT promoter methylation, resulting in
low threshold values, thus supporting the assumption
that meningiomas are suitable alternatives to normal tis-
sue samples for threshold determination. However, this
should be confirmed by validation studies in indepen-
dent sample series. Brain tissue from surgery in epileptic

patients is an alternative to the meningioma tissue for
establishing cutoff values.
In accordance with previous reports, our results

show that the overall survival for patients with a
methylated MGMT promoter is better than for
patients with an unmethylated promoter [10,20,23,24].
The observed difference at 24 months was significant
based on the pyrosequencing results but only border-
line significant based on the qMSP results. The log-
rank test results indicate that both methylation detec-
tion methods are able to identify primary glioblastoma

Table 3 Patient characteristics and results of survival analysis for primary glioblastoma patients when stratified by
MGMT methylation status

Overall survival MGMT methylation status

Total qMSP Pyrosequencing

Methylated Unmethylated Methylated Unmethylated

Patients (n) 58 19 39 29 29

Male/Female 31/27 10/9 21/18 15/14 16/13

Mean agea

(Standard deviation)
58.5
(9.1)

57.5
(8.7)

59.0
(9.3)

59.3
(8.5)

57.7
(9.7)

Median survivalb

(Standard error)
13.1
(1.1)

17.6
(4.2)

12.2
(1.0)

16.1
(3.7)

11.5
(0.4)

2-years overall survival (%)
(Standard error)

21.8
(0.06)

35.5
(0.11)

15.4
(0.06)

33.6
(0.09)

10.3
(0.06)

a)Years; b) Months

Gene expression assay
Assay 2Assay 1

G
en

e 
ex

pr
es

si
on

 (q
ua

nt
ity

)

6

5

4

3

2

1

0

Gene expression assay
Assay 2Assay 1

6

5

4

3

2

1

0

G
en

e 
ex

pr
es

si
on

 (q
ua

nt
ity

)
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Figure 2 Gene expression level of MGMT is associated with promoter DNA methylation status. MGMT gene expression in methylated
(blue box plots) and unmethylated (red box plots) tissue samples analyzed by two different primer/probe sets (Assay 1; Hs00172470_m1 and
assay 2; Hs01037698_m1). (A) Methylation status based on results from qMSP. (B) Methylation status based on results from pyrosequencing.
Abbreviation: qMSP, quantitative methylation specific PCR
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patients with a somewhat better prognosis. However,
the survival curve differences are more distinct when
using the pyrosequencing based methylation status,
implying that this is the better method to use for esti-
mating the prognosis. These results are in line with
the observation that the patients with non-concordant
methylation findings (unmethylated by qMSP and
methylated by pyrosequencing) showed a trend
towards better survival than patients with unmethy-
lated MGMT promoter by both methods (Figure 1C).
The last mentioned finding should, however, be vali-
dated in an independent sample set. Nevertheless,
based on the observations done here, it could be
argued that a primary glioblastoma should be
regarded MGMT promoter methylated if the pyrose-
quencing result is positive. Because all glioblastoma
patients receive TMZ as part of the Stupp regimen,
the methylation status of the MGMT promoter does
not change the therapeutic regime today. Nonetheless,
it is a prognostic marker [11] of clinical interest and
may be relevant for evaluation of pseudoprogression
[24]. It is also interesting that, independent of the
method used, the methylation level (amount of
methylation) observed in methylation positive low-
grade gliomas is low compared to the level observed
in methylation positive high-grade gliomas. This has
not been reported previously and may in part explain
the large difference in methylation frequency as
assessed by qMSP and pyrosequencing in low-grade

gliomas. The clinical relevance of this finding remains
to be determined and the data should be validated in
an independent data set. Nevertheless, the overall sur-
vival analysis, which includes GBM with a low methy-
lation level, suggests that pyrosequencing is the better
method for predicting prognosis in primary GBM
patients. This may also suggest an advantage of a low
methylation level in low-grade gliomas. There are not
many studies reporting MGMT promoter methylation
frequencies in large series of low-grade gliomas. How-
ever, two studies analyzing 68 and 185 low-grade glio-
mas report methylation frequencies of 93% and 81%,
respectively, using the same MSP primers in a nested
two-stage approach [18,25]. These frequencies match
our frequency (97%) detected by the sensitive pyrose-
quencing approach. However, other studies with
smaller sample series report lower frequencies in the
range 40-50% [26-29] when analyzed by conventional
MSP.
We found a significant association between MGMT

promoter methylation and reduced gene expression,
regardless of methylation detection method and gene
expression assay used. Based on this, one could suggest
that the gene expression level might be analyzed instead
of promoter methylation. However, the gene expression
level in methylated and unmethylated samples shows
considerable overlap (Figure 2) which may be due to
lack of a linear relationship between the region analyzed
for promoter methylation and gene expression. The
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Methylated 
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Figure 3 Scatter plots of MGMT gene expression quantity in methylated and unmethylated samples. Red color indicates samples with
negative methylation status by qMSP and pyrosequencing, blue color indicates samples with positive methylation status by qMSP and
pyrosequencing, and green color indicate samples with non-concordant methylation status in the qMSP and pyrosequencing analysis. Circles
indicate samples with loss of 10q26, whereas dots represent samples without loss of this region. Plots are based on the normalized gene
expression detected by primer/probe set Hs00172470_m1. The plots based on the normalized gene expression detected by the other primer/
probe set, Hs01037698_m1, were similar (data not shown). Abbreviation: qMSP, quantitative methylation specific PCR
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most commonly analyzed region in the MGMT gene
promoter covers 9 of the totally 97 CpG sites in the
promoter, and it has been suggested that methylation in
some specific CpG sites correlates better with reduction
in gene expression level than analysis of the common
MSP region (Additional file 1: Figure S1) [30]. On the
other hand, factors such as contamination with normal
cells and loss of one MGMT allele may also influence
the detected gene expression level. For a subset of the
samples with gene expression data and methylation sta-
tus, we had access to karyotypic and/or CGH data
[16,17] (author H-S. S. Dahlback, unpublished data). Fig-
ure 3 illustrates that the MGMT gene expression
seemed to be affected by loss of the 10q26 chromosome
band. Interestingly, but not unexpectedly, the loss of
this chromosome band seemed to have a larger impact
on gene expression in samples with a low methylation
level (mean methylation by pyrosequencing < 20%) com-
pared to highly methylated samples. However, these
observations are based on results from small groups and
should be tested in a larger dataset.
It is important to keep in mind that it is the MGMT

protein that counteracts the effect of TMZ by removing
methyl adducts at the O6-position of guanine. A recent
study using human tumor cell lines derived from glio-
blastomas and other tumors concluded that the
response to TMZ is better predicted by MGMT protein
expression than by promoter methylation status [31].
However, although cancer cell lines are useful models
for the in vivo situation, findings should be validated in
patient sample series, and so far immunohistochemical
analyses of the MGMT protein level in human tumor
samples have been inconclusive when correlated with
patient outcome [32].

Conclusions
Taken together, our findings corroborate earlier conclu-
sions that MGMT promoter methylation is of prognostic
value for primary glioblastoma patients [9,10,20,22,33],
and this status is of interest for the patients, their rela-
tives, and treating physicians. Therefore, in our opinion
determination of MGMT promoter methylation status
should be incorporated into standard management pro-
grams for patients with GBM. There is currently no
“gold standard” for which technique to use for assessing
clinically meaningful MGMT promoter methylation. In
this study pyrosequencing came across as a slightly bet-
ter method than qMSP when looking at the prognostic
value of MGMT promoter methylation status in primary
glioblastomas. Both qMSP and pyrosequencing are easy
to perform and high-throughput methods; the choice of
method therefore becomes one based on utilitarian
considerations.

Additional material

Additional file 1: Supplementary material [8-10,12-14,18-30,34-120]:
CpG sites in the MGMT promoter frequently analyzed for DNA
methylation. Description of the criteria for inclusion. Studies of MGMT
promoter methylation in high-grade gliomas-summary of methylation
frequencies and methodological details. Studies of MGMT promoter
methylation in low-grade gliomas-summary of methylation frequencies
and methodological details.
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