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Abstract
Purpose  The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the 
development of T2DM complications. However, currently known risk factors are not good predictors of the onset 
or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid 
composition in patients with T2DM, without and with DR, and search for potential serological indicators associated 
with the development of DR.

Methods  A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated 
Hospital of Xi’an JiaoTong University were selected as the discovery set. One-to-one case–control matching 
was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and 
hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. 
A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM 
patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography–mass 
spectrometry (LC–MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares 
discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable 
importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 
propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings 
in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by 
multiple reaction monitoring (MRM) quantification based on mass spectrometry.

Results  The discovery set showed no differences in traditional risk factors associated with the development of 
DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared 
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Introduction
Type 2 diabetes mellitus (T2DM) is a common chronic 
disease in many countries, and its prevalence is growing 
as people’s lifestyles are changing [1]. Diabetes causes 
various complications, classified as either macrovascular 
complications (such as cardiovascular disease and stroke) 
or microvascular complications (such as kidney disease) 
[2]. Diabetic retinopathy (DR), a specific microvascu-
lar complication of diabetes, is the most common cause 
of vision loss in people of working age [3, 4]. Poor gly-
cemic control, hypertension, and diabetes duration are 
major risk factors for DR [5]. Although intensive risk fac-
tor control reduces the risk of DR progression and vision 
loss, many diabetic patients continue to develop DR with 
strict glycemic and blood pressure control [6]. Despite 
increasing research supporting the efficacy of routine DR 
screening to prevent DR and early treatment to reduce 
the risk of vision loss, there are no specific biomarkers for 
diagnosing the onset and early progression of DR. Addi-
tionally, new and more effective strategies are awaited to 
prevent and treat the progression of DR.

Accumulating evidence suggests that disruption in 
lipid metabolism is an early event in the pathogenesis of 
diabetes complications. Previous studies found that levels 
of multiple lipid species, including glycerophospholipids, 
sphingolipids and glycerolipids, are critical risk factors 
for T2DM and its complications [7, 8]. Lysophosphati-
dylcholine (LPC) is a main glycerophospholipid known 
for its essential role in lipid and glucose metabolism, and 
LPC has been intensively studied in the development of 
metabolic diseases including T2DM [9]. Sphingolipids, 
including ceramides (Cer), sphingomyelins (SM) and 
gangliosides, have a variety of intra- and extracellular 
effects on glucose homeostasis and metabolic disease 
[10] Numerous studies suggest Cer, a crucial lipid inter-
mediate in sphingolipid metabolism, is a major con-
tributing factor for insulin resistance, and inhibition or 
depletion of enzymes driving de novo ceramide synthe-
sis can prevent the development of diabetes in mice [7, 

11, 12]. In contrast, a decrease in very long chain Cer is 
correlated with the development of macroalbuminuria in 
diabetes [13]. Accelerated sphingolipid catabolism’ lead-
ing to an increase in glucosylceramide or glycosphingo-
lipids might contribute to the neuronal pathologies of 
DR [14]. In addition, SM produced by the transfer of a 
phosphocholine moiety from phosphatidylcholine to the 
ceramide backbone has been linked to insulin resistance 
[15, 16] and is also an independent marker of cardiovas-
cular disease [17]. Thus, dysregulated lipid metabolism is 
a major contributor to the pathogenesis of T2DM and its 
complications, and specific lipid species that are respon-
sible for the occurrence of DR are rather obscure.

Lipidomics offers solid platforms for identifying novel 
lipid mediates in biochemical processes of lipid metab-
olism, thus providing new opportunities for disease 
prediction and detection [18, 19]. Lipidome analysis is 
performed by liquid chromatography and electrospray 
ionization-tandem mass spectrometry (LC–MS/MS) 
for molecular lipid identification and quantification and 
multiple reaction monitoring (MRM) for targeted quan-
tification of those lipid species. Lipid-based biomarkers 
offer unique options for precision medicine by provid-
ing sensitive diagnostic tools for disease prediction and 
monitoring [20]. Using a quantitative metabolomics 
approach, Emil et al. compared the aqueous humor and 
serum concentrations of metabolites in senior adults 
with an without diabetes who underwent cataract sur-
gery [21]. However, the field of lipidomics studies of DR 
is still in its early stages, with few studies published and 
little replication of results [22].

In this study, we aimed to find reliable serum lipid-
based biomarkers for the presence of DR in patients with 
T2DM by using two cohorts. To this end, serum samples 
of the discovery cohort was subjected to untargeted 
lipidomics analysis to search for differentially abundant 
lipids between individuals without and with DR. In the 
validation cohort, the observed differential lipid mol-
ecules were validated using mass spectrometry MRM 

with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, 
and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. 
Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer 
and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors 
(e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a 
lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the 
occurrence of DR in T2DM patients.

Conclusion  Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with 
T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be 
potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early 
diagnosis of DR.

Keywords  Type 2 diabetes mellitus, Retinopathy, Lipidomics, Serological markers, Ceramide
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targeting techniques. We hypothesized that DR has a 
distinctive serum lipid signature and that particular lipid 
species can act as biomarkers for T2DM patients with 
DR.

Research design and methods
Participants
A total of 622 participants with T2DM hospitalized in 
the Endocrinology Department of the First Affiliated 
Hospital of Xi’an JiaoTong University were screened as 
the discovery set. Participants with chronic kidney dis-
ease [estimated glomerular filtration rate (eGFR) < 90 
(mL/min/1.73 m2)] were excluded from the selection. 
We conducted pair matching according to the traditional 
risk factors for DR (including age, duration of diabe-
tes, HbA1c level, and hypertension). For the discovery 
cohort, we selected 42 T2DM patients with DR (DR 
group). The control participants were 42 T2DM patients 
without DR (NDR group), and they were matched to 
patients in the DR group by age (in 5-year bands), dia-
betes duration (in 5-year bands), HbA1c levels (in 0.5% 
bands), and hypertension status.

Lipid markers of DR identified from the discovery 
cohort were quantified in a separate sample cohort (vali-
dation cohort). We first screened 531 T2DM patients. 
Individuals with chronic kidney disease [eGFR < 90 (mL/
min/1.73 m2)] were excluded from the selection. Then, 
we conducted 1:1 propensity score matching (PSM) 
(matching tolerance = 0.02) by age, diabetes duration, 
HbA1c level, hypertension status, sex, BMI, systolic 
blood pressure (SBP), diastolic blood pressure (DBP), and 
eGFR. For the validation cohort, 95 T2DM patients with 
DR (DR group) and 95 T2DM patients without DR (NDR 
group) were included.

Sample collection
Fasting blood samples and clinical data were collected 
from the individuals. All blood samples were collected at 
the First Affiliated Hospital of Xi’an JiaoTong University 
physical examination center. Blood samples were centri-
fuged for 20 min at 1500 rpm and 4 °C. Then, serum was 
collected and stored at -80 °C until analysis. HbA1c was 
measured using an automatic HbA1c analyzer (TOSOH 
BIOSCIENCE, INC.; HLC-723G8). Total cholesterol 
(CHOL), triglyceride (TG), high density lipoprotein-
cholesterol (HDL-c), low density lipoprotein-cholesterol 
(LDL-c), uric acid (UA), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), alkaline phos-
phatase (ALP), gamma-glutamyl transpeptidase (GGT), 
total bilirubin (TBIL), direct bilirubin (DBIL), total pro-
tein (TP), albumin (ALB), glucose (GLU), blood urea 
nitrogen (BUN), creatinine (CRE) were measured using 
standard reagents on an automatic biochemistry analyzer 
(HITACHI, Inc.; LAbOSPECT, 008AS). Blood pressure 

was measured in triplicate using an Omron HBP-9020 
digital automatic blood pressure machine (Kyoto, Japan).

Lipid extraction
The serum samples were thawed slowly at 4  °C, 100 µL 
of the sample was placed in a 96-well plate, 300 µL of 
isopropanol (prechilled at -20  °C) spiked with internal 
standards (SPLASH® LIPIDOMIX® Mass Spec Standard, 
Avanti, USA) was added, and the samples were vor-
texed and mixed for 1 min and then centrifuged at 4  °C 
for 20 min at 4000 rcf after resting overnight at -20 °C as 
previously reported [23]. The supernatant was injected 
for LC–MS/MS analysis, and 10 µL of each supernatant 
was mixed into quality control (QC) samples to assess 
the reproducibility and stability of the LC–MS analysis 
process.

LC–MS/MS analysis
Lipids were separated and detected by an UPLC 
(CSH C18 column, 1.7  μm 2.1*100  mm, Waters, USA) 
equipped with a Q Exactive Plus high-resolution mass 
spectrometer (Thermo Fisher Scientific, USA) as previ-
ously reported [24]. The following gradient was used for 
elution: 0–2 min, 40-43% mobile phase B (10 mM ammo-
nia formate, 0.1% formic acid, 90% isopropyl alcohol, and 
10% acetonitrile); 2–2.1 min, 43-50% liquid B; 2.1–7 min, 
50-54% solution B; 7–7.1  min, 54-70% liquid B; 7.1–
13 min, 70-99% liquid B with a flow rate of 0.35 mL/min. 
Mobile phase A was an aqueous solution containing 10 
mM ammonia formate, 0.1% formic acid and 60% aceto-
nitrile in water.

All samples were analyzed in data-dependent acquisi-
tion (DDA) mode with the following positive/negative 
ionization settings: spray voltage, 3.8/–3.2  kV; aux gas 
heater temperature, 350  °C; and capillary temperature, 
320 °C. The full scan mass range was 200–2000 m/z with 
70,000 mass resolution at m/z 200 and AGC set to 3e6 
with a maximum ion injection time of 100 ms. The top 
three precursors were selected for subsequent MS frag-
mentation with a maximum ion injection time of 50 ms 
and resolution of 17,500 at m/z 200, and the AGC was 
1e5. The stepped normalized collision energy was set to 
15, 30, and 45 eV.

Data preprocessing and quality control
The raw data obtained from the LC–MS/MS detection 
were imported into LipidSearch v.4.1 (Thermo Fisher Sci-
entific, USA) for lipid identification and quantification. 
The following parameters were used for lipid identifica-
tion and peak extraction: the type of identification was 
Product, the mass deviation of the parent and daughter 
ions was 5 ppm, and the response threshold was set to 
5.0% of the relative response deviation of the daughter 
ions; the quantitative parameters were set to calculate the 
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peak areas of all identified lipids, and the peak extraction 
mass deviation was set to 5 ppm. For ESI + data, [M + H]+, 
[M + NH4]+, and [M + Na] + were selected as adducts, 
while for ESI- data, [M-H]-, [M-2 H]-, and [M-HCOO]- 
were selected as adducts. The peak alignment was per-
formed for all identified lipids, and those not marked as 
“rejected” were considered for inclusion in the subse-
quent analysis.

For data preprocessing, raw data exported from Lipid-
Search were further analyzed by meta X [25]. The data 
preprocessing included (1) Removing lipid molecules 
with more than 50% missing information in QC samples 
and more than 80% missing information in experimental 
samples (i.e., LipidIon in the table); (2) Filling the missing 
values using the k-nearest neighbor (KNN) algorithm; (3) 
Correcting the batch effect using quality control-based 
robust LOESS signal correction (QC-RLSC); (4) Using 
probabilistic quotient normalization (PQN) to normalize 
the data to obtain the relative peak areas; and (5) Remov-
ing the lipid molecules with a coefficient of variation 
(CV) greater than 30% of the relative peak areas from all 
QC samples.

Data quality was assessed by the reproducibility of QC 
sample assays. The assessment included chromatogram 
overlap of QC samples, principal component analysis 
(PCA), number of extracted peaks, and differences in 
peak response intensity.

Data processing
A combination of multivariate statistical analysis and 
univariate analysis was used to screen for lipids of which 
the abundance differed between groups. The multivariate 
statistical analysis methods used were principal compo-
nent analysis (PCA) and partial least squares method-
discriminant analysis (PLS-DA). PCA is an unsupervised 
pattern recognition method, and PLS-DA is a supervised 
pattern recognition method. The univariate analyses 
were fold change (FC) and Student’s t test. The FC was 
obtained by fold change analysis, and the p value pairs 
of the t test were corrected for the false discovery rate 
(FDR) to obtain a q-value. The differential lipid molecule 
screening conditions were as follows: (1) variable impor-
tance in the projection (VIP) ≥ 1 for the first two principal 
components of the PLS-DA model; (2) fold change ≥ 1.2 
or ≤ 0.83; and (3) p value < 0.05.

Targeted lipid quantification by MRM in validation samples
The identified differential lipids were further quanti-
fied by multiple reaction monitoring (MRM). For lipid 
extraction, the procedure was consistent with the untar-
geted experiment as described. The MRM transition list 
is shown in Table S1. For MRM quantification, all valida-
tion samples were analyzed on a QTRAP 5500 mass spec-
trometer with a CSH C18 column (1.7 μm 2.1*100 mm, 

Waters, USA) for separation. All lipids were subjected to 
targeted quantification in ESI + mode with a specific tran-
sition setting.

Statistical analysis
The clinical data of samples are presented as the 
mean ± standard deviation (SD) for normally distributed 
variables or the median (interquartile range) for abnor-
mal distribution. Comparisons between the case group 
and the control group were made using a two-tailed t test 
or Mann-Whitney U test for continuous data and the X2 
test for categorical data. The calculation of the area under 
the curve (AUC) in receiver operating characteristic 
(ROC) curve analysis was used to evaluate the discrimi-
natory ability of the markers. Logistic regression mod-
els were applied to assess the relationship between lipid 
molecules and the presence of DR. The odds ratios (ORs) 
with 95% confidence intervals (CIs) were calculated for 
the molecules with 1-SD changes. The known risk factors 
for DR, such as CHOL, TGs, LDL-c, and HDL-c, were 
added to multivariate logistic regression to calculate the 
adjusted odds ratios. Ordinal logistic regression models 
were used to assess the relationships between lipid mol-
ecules and DR stages [NDR, nonproliferative DR (NPDR) 
and proliferative DR (PDR)].

Results
Characteristics of the discovery cohort
Table  1 shows the clinical characteristics of individuals 
selected for the discovery cohort. There were no signifi-
cant differences in age and sex between the DR and NDR 
groups. In fact, these groups were comparable for most 
metabolic characteristics, such as BMI, diabetes duration, 
and HbA1c, and there were no significant between-group 
differences for hypertension status, antihypertensive 
agent use, hypoglycemic therapy status or NSAID use. 
The blood pressure and glucose of the participants were 
treated and controlled. Compared with control subjects 
with T2DM, T2DM patients with DR had higher levels 
of LDL-c levels, AST, TBIL, and BUN (Table 1 and Table 
S2).

Untargeted lipidome-derived biomarkers for diabetic 
retinopathy: results from the discovery cohort
A total of 1721 lipids were detected. The number of lip-
ids with an RSD (CV) less than or equal to 30% in the 
QC samples was 1421. The ratio of the number of lipids 
with CV less than or equal to 30% to the number of all 
detected lipids in QC samples was 81%.

Fifteen candidate lipids were identified from the dis-
covery cohort. Compared with those of the NDR group, 
the levels of three Cer and seven SM were significantly 
lower in the DR group. In contrast, two SM, two LPC and 
one PC were significantly higher in the DR group (Fig. 1A 
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and B). More specifically, compared with T2DM patients 
without DR, T2DM patients with DR showed lower 
levels of Cer(d18:0/24:0), Cer(d18:0/22:0), Cer(d42:3), 
SM(d22:0/16:0), SM(d18:1/24:1), SM(d42:0), SM(d40:0), 
SM(d39:0), SM(d38:0), and SM(d36:0), and higher levels 
of SM(d20:1/16:1), SM(d34:1), LPC(18:2), LPC(16:0) and 
PC(34:2). The heat map shows the distribution of these 
lipids between individuals of the NDR and DR groups 
(Fig. 1C). The results of ROC analysis and the odds ratios 
of the lipid markers in the basic logistic regression mod-
els are shown in Table 2. The AUC values for the 15 lipids 
ranged from 0.72 to 0.94. All lipids retained significant 
ORs after adjusted for CHOL, TG, LDL-c, and HDL-c 
(adjusted ORs are shown in Table  2). Furthermore, we 
used ordinal logistic regression, which estimated the 
odds of being in one higher category of the DR stage 
(from NDR to PDR) for lipid species, to test the associa-
tions between lipid species and DR stage (Table S3; n = 42 
in the NDR group, n = 37 in the NPDR group, n = 5 in the 
PDR group), and we analyzed the data while excluding 
participants with diabetic macular edema (DME) (n = 4 

in the DR group), as before, all lipids retained significant 
ORs (Table S4).

Characteristics of the validation cohort and targeted 
lipidomics analysis
The 15 differential lipids found from the discovery cohort 
were validated in another set of samples. The clinical 
characteristics of individuals selected for the validation 
cohort are shown in Table 3. Most metabolic and clinical 
features were comparable (Table S5), and there was no 
significant difference in LDL-c between the DR and NDR 
groups.

In the validation cohort, when compared with subjects 
in the NDR group, T2DM patients with DR showed lower 
levels of Cer(d18:0/24:0), Cer(d18:0/22:0), Cer(d42:3) and 
SM(d18:1/24:1) by univariate logistic regression, which 
was consistent with the results of the discovery cohort. 
However, the levels of SM(d20:1/16:1), LPC(18:2) and 
LPC(16:0) were lower in T2DM patients with DR from 
the validation cohort, opposite to the result obtained in 
the discovery cohort (Fig.  2A and B). The AUC values 
for these lipids were higher than 0.61. The other 8 lip-
ids did not significantly differ between the DR and NDR 
groups in the validation cohort (Table 4). Of note, com-
pared with those in T2DM patients, the peak area (after 
Log2 transformation) of Cer(d18:0/24:0) (20.48 ± 0.82 
vs. 20.12 ± 0.99, p = 0.006, Fig.  2C) and Cer(d18:0/22:0) 
(19.91 ± 0.75 vs. 19.64 ± 0.92, p = 0.028, Fig. 2C) remained 
significantly lower in T2DM patients with DR, and the 
levels of these two lipids retained significant ORs when 
adjusted for known risk factors (i.e., CHOL, TG, LDL-c 
and HDL-c). In the ordinal regression, these two lipids 
maintained significant ORs (Table S7, n = 95 in the NDR 
group, n = 87 in the NPDR group; n = 8 in the PDR group), 
and were also significant while excluding patients with 
DME (Table S6, n = 2 in the DR group). These findings 
imply that levels of Cer(d18:0/24:0) and Cer(d18:0/22:0) 
were independent markers for T2DM patients with DR in 
both the discovery cohort (Table 2) and validation cohort 
(Table 4).

Discussion
DR is the most common microvascular complication 
of diabetes and the main factor contributing to visual 
impairment in working-age individuals [3]. T2DM 
patients often develop DR despite of proper control of 
systemic risk factors, indicating the involvement of other 
pathogenic factors for DR development. To find new 
and more effective strategies for preventing and treat-
ing DR, it is necessary for us to identify novel biomark-
ers for DR screening or detection. Lipidomics will aid in 
understanding the mechanism of DR at various stages of 
the disease, early diagnosis, and the identification of new 
therapeutic targets. In this study, by using two clinical 

Table 1  Clinical characteristics of the discovery cohort
NDR group DR group P value

Sex (male/total) 25/42 33/42 0.059
Age (years) 57.7 ± 10.0 56.5 ± 10.8 0.593
BMI (kg/m2) 25.4 ± 3.3 25.1 ± 3.2 0.697
Diabetes duration (years) 11.4 ± 6.7 12.2 ± 5.9 0.557
HbA1c (%) 8.1 ± 1.6 8.1 ± 1.6 0.945
Hypoglycemic therapy 0.086
  Oral hypoglycemic agents 17 10
  Insulin therapy 6 3
  Combination therapy 19 29
Hypertension status 28/42 27/42 0.818
Antihypertensive agents 24/42 27/42 0.503
Lipid-lowering agents 0.708
  Statins 36 38
  Fibrates 2 1
  Others 1 0
Use of NSAIDs 30/42 31/42 0.807
Systolic BP (mmHg) 136 ± 15 140 ± 24 0.370
Diastolic BP (mmHg) 77 ± 11 79 ± 10 0.869
eGFR (mL/min/1.73 m2) 129 ± 34 121 ± 35 0.334
CHOL (mmol/L) 3.87 ± 0.98 4.20 ± 1.24 0.176
TG (mmol/L) 1.47 (1.78) 1.65 (1.36) 0.960
HDL-c (mmol/L) 0.95 ± 0.22 0.97 ± 0.23 0.707
LDL-c (mmol/L) 2.20 ± 0.86 2.66 ± 1.12 0.039
NDR: nondiabetic retinopathy; DR: diabetic retinopathy; HbA1c: glycated 
hemoglobin; systolic BP, systolic blood pressure; diastolic BP, diastolic blood 
pressure; NSAIDs: nonsteroidal anti-inflammatory drugs; eGFR: estimated 
glomerular filtration rate; CHOL: total cholesterol, TG: triglyceride; HDL-c, high-
density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol. 
All data are presented as the mean ± standard deviation (SD) for normally 
distributed data or the median (interquartile range) for abnormal distribution. 
Comparisons between groups were made using a two-tailed t test or Mann-
Whitney U test for continuous data and the X2 test for categorical data



Page 6 of 11He et al. Journal of Translational Medicine          (2024) 22:448 

cohorts, we found that the serum lipidomic profiles in 
T2DM patients with DR showed significant differences 
from those in T2DM patients without DR. The differ-
ential lipid species in the DR group were linked to dis-
turbances in sphingolipid metabolism. Compared with 
those in the NDR group, the levels of Cer(d18:0/24:0) and 
Cer(d18:0/22:0) were significantly lower in the DR group 
after adjusting for covariates, i.e. known risk factors in 
both the discovery and validation cohorts. These findings 

suggest that these two lipid species may be potential 
serological markers for the diagnosis of DR in patients 
with T2DM.

In this study, we found two ceramide molecules that 
were significantly lower in T2DM patients with DR, indi-
cating that they may have disturbed ceramide metabo-
lism compared to T2DM patients without DR. Ceramide 
is sphingolipid [11] and can be found in VLDL, LDL, and 
HDL. Consistent with our findings, Fort et al. found a 

Fig. 1  Lipidome-derived markers identified from the discovery cohort. Lipidomic analysis identified fifteen candidate lipids of which serum levels were 
different between 42 T2DM patients with DR (DR group) and 42 T2DM patients without DR (NDR group) from the discovery cohort. (A) Mean peak in-
tensity of lipids was analyzed after Log2 transformation of the data. (B) Fold change in DR/NDR was analyzed after Log2 transformation of the data. (C) 
Heatmap showing the distribution of lipid markers. Each row in the figure represents a different lipid, and each column represents a sample. Different 
colors indicate different intensities, and Log2 conversion was used for the data
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significantly lower abundance of Cer in central retinal tis-
sue obtained postmortem from T2DM patients with DR 
compared to those without DR [26]. Similarly, ceramide 
levels were shown to be lower and glucosylceramide lev-
els higher in the retinas of diabetic rodents [27]. This indi-
cates that diabetes reduces the retinal ceramide content 
and may suggest that dysregulated sphingolipid metabo-
lism may cause retinal resistance to insulin action [27]. 
These findings imply that ceramide is diverted from the 
overall pools of retinal sphingolipids toward the glycosyl-
ated forms due to hyperglycemia. In contrast, Levitsky et 
al. found that diabetes-induced increases in mitochon-
drial ceramide led to impaired mitochondrial function 
in the retinal pigment epithelial (RPE) cells of the retina 
[28], and disruption of the blood-retinal barrier might 
be caused by diabetes-induced overexpression of acid 
sphingomyelinase. Additionally, inflammation is a com-
mon underlying factor in DR, and inflammation gener-
ates Cer from SM in the serum membrane. This induces 
death receptor ligand formation and leads to apoptosis 
of RPE and photoreceptor cells [29]. In addition to dia-
betes, circulating Cer was shown to strongly correlate 
with future adverse cardiovascular events. It has recently 
been discovered that in individuals with atherosclerotic 
CVD, serum levels of specific Cer species can predict 
the future risk of cardiovascular death. In the Coro-
gene study, higher concentrations of Cer(d18:1/16:0), 
Cer(d18:1/18:0), and Cer(d18:1/24:1) and lower con-
centrations of Cer(d18:1/24:0) were associated with a 
higher risk of fatal myocardial infarction [30]. Our study 
found that Cer(d18:0/24:0) and Cer(d18:0/22:0) were sig-
nificantly lower in T2DM patients with DR compared to 
those without DR, which suggests that different numbers 

Table 2  Results of ROC curve analysis and logistic regression in the discovery cohort
AUC P value OR (95% CI) Adjusted* P value Adjusted* OR (95% CI)

Cer(d18:0/24:0) 0.76 < 0.001 0.20 (0.09–0.47) < 0.001 0.08 (0.02–0.25)
Cer(d18:0/22:0) 0.74 < 0.001 0.23 (0.10–0.52) < 0.001 0.10 (0.03–0.30)
Cer(d42:3) 0.72 0.001 0.21 (0.08–0.54) < 0.001 0.09 (0.02–0.32)
SM(d22:0/16:0) 0.76 < 0.001 0.19 (0.08–0.46) < 0.001 0.06 (0.01–0.25)
SM(d18:1/24:1) 0.82 < 0.001 0.04 (0.01–0.21) < 0.001 0.01 (0.00-0.09)
SM(d42:0) 0.73 < 0.001 0.18 (0.07–0.51) < 0.001 0.05 (0.01–0.20)
SM(d40:0) 0.76 < 0.001 0.15 (0.06–0.39) < 0.001 0.03 (0.01–0.16)
SM(d39:0) 0.77 < 0.001 0.26 (0.13–0.53) < 0.001 0.19 (0.08–0.45)
SM(d38:0) 0.78 < 0.001 0.18 (0.08–0.42) < 0.001 0.05 (0.01–0.19)
SM(d36:0) 0.72 0.001 0.28 (0.13–0.60) < 0.001 0.19 (0.08–0.48)
SM(d20:1/16:1) 0.94 < 0.001 44.85 (8.86-226.99) < 0.001 59.91 (9.18-391.17)
SM(d34:1) 0.85 < 0.001 8.39 (3.05–23.14) < 0.001 7.81 (2.83–21.61)
LPC(18:2) 0.88 < 0.001 59.23 (8.85-396.59) < 0.001 108.93 (11.07-1072.03)
LPC(16:0) 0.83 < 0.001 26.44 (5.26-132.79) < 0.001 45.67 (6.79-307.57)
PC(34:2) 0.89 < 0.001 2.76 (1.84–4.15) < 0.001 3.55 (2.00-6.29)
Cer: ceramides; SM: sphingomyelins; LPC: lysophosphatidylcholines; PC: phosphatidylcholine. The calculation of the area under the curve (AUC) in receiver operating 
characteristic (ROC) curve analysis is used to evaluate the discriminatory ability of markers. Logistic regression models were applied to assess the relationship 
between lipid molecules and the presence of diabetic retinopathy. Total cholesterol (CHOL), triglyceride (TG), high density lipoprotein-cholesterol (HDL-c) and low 
density lipoprotein-cholesterol (LDL-c) were added to multivariate logistic regression to calculate the adjusted* P values and odds ratios (ORs).

Table 3  Clinical characteristics of the validation cohort
NDR group DR group P value

Sex (male/total) 63/95 58/95 0.752
Age (years) 57.7 ± 12.4 57.7 ± 12.5 0.878
BMI (kg/m2) 24.4 ± 3.6 24.1 ± 4.1 0.854
Diabetes duration (years) 12.9 ± 7.0 12.3 ± 6.4 0.882
HbA1c (%) 8.8 ± 2.1 8.9 ± 2.1 0.775
Hypoglycemic therapy 0.077
  Oral hypoglycemic agents 30 18
  Insulin therapy 19 29
  Combination therapy 46 48
Hypertension status 60/95 59/95 0.881
Antihypertensive agents 56/95 59/95 0.656
Lipid-lowering agents 0.165
  Statins 73 80
  Fibrates 7 2
  Others 2 0
Use of NSAIDs 72/95 72/95 1.000
Systolic BP (mmHg) 136 ± 17 138 ± 18 0.447
Diastolic BP (mmHg) 80 ± 11 81 ± 11 0.774
eGFR (mL/min/1.73 m2) 103 ± 15 105 ± 17 0.482
CHOL (mmol/L) 4.00 ± 1.07 3.73 ± 1.04 0.085
TG (mmol/L) 1.30 (1.39) 1.17 (1.14) 0.404
HDL-c (mmol/L) 0.97 ± 0.28 0.95 ± 0.23 0.543
LDL-c (mmol/L) 2.30 ± 0.92 2.18 ± 0.86 0.346
NDR: nondiabetic retinopathy; DR: diabetic retinopathy; HbA1c: glycated 
hemoglobin; systolic BP, systolic blood pressure; diastolic BP, diastolic blood 
pressure; NSAIDs: nonsteroidal anti-inflammatory drugs; eGFR: estimated 
glomerular filtration rate; CHOL: total cholesterol, TG: triglyceride; HDL-c, high-
density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol. 
All data are presented as the mean ± standard deviation (SD) for normally 
distributed data or the median (interquartile range) for abnormal distribution. 
Comparisons between groups were made using a two-tailed t test or Mann-
Whitney U test for continuous data and the X2 test for categorical data
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of carbons and double bonds in ceramides might play 
differential roles in DR and CVD. The distinct ceramides 
and ceramide metabolites involved in metabolic regula-
tion play unanticipated roles [31]. Watt et al. discovered 
that circulating ceramides present in LDL particles were 
sufficient to induce insulin resistance in vitro and in 
vivo [32]. However, how these two identified ceramides 
influence lipid metabolism in T2DM remains unclear 
and needs further exploration. Thus, disturbed Cer 
metabolism may contribute to dysfunction in DR, and 

therapeutic strategies to restore normal Cer metabolism 
might be an effective approach for treatment of DR.

In the discovery cohort, LPC(18:2) and LPC(16:0) were 
significantly higher in T2DM patients with DR. How-
ever, these two lipids were significantly lower in DR in 
the validation cohort. The previous findings point to a 
change in sphingolipid composition between control and 
T2DM [33]. LPC is an inflammatory phospholipid and 
an important atherogenic substance in LDL that contrib-
utes to diabetic complications [34]. Lipoprotein-asso-
ciated phospholipase A2 (Lp-PLA2) plays a crucial role 

Fig. 2  The results of targeted lipidomics analysis in the validation cohort. For the validation cohort, the cases were 95 T2DM patients with DR (DR group), 
and the control subjects were 95 T2DM patients who had no DR (NDR group). (A) Peak area of lipids was analyzed after Log2 transformation of the data. 
(B) Fold change in DR/NDR was analyzed after Log2 transformation of the data. (C) The log2 conversion was used for the intensities of Cer(d18:0/24:0) 
and Cer(d18:0/22:0). All data are presented as the mean ± standard deviation (SD). Each symbol represents an individual participant. *p < 0.05, **p < 0.01, 
pairwise comparisons of change scores between the groups were evaluated by t test
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in diabetes-related retinal vasopermeability, a response 
mediated by LPC, and inhibiting Lp-PLA2 reduces dia-
betes-induced retinal vasopermeability [35]. LPC O-16:0, 
LPC P-16:0, LPC O-18:0, and LPC 18:1 were all found to 
be inversely related to incident T2DM [36]. The differ-
ences between the discovery and validation cohorts may 
be related to the populations studied, medications used, 
and stages of diabetic retinopathy [37].

There are some limitations of this study. First, only a 
Chinese ethnic group was selected, and future validation 
of our findings in other races or ethnic groups is war-
ranted. Second, instead of chronic risk factors associ-
ated with the development of DR, some of the identified 
lipid markers might only represent temporary metabolic 
perturbations in this cross-sectional study. Third, the 
exact mechanism of DR development in patients with 
T2DM through which ceramide functions has not been 
explained. Therefore, more extensive preclinical and clin-
ical studies are needed to clarify the mechanisms behind 
the potential effects of specific lipids.

Overall, the deregulation of sphingolipid metabolism 
in the diabetic retina appears to be a significant and sel-
dom-studied element of DR pathophysiology. The precise 
mechanism underlying this disease is still unknown and 
requires further investigation. We showed the potential 
value of lipidomics research in understanding the patho-
physiology of DR, and the results suggest that lipidomics 
profiling may be capable of identifying early-stage DR 
diagnostic indicators in high-risk Chinese populations. 
In addition, the findings from this study may help in the 
elucidation of new therapeutic targets for DR prevention 
and treatment.
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Table 4  Results of ROC curve analysis and logistic regression in the validation cohort
AUC P value OR (95% CI) Adjusted* P value Adjusted* OR (95% CI)

Cer(d18:0/24:0) 0.62 0.007 0.64 (0.46–0.89) 0.002 0.45 (0.27–0.75)
Cer(d18:0/22:0) 0.61 0.030 0.68 (0.48–0.96) 0.022 0.65 (0.45–0.94)
Cer(d42:3) 0.65 0.001 0.42 (0.25–0.68) 0.006 0.62 (0.44–0.87)
SM(d22:0/16:0) 0.64 0.293 0.61 (0.24–1.53) 0.340 0.66 (0.28–1.55)
SM(d18:1/24:1) 0.65 0.038 0.51 (0.27–0.96) 0.066 0.54 (0.28–1.04)
SM(d42:0) 0.62 0.050 0.72 (0.51-1.00) 0.059 0.72 (0.51–1.01)
SM(d40:0) 0.62 0.080 0.67 (0.43–1.05) 0.125 0.70 (0.45–1.10)
SM(d39:0) 0.57 0.151 4.20 (0.59–29.80) 0.112 5.16 (0.68–38.87)
SM(d38:0) 0.63 0.395 0.72 (0.34–1.54) 0.465 0.77 (0.37–1.57)
SM(d36:0) 0.55 0.483 0.88 (0.62–1.25) 0.574 0.90 (0.63–1.29)
SM(d20:1/16:1) 0.63 0.036 0.57 (0.34–0.96) 0.042 0.56 (0.32–0.98)
SM(d34:1) 0.57 0.461 1.14 (0.81–1.61) 0.633 1.10 (0.75–1.59)
LPC(18:2) 0.63 0.044 0.70 (0.49–0.99) 0.046 0.68 (0.47–0.99)
LPC(16:0) 0.67 0.009 0.47 (0.26–0.83) 0.017 0.48 (0.27–0.88)
PC(34:2) 0.51 0.760 1.04 (0.80–1.35) 0.882 1.02 (0.78–1.34)
Cer: ceramides; SM: sphingomyelins; LPC: lysophosphatidylcholines; PC: phosphatidylcholine. The calculation of the area under the curve (AUC) in receiver operating 
characteristic (ROC) curve analysis is used to evaluate the discriminatory ability of markers. Logistic regression models were applied to assess the relationship 
between lipid molecules and the presence of diabetic retinopathy. Total cholesterol (CHOL), triglyceride (TG), high density lipoprotein-cholesterol (HDL-c) and low 
density lipoprotein-cholesterol (LDL-c) were added to multivariate logistic regression to calculate the adjusted* P values and odds ratios (OR).
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