Features
|
Threshold
|
Sensitivity (%)
|
Specificity (%)
|
Accuracy (%)
|
MCC
|
AUROC
|
Parameters
|
---|
AAC
|
− 0.1
|
94.49 ± 0.80
|
92.38 ± 1.33
|
93.30 ± 0.84
|
0.87 ± 0.01
|
0.98 ± 0.00
|
g = 0.001, c = 3, j = 3
|
N5 AAC
|
0
|
88.54 ± 0.75
|
90.25 ± 1.87
|
89.44 ± 1.26
|
0.79 ± 0.02
|
0.94 ± 0.00
|
g = 0.0005, c = 2, j = 1
|
C5 AAC
|
0
|
91.13 ± 1.42
|
92.94 ± 1.20
|
92.08 ± 1.05
|
0.84 ± 0.02
|
0.97 ± 0.00
|
g = 0.001, c = 9, j = 1
|
N5C5 AAC
|
− 0.2
|
93.73 ± 0.60
|
92.83 ± 0.76
|
93.26 ± 0.40
|
0.87 ± 0.00
|
0.98 ± 0.00
|
g = 0.0005, c = 1, j = 1
|
DPC
|
0
|
93.79 ± 1.12
|
95.68 ± 0.78
|
94.84 ± 0.72
|
0.90 ± 0.01
|
0.99 ± 0.01
|
g = 0.0005, c = 1, j = 2
|
N5 DPC
|
− 0.1
|
83.42 ± 1.77
|
87.73 ± 2.00
|
85.69 ± 1.10
|
0.71 ± 0.02
|
0.93 ± 0.00
|
g = 1e−05, c = 9, j = 1
|
C5 DPC
|
− 0.1
|
90.21 ± 0.91
|
93.62 ± 0.96
|
92.00 ± 0.50
|
0.84 ± 0.01
|
0.97 ± 0.00
|
g = 0.0005, c = 1, j = 2
|
N5C5 DPC
|
− 0.2
|
93.60 ± 0.72
|
92.67 ± 1.16
|
93.11 ± 0.70
|
0.86 ± 0.01
|
0.98 ± 0.00
|
g = 0.0001, c = 1, j = 1
|
N5 bin
|
− 0.1
|
86.91 ± 0.82
|
88.81 ± 1.47
|
87.91 ± 0.73
|
0.76 ± 0.01
|
0.94 ± 0.00
|
g = 0.5, c = 2, j = 1
|
C5 bin
|
− 0.2
|
91.18 ± 0.92
|
86.61 ± 1.68
|
88.80 ± 1.14
|
0.78 ± 0.02
|
0.96 ± 0.00
|
g = 0.5, c = 1, j = 2
|
N5C5 bin
|
0.2
|
89.20 ± 1.11
|
91.14 ± 1.61
|
90.22 ± 1.05
|
0.80 ± 0.02
|
0.96 ± 0.00
|
g = 0.05, c = 1, j = 4
|
N10 bin
|
− 0.2
|
86.39 ± 2.73
|
89.68 ± 1.79
|
88.42 ± 1.05
|
0.76 ± 0.02
|
0.94 ± 0.01
|
g = 0.1, c = 2, j = 2
|
C10 bin
|
− 0.2
|
79.87 ± 2.30
|
86.49 ± 2.43
|
83.96 ± 1.91
|
0.66 ± 0.03
|
0.90 ± 0.01
|
g = 0.05, c = 3, j = 1
|
N10C10 bin
|
− 0.4
|
86.89 ± 2.70
|
91.62 ± 2.92
|
89.83 ± 1.31
|
0.79 ± 0.02
|
0.96 ± 0.00
|
g = 0.1, c = 1, j = 1
|
AAC + motif
|
− 0.1
|
95.51 ± 0.86
|
95.35 ± 0.85
|
95.42 ± 0.77
|
0.91 ± 0.01
|
0.99 ± 0.00
|
g = 0.001, c = 6, j = 1
|
DPC + motif
|
0
|
94.15 ± 0.92
|
96.94 ± 0.49
|
95.71 ± 0.38
|
0.91 ± 0.00
|
0.99 ± 0.00
|
g = 0.0005, c = 1, j = 2
|
- This table shows average performance (mean ± standard deviation) of models on randomly generated training datasets (bagging)
- MCC Matthews correlation coefficient, AAC amino acid composition, DPC dipeptide composition, N5 first 5 residues from N terminus, C5 first 5 residues from C terminus, N5C5 first 5 residues from N and C terminus respectively, bin binary profile, AAC + motif amino acid composition with MERCI motif score, DPC + motif dipeptide composition with MERCI motif score, SVM parameters g gamma parameter of the radial basis function, c trade-off between training error and margin, j regularization parameter (cost-factor, by which training errors on positive examples outweigh errors on negative examples)