Skip to main content
Figure 1 | Journal of Translational Medicine

Figure 1

From: Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent

Figure 1

Design and characterization of TPR peptide. (A) Predicted structure of designed TPR peptide. The designed TPR peptide obtained from helix A3 of the TPR2A domain and the bound C-terminal region of Hsp90 are shown with stick model using Ras Mol software. Each number indicates the position of amino acids in Hop or Hsp90 proteins. (B) Sensorgrams of Hsp90 or Hsp70 bound to immobilized TPR peptide as determined using the Biacore biosensor. All analytes (0.3, 1, or 2 μM of Hsp90 or Hsp70) were injected over TPR peptide. The progress of binding to immobilized TPR peptide was monitored by following the increase in signal (response) induced by analytes. The thin and thick arrows indicate the start and stop injection, respectively. RU indicates resonance unit. (C) Competition assay for Hsp70 binding to Hop by TPR peptide. Hsp70 (1 μM) was passed over immobilized Hop in the absence (Control) or presence of TPR peptide (700 μM). The SPR signal in the absence of competing peptides was used as a reference (100% binding). Thin and thick arrows indicate start and stop injections, respectively. Equilibrium response levels obtained in the presence of competing peptides - TPR peptide was normalized and plotted against the peptide concentrations as described in the Materials and Methods section (inset graph). (D) Competition for Hsp90 binding to Hop, FKBP5, or PP5 with TPR peptide. Hsp90 (1 μM) was passed over immobilized Hop, FKBP5, or PP5 in the absence or presence of increasing concentrations of TPR peptide (14, 140, or 700 μM). The SPR signal in the absence of competing peptides was used as a reference (100% Hsp90 binding).

Back to article page