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Abstract
Background  Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone 
as the first-line therapy. However, with the Food and Drug Administration’s (FDA) 2022 approval of programmed cell 
death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable 
GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate 
precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, 
particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to 
predict first-line PD-1 combined chemotherapy response for advanced-stage GC.

Methods  In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected 
from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 
criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were 
employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel 
histopathological biomarker derived from Whole Slide Images (WSIs).

Results  Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited 
superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across 
four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the 
ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001).

Conclusion  ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients’ responses to PD-1 
combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more 
individualized and potentially effective treatment strategies based on a patient’s unique response situations.
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Introduction
Gastric cancer (GC) is one of the most common malig-
nancies of the digestive system. Globally, it accounts for 
approximately 1.08  million new cases annually, rank-
ing fifth in cancer incidence. Moreover, GC ranks third 
in cancer-related mortality, causing over 760,000 deaths 
each year [1]. Due to its nonspecific symptoms, 80–90% 
of GC patients are diagnosed at an advanced stage dur-
ing their initial presentation [2], resulting in poor prog-
noses [3, 4]. Surgery is the primary treatment method for 
GC. However, the 5-year survival rate for postoperative 
advanced GC patients is approximately 60–70% in East 
Asian countries [5, 6], whereas in Western countries, it 
remains at only 20-30% [7, 8].

In the past, systemic chemotherapy serves as the cor-
nerstone of treatment for advanced GC, yielding a 
median overall survival of approximately 12 months 
among patients subjected to conventional chemotherapy 
[9]. Consequently, there is an urgent need for more effec-
tive treatment strategies to improve the survival out-
comes of advanced unresectable GC patients. In recent 
years, the emergence of targeted therapies and immuno-
therapeutic approaches holds promise for improving this 
status quo.

The immune system effectively eliminates most invad-
ing pathogens and toxic substances within the body while 
maintaining self-tolerance to normal tissues. Self-toler-
ance is achieved through the immunosuppressive effects 
of immune checkpoint pathways. Among the regulatory 
mechanisms governing immunosuppression, the pro-
grammed cell death protein 1 (PD-1) pathway, first dis-
covered by Ishida et al. in 1992 [10], stands out as one of 
the most extensively studied pathways till today. Over the 
past three decades, numerous studies have highlighted 
the critical role of PD-1 in negative immune regulation 
and the maintenance of peripheral self-tolerance [11–14]. 
However, it has been discovered that the development of 
tumors is closely related to the immune system. In 2002, 
Iwai et al. provided the initial evidence of PD-1 signaling 
pathway involvement in mediating tumor immunity [15], 
and it is now widely recognized that tumor cells can also 
exploit immune checkpoints to suppress tumor immu-
nity and evade immune surveillance [16, 17].

Today, PD1 inhibitors have become a common com-
ponent of cancer first-line treatment options for various 
malignancies [18]. In 2021, a prospective clinical trial, 
CheckMate 649, which enrolled a total of 2,687 patients, 
confirmed that the combination of Nivolumab with che-
motherapy significantly improved the prognosis of pre-
viously untreated, unresectable, non-HER2-positive 

gastric adenocarcinoma patients [19]. In 2022, the 
National Comprehensive Cancer Network (NCCN) 
clinical practice guidelines for gastric cancer included 
the use of anti-PD-1 (Nivolumab) agents in combina-
tion with fluoropyrimidine and platinum-based drugs as 
one of the first-line treatment options for systemic treat-
ment of metastatic or locally advanced gastric cancer 
(in the absence of local treatment indications) [20]. This 
highlights the important role of immunotherapy in the 
management of advanced GC. However, not all patients 
receiving immunotherapy exhibit favorable treatment 
responses, and the limitations imposed by unnecessary 
treatment side effects and tumor progression during inef-
fective treatment hinder the further application of anti-
PD-1 therapy [21]. Thus, effective predictive tools and 
indicators are needed in clinical practice to characterize 
and select advanced GC patients who are sensitive to 
PD-1 inhibitor plus chemotherapy, aiming to improve the 
efficiency of immunotherapy in clinical applications.

The emergence of Whole Slide images (WSIs) has 
brought about a paradigm shift in the field of digital 
pathology. These digitized WSIs have enabled the sys-
tematic extraction of histochemical and immunohisto-
chemical data from tissue specimens [22]. Through the 
utilization of artificial intelligence (AI), morphological 
characteristics can be converted into digital data that are 
well-suited for machine learning [23]. More specifically, 
Deep learning(DL), a subset of machine learning, has 
assumed an significant role in the analysis of pathologi-
cal images [24]. Convolutional neural networks (CNNs), 
which represent a DL algorithm, possess the capability to 
discern subtle visual intricacies and extract fundamental 
features critical for expert-level comprehension. Their 
application to the field of pathology has yielded out-
standing outcomes, particularly in the domains of cancer 
detection, lesion classification, and prognostic forecast-
ing [25–28].

In this retrospective study, we collected WSIs of Hema-
toxylin and Eosin (H&E)-stained biopsy samples from 
patients diagnosed with advanced GC from multiple 
medical centers. The objective was to establish a classi-
fier using DL methods and theories to predict the efficacy 
of immunotherapy in patients with advanced GC receiv-
ing first-line PD-1 inhibitors combined chemotherapy. To 
the best of our knowledge, this study represents the first 
research endeavor aimed at predicting patient sensitiv-
ity to first-line PD-1 inhibitors combined chemotherapy 
based on pre-treatment biopsy samples.

Keywords  Digital histopathological images, AI, Deep learning, Advanced gastric cancer, Immune Checkpoint 
inhibitors, ICIs, Chemotherap, PD-1
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Methods
Patients cohort and ethics approval
Patients with advanced GC were collected from four large 
medical centers, namely, the First Affiliated Hospital of 
Sun Yat-sen University (FAH-SYSU), the First Affiliated 
Hospital of Nanchang University (FAH-NCU), the Sev-
enth Affiliated Hospital of Sun Yat-sen University (SAH-
SYSU), and the Affiliated Cancer Hospital of Guangzhou 
Medical University (ACH-GZMU). The inclusion and 
exclusion criteria for the study cohort were as follows: (1) 
A confirmed pathological diagnosis of gastric adenocar-
cinoma. (2) Locally advanced, recurrent, or metastatic 
disease that cannot be resected, with no surgical indica-
tions at the time of diagnosis and no prior surgical treat-
ment [20]. (3) HER2 expresses negative. (4) Receipt of at 
least three whole cycle of first-line PD-1 inhibitors com-
bination chemotherapy in a continuous manner (approxi-
mately three to four months), with no prior exposure to 
alternative treatment before initiating immunotherapy. 
(5) Pre-treatment endoscopic biopsy performed, with 
available HE-stained pathological slides as specimens. 
(6) Presence of evaluable lesions, with at least baseline-
enhanced Computed Tomography (CT) scans prior to 
treatment initiation and follow-up enhanced CT scans 
after treatment cycles. All patients who did not meet the 
criteria were excluded from the study. According to the 
criteria, a total of 139, 90, 25, 10 patients were enrolled 
from FAH-SYSU, FAH-NCU, SAH-SYSU, and ACH-
GZMU, respectively, during the period spanning from 
March 2021 to January 2024. PD-1 inhibitors used con-
clude Nivolumab, Camrelizumab, Toripalimab, Pembro-
lizumab, and Stintilimab.

The evaluation of the efficacy of PD-inhibitors com-
bined chemotherapy was performed according to iRE-
CIST 1.1 criteria [29] using baseline-enhanced CT and 
follow-up CT scans. When calculating lesion changes, 
all assessable lesions were included, encompassing pri-
mary lesions, assessable lymph node metastases, and dis-
tant metastases (if present). Patient treatment responses 
were categorized as immune Complete Response (iCR), 
immune Partial Response (iPR), immune Stable Disease 
(iSD), and immune Progressive Disease (iPD). Given that 
our primary objective was to identify the patient popula-
tion potentially benefiting from this treatment course, we 
combined iCR and iPR into the category ‘Well Response,’ 
while iSD and iPD were defined as ‘Poor Response’. It is 
worth noting that in clinical practice, there are instances 
where patients exhibit pseudoprogression during immu-
notherapy [30], meaning that initially, there may be an 
apparent lack of response or even tumor progression, 
but subsequent treatment leads to significant regres-
sion. Compared to the traditional RECIST 1.1 criteria 
[31], iRECIST 1.1 incorporates characteristics unique 
to immunotherapy, providing a more comprehensive 

evaluation method, especially in the context of pseudo-
progression. Therefore, all patients evaluated for iPD 
were evaluated for at least another 4 weeks according to 
the iRECIST guidelines. All assessments were conducted 
by Professors Zhao Wang, Guanghua Li, and Zhixiong 
Wang, each of whom possesses over 15 years of clinical 
experience in gastrointestinal surgery.

The study was approved by the Ethics Committee of 
FAH-SYSU in China and followed the Declaration of 
Helsinki. Sample collection was authorized by the ethics 
board of each institution (Ethics Review [2022] No. 090).

Datasets
A total of 313 formalin-fixed paraffin-embedded patho-
logical slides stained with H&E, obtained from the 
above-mentioned 264 patients with advanced GC, were 
included in this research. All these slides acquired from 
endoscopic biopsies. For the training of DL models, 80% 
of the FAH-SYSU slides were randomly splited as the 
training dataset, while the remaining 20% were reserved 
for internal testing purposes. The WSIs from FAH-NCU, 
SAH-SYSU and ACH-GZMU served as independent 
external testing datasets to assess the models’ perfor-
mance. Prior to formal training, 20% of the training data-
set was set aside as a validation dataset to experimentally 
determine the optimal training hyperparameters, which 
encompassed learning rate, optimizer, regularization, and 
batch size. Throughout the formal training process, the 
validation dataset continued to be an integral part of the 
training set.

Sample preparation
Slides were scanned as WSIs using KF-PRO-020 scanner 
(KONFOONG Biotech, China) and NanoZoomer S210 
scanner (Hamamatsu Photonics K.K., Japan). WSIs raw 
formats include TIF and NDPI. Each WSI was acquired 
at the highest resolution of 40 x magnification with a cor-
responding pyramid resolution from the bottom level (40 
x) to the top level (1 x). each pixel at 40 x magnification 
represented a physical size of approximately 0.25 × 0.25 
µm2. WSIs with 40 x resolution contained on the order 
of 100,000 × 100,000 pixels, which were multiple orders of 
magnitude larger than the common pathological images. 
If possible, constructing a DL model for the entire WSI 
is the ideal choice. However, given the current computa-
tional performance limitations and the requirements of 
embedded applications, the input resolution for image 
classification DL models are restricted (e.g., 224, 256, 
384 pixels). Therefore, this study employed segmented 
instances to train the DL models.

A total of 126 slides in the training cohort, 20 in the 
validation cohort, 33 in the internal testing cohort, and 
154 in the external testing cohort were analyzed. When 
dealing with biopsy specimens, there is a common 
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challenge of distinguishing between normal tissue, com-
pressed/fragmented tumor tissue, non-glandular tis-
sue, and fatty tissue. Moreover, technical issues such as 
overlap, suboptimal staining, and out-of-focus regions 
can introduce model biases. To address these challenges, 
each slide containing GC tissue underwent a meticu-
lous review conducted by an expert pathologist, Zhimei 
Zhang, who boasts two decades of experience in the 
field of pathology. Then, target regions were annotated 
as regions of interest (ROIs) using KF-Viewer and Nano-
Zoomer-Viewer software. These annotations were subse-
quently reviewed by another expert, Guanghua Li. Then, 
the position coordinates were saved in XML format and a 
corresponding TIFF format mask was generated with the 
same pyramid resolution as the WSI.

We utilized the sliding window approach to extract 
ROIs from the WSI at 40x magnification. The window 
width was set to 1024 pixels with a stride of 512 pixels, 
aiming to obtain the widest possible view and relatively 
complete tissue structures. Each 1024 × 1024 pixel region 
at 40x magnification was saved in JPEG format and 
named as “tile” if the overlap between the mask region 
and the corresponding WSI region exceeded a thresh-
old of 0.6. At last, the average number of tiles per patient 
was 473, with a standard deviation of 354. For each tile 
in the training datasets, the following transformations 
were applied before inputting it into the model: (1) Resize 
to 256 × 256 pixels. (2) Convert to tensor. (3) Normal-
ize using the image mean and standard deviation (0.485, 
0.456, 0.406; 0.229, 0.224, 0.225). (4) Random horizontal 
and vertical flip with a probability of 10%. (5) Random 
rotation by 10 degrees to enhance data diversity. As for 
the testing datasets, only the first three above-mentioned 
preprocessing steps were applied, and no data augmen-
tation was performed. This ensures that the test tiles 
remain consistent and is not artificially altered by data 
augmentation techniques.

Base classification models
CNNs have been one of the earliest and most effec-
tive DL methods for handling image data [32]. In recent 
years, Vision Transformer (ViT) models have also dem-
onstrated impressive performance in image classification 
tasks [33]. In this study, we evaluated two CNN-based 
models, namely EfficientNet-B4 and DenseNet121 as well 
as one Transformer-based models, Swin Transformer V2, 
to evaluate the underlying features present in the image 
tiles and perform classification based on the outcomes. 
This diverse set of models allows us to comprehensively 
assess the features within the pathological images and 
choose the most suitable model for addressing the task 
at hand.

Due to the relative scarcity of pathological data, and 
to achieve better results in a shorter timeframe while 

preventing overfitting, we opted for a transfer learning 
method. We loaded pre-trained weights of three differ-
ent models available in the Timm library (https://github.
com/rwightman/pytorch-image-models), which were 
originally trained on ImageNet (https://image-net.org/). 
We customized the fully connected layer to include two 
neurons and applied the Softmax activation function in 
the output layer. This configuration enables the model to 
output the probabilities of two classifications, ensuring 
that the sum of probabilities for both categories equals 
1, and the model is fine-tuned according to the complex-
ity of the task. During training, we fine-tuned the model 
through backpropagation. Each model was trained 100 
epochs, utilizing the SGD optimizer with a learning rate 
of 1e-6. The loss function employed was cross-entropy, 
and the batch size was set to 32.

The degree of ICIs combined chemotherapy response 
for each patient is calculated by taking the average of 
the predicted probabilities of ‘well reaction’ from all tiles 
within the respective WSI. These values range from 0 to 
1, where a value closer to 1 indicates that the patient is 
more sensitive to PD-1 inhibitor combined chemother-
apy and may potentially have a better response, while a 
value closer to 0 suggests that the patient is less sensitive 
to this strategy, and the effectiveness of immune therapy 
combined chemotherapy for these patients may be lower.

Immune checkpoint inhibitors response network and the 
ensemble model
In the internal testing dataset, we compared the overall 
predictive performance of the three models. The prob-
abilities output by each model were averaged to create 
an ensemble model. This ensemble model integrates the 
predictions of these three models, aiming to maximize 
the balance of predictive biases, enhance generalization 
performance, and improve accuracy. After evaluation, 
the ensemble model demonstrated the most outstand-
ing and well-balanced predictive performance. When all 
tiles from each patient are input to the ensemble model, 
the resulting averaged prediction probabilities are com-
puted to generate the prediction score, referred to as the 
Immune Checkpoint Inhibitors Response Score (ICIsRS). 
Therefore, this model was also named as ICIsNet. ICIsRS 
represents a continuous quantified value. We plot-
ted ROC curves on the internal test dataset on tile level 
and WSI level, furthermore, we determined the optimal 
cutoff value based on the ROC curve of WSI-level. If 
ICIsRS exceeds the cutoff value, the prediction indicates 
a patient’s sensitivity to first-line PD-1 inhibitor com-
bined chemotherapy. Conversely, if ICIsRS is less than or 
equal to the cutoff threshold, it suggests that the model 
predicts the patient as insensitive to them. T-tests was 
employed to examine the differences in ICIsRS among 
four test sets.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://image-net.org/
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Visualization of ICIsRP -related features
ICIsNet generates predictive probabilities for each WSIs, 
and the coordinates of each tile within the WSI were 
stored in their respective JPEG file names. Employing 
the OpenCV (https://opencv.org/) and Matplotlib library 
(https://matplotlib.org/), probability of each tile is repre-
sented as a color block. A color spectrum called ‘Cool-
warm’ ranging from blue to red represents the response 
probabilities from low to high. By reassembling these 
tiles based on their coordinates, we generate a density 
heatmap of the patient’s response to the WSI, providing 
us with a visual representation. The detailed methodol-
ogy is depicted in Fig. 1.

Statistics
To evaluate the binary classification performance of tile-
based models on the test dataset, we employed several 
key methodologies: 1. Receiver Operating Characteristic 

(ROC) Curve. 2.Area Under the ROC Curve (AUC). 
3.Confusion Matrix to compute essential performance 
metrics, including accuracy (ACC), sensitivity (SENS), 
specificity (SPEC), positive predictive value (PPV), and 
negative predictive value (NPV). 4.F1 Score. 5.Accuracy 
metric to evaluate the model’s performance. To evalu-
ate the performance of ICIsNet in the binary classifica-
tion task of predicting patient immunotherapy sensitivity 
within the test cohort, we applied the same set of met-
rics. To determine the optimal cutoff value, we generated 
a Threshold-TPR-FPR curve. Additionally, we created 
box plots based on the ICIsNet output probability val-
ues to provide visual representations of the classification 
performance.

The models’ construction, training, validation, and 
visualization were all conducted on a server equipped 
with two RTX 3090 GPUs and 15 vCPU Intel(R) 
Xeon(R) Platinum 8358P CPUs @ 2.60 GHz. The server 

Fig. 1  The flowchart and methodology of this research

 

https://opencv.org/
https://matplotlib.org/
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environment ran on Python 3.8 (Ubuntu 18.04) and uti-
lized PyTorch 1.8.1 with CUDA 12.0 architecture for 
GPU acceleration.

Result
Characteristics of patients
Based on the inclusion and exclusion criteria, a total of 
264 patients with advanced GC were included in this 
study. All patients were pathologically diagnosed with 
advanced GC and did not have indications for surgery. 
According to the iRECIST 1.1 criteria, among them, 128 
patients were categorized into the “well reaction” group, 
while 136 patients were categorized into the “poor reac-
tion” group. FAH-SYSU, FAH-NCU, SAH-SYSU, and 
ACH-GZMU each contributed 139, 90, 25, 10 patients, 
respectively (Table 1). Finally, we obtained a total of 313 
WSIs, all these slides were retrieved from endoscopic 
biopsy (more patients’ characteristics and details were 
listed in Table 1).

Performance of DL models
WSIs were segmented into tiles, forming the founda-
tional elements for DL. In our research, we trained 
the DenseNet121, EfficientNet-B4, Swin-Transformer 
V2 (tiny) models independently for 100 epochs on 
70,016 tiles and evaluated them during testing phases. 

Furthermore, an ensemble model basing on the three 
models were constructed and tested as mentioned above. 
For the internal test cohorts, we calculated the ACC, 
SENS, SPEC, PPV, NPV, recall and F1 score of each 
model. In the end, the Ensemble model outperformed 
in most of these indexes compared with the other three 
standalone models (with an ACC of 0.715, AUC of 0.805, 
PPV of 0.689, NPV of 0.760, SENS of 0.834, SPEC of 
0.583, and F1 score of 0.755. Figure 2a; Table 2). Further-
more, the confusion matrixes show that the ensemble 
model has the best comprehensive resolution for dif-
ferent responses (Fig. 2b-e). As a result, we adopted the 
Ensemble model for subsequent evaluations.

Basing the Ensemble model, we constructed the ICIs-
Net to predict the response at the WSI level. After test-
ing, robust AUC scores of 0.952 (internal test dataset), 
0.920 (FAH-NAU), 0.962 (SAH-SYSU), and 1 (ACH-
GZMU) were achieved for WSI-level predictions, show-
ing the model’s high discriminatory power. The AUC 
is a crucial measure of a model’s ability to distinguish 
between classes—in this case, responders and non-
responders to first-line PD-1 inhibitors combined with 
chemotherapy. High AUC values close to 1 indicate excel-
lent model accuracy, as demonstrated by our three exter-
nal validation cohorts from South China (as shown in 
Fig. 3a). A comprehensive summary of these results can 

Table 1  Characteristics and baseline of patients
FAH-SYSU FAH-NAU SAH-SYSU ACH-GZMU Total

Characteristics Patients (139) Patients(90) Patients (25) Patients (10) 264
Age
Mean (SD) 56.7 (12.9) 58.0 (11.7) 59.1 (11.7) 57.0 (12.0) 57.3 (12.9)
Median [Min, Max] 58.0 [26.0, 88.0] 58.5 [22.0, 86.0] 59.0 [22.0, 86.0] 59.5 [30.0, 70.0] 58.5 [22.0, 88.0]
Sex
Female 35 (25.2%) 35 (38.9%) 24 (39.3%) 1 (10.0%) 77 (29.2%)
Male 104 (74.8%) 55 (61.1%) 37 (60.7%) 9 (90.0%) 187 (70.8%)
Disease region
Localized 46 (33.1%) 3 (3.3%) 2 (3.3%) 1 (10.0%) 56 (21.2%)
Metastatic 93 (66.9%) 87 (96.7%) 59 (96.7%) 9 (90.0%) 208 (78.8%)
Differentiation
Moderate 27 (19.4%) 32 (35.6%) 23 (37.7%) 1 (10.0%) 64 (24.6%)
Poor 112 (80.6%) 58 (64.4%) 38 (62.3%) 9 (90.0%) 199 (75.4%)
Primary Site
Lower 45 (32.4%) 34 (37.8%) 23 (37.7%) 4 (40.0%) 92 (34.8%)
Middle 52 (37.4%) 42 (46.7%) 34 (55.7%) 3 (30.0%) 107 (40.5%)
Upper 42 (30.2%) 14 (15.6%) 4 (6.6%) 3 (30.0%) 65 (24.6%)
Reaction
Well reaction 128 (48.4%)
iCR 1 (0.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.4%)
iPR 67 (48.2%) 43 (47.8%) 13 (52%) 4 (40.0%) 127 (48.1%)
Poor reaction 136 (51.6%)
iSD 38 (27.3%) 29 (32.2%) 4 (16%) 5 (50.0%) 76 (28.8%)
iPD 33 (23.7%) 18 (20.0%) 8 (32%) 1 (10.0%) 60 (22.7%)
WSIs 159 (50.8%) 100 (31.9%) 44 (14.1%) 10 (3.2%) 313
iCR: immune complete response; PR: immune partial response; iSD: immune stable disease; iPD: immune progressive disease; WSI: whole slide image
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be found in Table  3. The optimal threshold for ICIsNet 
predictions was determined on the internal test dataset 
by maximizing the difference between true positive rate 
and false positive rate (TPR-FPR), which was found to be 
0.56 (Fig. 2b). ICIsRS prediction exceeding this threshold 
outputted from the ICIsNet to categorize the patient as 
‘well reaction’; otherwise, the patient was considered as 
‘poor reaction’.

Further investigation into the ICIsRS of each patient in 
different test sets was conducted. We computed ICIsRS 
for each WSI in four test cohorts and generated box 
plots based on these scores. We used t-tests to assess 
the classification performance. The results, as shown in 
Fig.  3c-f, indicated significant differences for each test 
dataset (internal test, FAH-NCU, SAH-SYSU, all with 
p-values < = 0.001).

ICIsNet assigns scores to each WSI based on intricated 
image features associated with the response of ICIs com-
bined with chemotherapy. Due to the inherently opaque 
nature of DL models, the emphasized image features 
by are not explicitly clear. However, when heatmaps of 
each tile of a whole WSI are superimposed, a more mac-
roscopic observation is obtained. It becomes evident 
that poorer differentiation or more diffuse tumor tissue 

characteristics, such as signet ring cells or cells floating 
in mucin, along with reduced lymphocytic infiltration, 
are associated with weaker responses to immunotherapy. 
Conversely, tumor cells that more closely resemble the 
original normal tissue, coupled with increased lympho-
cytic infiltration, are likely to elicit better immunothera-
peutic responses (Fig. 4).

Discussion
To the best of our knowledge, this study presents a dis-
tinctive methodology that integrates histopathological 
slide images with DL techniques to construct a predic-
tive model for assessing the response to the first-line 
PD-1 inhibitor combined chemotherapy in advanced GC 
patients. Utilizing a cohort of 313 patient samples, we 
developed the ICIsNet and conducted a comprehensive 
retrospective testing encompassing both internal and 
external cohorts.

Recent trials have shown that for advanced GC, com-
bining immunotherapy with chemotherapy is more 
effective than chemotherapy alone. The CheckMate 649 
study [19], focusing on non-Asian patients, revealed 
that nivolumab with oxaliplatin-based chemotherapy 
improves response rates and survival times significantly 

Table 2  Comparison of Models’ metrics and selection on the internal test dataset
ACC AUC PPV NPV SENS SPEC F1 score

DenseNet121 0.691 0.776 0.669 0.729 0.816 0.552 0.735
EfficientNet-B4 0.701 0.778 0.699 0.703 0.758 0.638 0.727
Swin Transformer-V2 0.690 0.795 0.656 0.767 0.864 0.496 0.746
Ensemble Model 0.715 0.805 0.689 0.760 0.834 0.583 0.755
ACC: accuracy; AUC: area under the curve; PPV: positive predictive value; NPV: negative prediction value; SENS: sensitivity; SPEC: specificity

Fig. 2  a. Receiver Operative Characteristic curves of models for patch-level prediction; b. Confusion matrix for the ensemble model in the internal test 
dataset; c. Confusion matrix for the DenseNet121 in the internal test dataset; d. Confusion matrix for the EfficientNet b4 in the internal test dataset; e. 
Confusion matrix for the SwinVit V2 in the internal test dataset
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compared to CAPOX or FOLFOX alone. Similarly, 
ATTRACTION-4 [34] showed the benefits of nivolumab 
with chemotherapy in Asian populations, without con-
sidering PD-L1 expression levels. These findings, sup-
ported by other studies like KEYNOTE-059, 061, and 
062 [35], suggest that adding PD-1 inhibitors to che-
motherapy could be a superior treatment approach for 
advanced-stage GC.

However, due to the high selectivity and expensive 
cost of ICIs, the choice of immunotherapy for patients 
requires careful consideration. Not all patients respond 

effectively to immunotherapy. Previous research has 
indicated that certain biomarkers such as PD-L1, tumor 
mutation burden (TMB), tumor-infiltrating lymphocytes 
(TILs), and microsatellite instability/defective mismatch 
repair (MSI/dMMR) can predict the population ben-
efiting from immunotherapy. The reliability and clinical 
applicability of these biomarkers need further confirma-
tion [36–38]. Therefore, the exploration of novel detec-
tion methods to more accurately predict the efficacy of 
ICIs is of great importance. Histopathological images 
contain numerous of information reflecting the cellular 

Table 3  Evaluation Metrics of ICIsNet in internal test cohort and external test cohort
ACC AUC PPV NPV SENS SPEC F1 score

Internal test cohort 0.848 0.952 0.762 1.000 1.000 0.706 0.865
FAH-NCU 0.870 0.920 0.860 0.880 0.876 0.863 0.867
SAH-SYSU 0.932 0.962 0.926 0.941 0.962 0.889 0.943
ACH-GZMU 0.900 1.000 1.000 0.857 0.750 1.000 0.857
ACC: accuracy; AUC: area under the curve; PPV: positive predictive value; NPV: negative prediction value; SENS: sensitivity; SPEC: specificity

Fig. 3  a. Receiver Operative Characteristic curves of models for WSI-level prediction among four independent test cohorts; b. True Positive Rate - False 
Positive Rate curve in internal test cohort; c. comparison of the ICIsNet output between well and poor responses in the internal test cohort; d. comparison 
of the ICIsNet output between well and poor responses in the FAH-NCU cohort; e. comparison of the ICIsNet output between well and poor responses in 
the SAH-SYSU cohort; f.comparison of the ICIsNet output between well and poor responses in the ACH-GZMU cohort
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and molecular characteristics of tissues and can be trans-
formed into quantitative data using image analysis soft-
ware [39]. Thus, we can employ machine learning in a 
high-throughput manner to extract and quantify patho-
logical image features for further assessment of the TME 
and tumor heterogeneity [40].

Digital pathology, involving the digitization of tis-
sue slides and analysis through AI, has advanced cancer 
research, particularly with H&E-stained images [41]. AI’s 
initial role was to aid diagnoses [23], with studies like 
Mukhopadhyay et al. [42] showing digital WSI as reliable 
as traditional microscopy. Recent applications of DL on 
WSIs have provided detailed tumor assessments, achiev-
ing diagnostic accuracy on par with or surpassing pathol-
ogists [27, 43]. For instance, a study on breast cancer 

patients used DL to predict responses to chemotherapy 
from biopsy images, with high predictive accuracy (AUC 
of 0.847) [44]. Moreover, research by Armin Meier et 
al. [45] on gastric cancer employed DL to evaluate the 
tumor microenvironment’s impact on prognosis, yielding 
a CNN-derived risk score that outperformed traditional 
TNM staging in predictive value. These advancements 
underscore the potential of AI in enhancing the precision 
of cancer prognosis and treatment response predictions.

Building upon these precedents, we anticipated that 
AI could similarly extract subtle information from pre-
treatment WSIs of advanced GC patients, thus enabling 
the development of predictive models for the response 
of PD-1 inhibitors combined chemotherapy. After train-
ing on tens of thousands of tiles extracted from WSI, 

Fig. 4  Heat maps and visualization of the incidence of WSIs, from left to right are the original WSIs, the heat map of concerning WSIs, the heat map of the 
details of WSI, and the details of concerning original WSI. The presence of signet-ring cells or areas of Mucinous cell can be clearly observed leading to a 
significant weak response to immunotherapy. a. an incidence of PR, ICIsRS was 0.71; b, an incidence of PD, ICIsRS was 0.42; c. an incidence of SD, ICIsRS 
was 0.31
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our model exhibited impressive predictive capabilities in 
both our internal test cohort and multiple independent 
external test cohorts (with AUC values of 0.95, 0.92, and 
0.96, 1 respectively). To our knowledge, this study repre-
sents the first instance to date of utilizing an AI model 
to extract information from WSIs and predict the efficacy 
of first-line PD-1 inhibitors combined chemotherapy in 
advanced GC.

Due to the complex architecture, black-box nature, and 
self-learning characteristics of neural networks, the selec-
tion of neural networks is often challenging to explain. 
In our study, to address this issue, we employed a strat-
egy of generating heatmaps for the entire WSI based on 
the output scores of each tile. We aimed to interpret the 
neural network’s output using these heatmaps. Through 
visualization of heatmaps, we have identified significant 
features captured by our model. We observed that dif-
fuse gastric cancer tissues, particularly signet ring cell 
carcinoma and mucinous adenocarcinoma, with fewer 
lymphocytic infiltrations tend to exhibit poor responses 
to immunotherapy. Conversely, regions with stronger 
cell adhesion, lower cellular and tissue heterogeneity, and 
more abundant lymphocytic infiltration demonstrate a 
more sensitive response to immunotherapy. Some studies 
have confirmed that poorly differentiated and highly dif-
fuse GCs exhibit weak responses to immunotherapy. Jing 
Chen et al. utilized single-cell sequencing techniques to 
explore the Tumor Immune Microenvironment (TIME) 
of signet ring cell carcinoma. They discovered that com-
pared to well-differentiated types, the TIME of this sub-
type appears inert, with both CD4 + and CD8 + T cells 
showing difficulty in mobilization, leading to poor or 
even no response to immunotherapy [46]. Additionally, 
Jie-Hai Yu and others investigated the response to PD-1 
inhibitors in colorectal cancer patients and found that 
patients with signet ring cell carcinoma and mucinous 
adenocarcinoma exhibited weaker responses to immuno-
therapy, thereby indicating a higher risk of poor outcomes 
and prognosis [47]. The correlation between higher lym-
phocytic infiltration and better immunotherapy out-
comes has been widely established. This relationship is 
significant because the activation of the PD-1/PD-L1 
pathway necessitates the recruitment of a substantial 
number of immune cells [48]. Essentially, the presence of 
these immune cells within the tumor microenvironment 
plays a pivotal role in how effectively the immune system 
can identify and attack cancer cells under the modula-
tion of immunotherapies targeting checkpoint inhibitors 
like PD-1/PD-L1. These dynamic underlines the critical 
importance of immune cell presence for the success of 
immunotherapeutic strategies [49]. Our study has dem-
onstrated that DL models can capture essential features 
critical to the efficacy of immunotherapy. This not only 
provides clinicians with effective predictive tools but also 

sets the direction for future larger-scale and prospective 
research.

This study has several limitations that should be 
acknowledged. Firstly, the relatively small sample size 
could potentially impact the model’s ability to generalize 
due to tumor heterogeneity, although promising results 
were achieved across multiple independent external test-
ing sets. Secondly, the complexity of pathological slides 
necessitated manual delineation of regions of interest, 
which could reduce practicality; our group is exploring 
semi-supervised learning methods to address this issue. 
Thirdly, variations in PD-1 inhibitors used and the need 
for longer follow-up periods due to pseudoprogres-
sion introduce additional challenges. We are currently 
expanding the sample size included in our training set, 
increasing the number of validating institutions, and 
designing prospective trials to verify the robustness of 
our model. Moving forward, it is hoped that these limi-
tations will be addressed and the results of our study 
refined.

In summary, our study introduces the ICIsNet model, a 
DL-driven tool that utilizes ICIsRS based on histopatho-
logical images to forecast the sensitivity of advanced-
stage GC to immunotherapy. This predictive capability 
can significantly inform clinical decisions, guiding cli-
nicians in selecting patients most likely to benefit from 
immunotherapeutic approaches. In the future, ICIs-
Net may enhance treatment outcomes by personalizing 
therapeutic strategies, potentially reducing the exposure 
of non-responsive patients to the adverse effects of inef-
fective treatments in advanced-stage GC, which has the 
potential to exploit the way for personalized treatment 
strategies in advanced stage GC.
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