Skip to main content
Figure 1 | Journal of Translational Medicine

Figure 1

From: RNA interference: learning gene knock-down from cell physiology

Figure 1

Mechanism of RNA interference (RNAi). The appearance of double stranded (ds) RNA within a cell (e.g. as a consequence of viral infection) triggers a complex response, which includes among other phenomena (e.g. interferon production and its consequences) a cascade of molecular events known as RNAi. During RNAi, the cellular enzyme Dicer binds to the dsRNA and cleaves it into short pieces of ~ 20 nucleotide pairs in length known as small interfering RNA (siRNA). These RNA pairs bind to the cellular enzyme called RNA-induced silencing complex (RISC) that uses one strand of the siRNA to bind to single stranded RNA molecules (i.e. mRNA) of complementary sequence. The nuclease activity of RISC then degrades the mRNA, thus silencing expression of the viral gene. Similarly, the genetic machinery of cells is believe to utilize RNAi to control the expression of endogenous mRNA, thus adding a new layer of post-transciptional regulation. RNAi can be exploited in the experimental settings to knock down target genes of interest with a high specific and relatively easy technology (see text for more details).

Back to article page