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Abstract

Passive immunotherapy with specific antibodies targeting Amyloid 8 (AR) peptide or tubulin-associated unit (tau)
protein has emerged as a promising therapeutic approach in Alzheimer’s disease (AD). However, in a recent phase Il
clinical study, Sperling et al. (N Engl J Med 10.1056/NEJM0a2305032, 2023) reported that solanezumab, a monoclonal
antibody targeting AR peptide, failed to slow cognitive decline in AD patients. Previously, three other anti-AB antibod-
ies, bapineuzumab, crenezumab, and gantenerumab, have also failed to show similar beneficial effects. In addition,
three humanized antibodies targeting tau protein failed in their phase Il trials. However, other anti-AB antibodies, such
as lecanemab (a humanized mAb binds to soluble AR protofibrils), donanemab (a humanized mAb binds to insoluble,
N-terminal truncated form of AP peptides) and aducanumab (a human mAb binds to the aggregated form of AB),
have been shown to slow the decline of cognitive functions in early stage AD patients. The specific targets used

in passive immunotherapy in these clinical trials may explain the divergent clinical outcomes. There are several chal-
lenges and limitations of passive immunotherapy using anti-AB antibodies and long term longitudinal studies are
needed to assess their efficacy, side effects and cost effectiveness in a wider spectrum of subjects, from pre-dementia
to more advanced dementia. A combination therapeutic approach using both anti-A antibodies and other pharma-
ceutical agents should also be explored.

Introduction

Alzheimer’s disease (AD) is an age-related neurodegener-
ative disorder characterized by progressive neurodegen-
eration with memory loss and cognitive impairment [2].
The pathological hallmarks of AD include formation of
amyloid B (A) plaques from aggregation of extracellular
amyloid B (AP) peptides and deposition of intracellular
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neurofibrillary tangles (NFT) from accumulated tubulin
associated unit (tau) protein [3]. According to the amy-
loid cascade hypothesis, the generation of Ap peptides
and formation of AP plaques is the pathogenic trigger for
a pathological cascade, contributing to NFT formation
and neurodegeneration in AD [4].

Solanezumab trials in AD

Passive immunotherapy with specific anti-Ap antibodies
has emerged as a promising therapeutic approach. In a
recent phase III clinical trial involving 1169 AD patients,
Sperling et al. evaluated the therapeutic effects of solan-
ezumab, a monoclonal antibody (mAb) targeting mono-
meric AP peptide, with negative outcomes. This is the
third unsuccessful trial of solanezumab in AD, following
two previously failures in 2014 and 2021 [5, 6]. Solane-
zumab is a mAbD that recognizes and binds to the mid-
domain of AP peptide to promote the clearance of soluble
AB [7]. Previous in vivo studies on transgenic PDAPP
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mice AD model showed that administration of the m266
(the murine precursor of solanezumab) significantly ele-
vated the concentrations of A in plasma and inhibit the
deposition of AB plaque in mice brains [8, 9]. The thera-
peutic effects of solanezumab were further supported by
phase I and II trial investigations, as solanezumab treat-
ment led to enhanced total (bound plus unbound) Ap
concentrations in cerebrospinal fluid (CSF) and plasma in
a solanezumab dosage dependent manner in AD patients
[10, 11]. In the current study, all participants were ran-
domly divided into two groups to receive solanezumab
or placebo (administered intravenously up to 1600 mg)
every 4 weeks for 240 weeks [1]. However, the study
showed that Solanezumab failed to alleviate the progres-
sive cognitive decline in AD patients (based on Preclini-
cal Alzheimer Cognitive Composite (PACC) score) and
to down-regulate amyloid levels in AD patient brains
(based on 18F-florbetapir positron-emission tomography
(PET)), compared with participants who received a pla-
cebo [1]. Amyloid-related imaging abnormalities (ARIA)
with microhemorrhage or hemosiderosis occurred in
29.2% of solanezumab group and 32.8% of placebo group
respectively [1].

Unsuccessful passive immunotherapy trials in AD

Two previous phase III clinical trials using solanezumab
also showed negative results [1, 5, 6]. In the first phase
III double-blinded trials (EXPEDITION 1 and EXPEDI-
TION 2), mild-to-moderate AD patients received pla-
cebo or solanezumab (administered intravenously at
400 mg) every 4 weeks for 18 months. However, neither
EXPEDITION 1 nor EXPEDITION 2 demonstrated sig-
nificant improvements in primary outcomes, based on
the assessment of cognitive subscale of the Alzheimer’s
Disease Assessment Scale (ADAS-COG) and the Alzhei-
mer’s Disease Cooperative Study—Activities of Daily Liv-
ing scale (ADCS-ADL) [5]. Subsequently, Salloway et al.
conducted a randomized, placebo-controlled, multi-arm
trial to evaluate the beneficial effects of solanezumab in
dominantly inherited AD in 2021. Similarly, solanezumab
did not demonstrate any therapeutic effects to improve
cognitive functions in AD patients, compared with the
placebo group [6].

Besides solanezumab, other anti-Ap antibodies also
failed to show any beneficial effects to improve cogni-
tive functions in AD in multiple phase III clinical trials.
These unsuccessful anti-Af antibodies include bapineu-
zumab [12], a humanized mAD that targets the N-ter-
minal of AP to clear away both fibrillar and soluble A
peptides; crenezumab [13], a humanized mAb that binds
to monomeric and oligomeric AP peptide, as well as gan-
tenerumab [14], a fully human mAb that targets aggre-
gated AP. Moreover, the aggregation of p-tau protein and
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the formation of NFT is another pathological hallmark of
AD. Similar to anti-Ap interventions, passive immuno-
therapy with anti-tau antibodies targeting p-tau protein
has been investigated. To date, three humanized mAbs
targeting the N-terminal domain of tau protein, namely
semorinemab, gosuranemab and tilavonemab, failed to
slow the AD progression in phase II trial studies [15-17].
Furthermore, three anti-Ap antibodies, namely, aduca-
numab [18] (a human mADb targets aggregated form of
AB, approved by the US Food and Drug Administration
(FDA) in 2021), lecanemab [19] (a humanized mAb binds
to soluble AP protofibrils, approved by the US FDA in
2023) and donanemab [20] (a humanized mAb binds to
insoluble, N-terminal truncated form of AP peptides),
showed promising effects in trials to decelerate the pro-
gressive cognitive decline in early stage AD patients.

Successful passive immunotherapy trials in AD

The therapeutic efficacy and safety of aducanumab were
reported in 2022 with 3285 early tage AD patients sep-
arated into two random phase III trials (EMERGE with
1638 participants and ENGAGE with 1647 participants)
[18]. All participants received aducanumab or placebo
(administrated intravenously at 3, 6 and 10 mg per kilo-
gram (kg) of body weight) every 4 weeks for 76 weeks.
However, both EMERGE and ENGATE were terminated
early due to the outcome of futility analysis, only 1812
(55.2%) participants in EMERGE and ENGAGE com-
pleted the study. A dose- and time-dependent reduction
of amyloid level in AD patient brains and plasma hyper-
phosphorylated tau (p-tau) level (a downstream biomark-
ers specific to AD) were observed in both EMERGE and
ENGAGE, compared with the placebo group. Treat-
ment with low and medium dosages of aducanumab
did not show any beneficial effects in AD patients,
whereas high dosage (10 mg per kg of body weight)
aducanumab administration alleviated the progressive
cognitive decline in AD patients in EMERGE, but not
in ENGAGE [18]. However, dose-dependent adverse
effects were observed in both EMERGE and ENGAGE,
including ARIA with edema, headache, brain microhe-
morrhages. nasopharyngitis, fall, localized superficial
siderosis and dizziness [18].

In a multicenter, double-blind, phase III trial, 1795 early
stage AD patients were grouped to receive lecanemab or
placebo (administered intravenously at 10 mg per kg of
body weight) randomly every 2 weeks for 18 months [19].
The study showed that lecanemab reduced the markers
of amyloid in AD brains with slowed cognitive decline
in early stage AD patients, compared with the placebo
group [19]. However, lecanemab administration also
led to unpleasant side effects, including infusion-related
reactions, ARIA with cerebral microhemorrhages,
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cerebral macrohemorrhages, superficial siderosis and
edema or effusions [19].

The therapeutic effects of donanemab were reported
in a phase III trial in 2023, including 1736 early symp-
tomatic AD patients with mild cognition impairment
[20]. In the study AD patients received donanemab or
placebo (administrated intravenously at 700 mg for the
first three doses and 1400 mg thereafter) every 4 weeks
for 72 weeks [20]. Donanemab treatment reduced the
amyloid plaque level and slowed the cognitive decline
in AD patients [20]. The donanemab treatment induced
side effects included ARIA with edema or effusion in AD
brains, infusion-related reactions and donanemab associ-
ated patient demise (3 deaths) [20]. Details of all reported
anti-Ap and anti-tau antibodies for passive immunother-
apy trials in AD are summarized in Table 1.

Limitations and future directions

The different and inconsistent outcomes with passive
immunotherapy for AD suggest that the specific molecu-
lar targets and clinical trial methodology need to be reas-
sessed. It is well known that the epitope and isotype of
an antibody are crucial to their therapeutic efficacy. It
has been proved that the isotype of anti-Afp antibodies
can influence AP plaque clearance and neuronal protec-
tions, whereas IgG2 antibodies against Ap can be more
effective in reducing neuropathology than IgG1 antibod-
ies [21]. The isotype of most anti-Ap antibodies is IgG1,
which might be the underlying cause for the lower effi-
cacy of some anti-AP antibodies in AD trials. Moreover,
previous studies have suggested that anti-Af antibod-
ies targeting the N-terminal region of AP peptides may
invoke AP plaque clearance and neuronal protection
[21]. The epitopes of three successful anti—Ap antibodies
(aducanumab, lecanemab and donanemab) all target the
N-terminal region of AP peptides.

In addition, other factors, such as antibodies induced
inflammatory responses and the penetration efficiency
of antibodies through blood-brain barrier (BBB), also
need to be addressed. The BBB prevents the penetration
of most drugs, proteins and peptides from blood into
brains, which is an existing challenge to be overcome
[22]. While mAbs enter into patients via systemic admin-
istration (intravenous, intramuscular, or subcutaneous),
it is unclear how much antibodies can pass through BBB
to bind with AP peptides in the brain. Previous studies
have shown that only approximately 0.1% of adminis-
trated mAbs can cross BBB, while the rest antibodies will
be either metabolized in the liver or excreted via the kid-
ney [23, 24]. The very limited BBB penetration efficiency
of administrated antibodies can be a confounding vari-
able in AD trials. Recent studies have suggested the alter-
native strategy to deliver drugs, proteins or peptides into
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brains via intranasal administration, which has advan-
tages to systemic administrations [25]. Intranasal deliv-
ery of drugs can directly enter the brain, reducing drug
exposures to peripheral organs and tissues, avoiding drug
degradation in the circulation and enhancing the bio-
availability of delivered drugs [26]. It was reported that
daily intranasal administration of a novel PEI-conjugated
Rg-AP (25-35) peptide significantly reduced AP amyloid
accumulation and ameliorated the memory deficits in
PS-1/APP mice AD model [27]. The intranasal delivery of
full-length anti-Nogo-A antibody could promote growth
and compensatory sprouting of corticofugal projections
and enhance functional recovery in a rat stroke model
[28]. Moreover, intranasal delivery of insulin improved
cognitive functions in AD patients and human subjects
with amnestic mild cognitive impairment [29]. These
findings support the feasibility of passive immunotherapy
in AD via intranasal administration [28, 29]. Neverthe-
less, there are still several disadvantages of intranasal
administration. AD is a chronic disorder, repeated intra-
nasal administration may cause irreversible damage to
the nasal epithelium, nasal mucosa and nerves in the cav-
ity since their surface area is limited [30]. Future investi-
gations are warranted to evaluate the safety, efficacy and
therapeutic effects of intranasal administration in passive
immunotherapy in AD and other human neurodegenera-
tive diseases.

The repeated injection of antibodies as exogenous pro-
teins may induce immune response and generate anti-
drug antibodies (ADA) against administrated antibodies,
which can interact, neutralize and down-regulate the lev-
els of administrated antibodies for passive immunother-
apy [31, 32]. Adalimumab is an antibody targeting tumor
necrosis factor-a (TNF-a) which has been used effec-
tively in passive immunotherapy for rheumatoid arthri-
tis. Previous studies have showed higher serum levels
of ADA in patients after adalimumab treatment, which
is linked to impaired therapeutic effects of adalimumab
treatment [33]. The formation of ADA and impact on
therapeutic efficacy have also been reported in patients
with tumors and inflammatory disorders [34]. The forma-
tion of ADA has also been identified in AD patient serum
in passive immunotherapy trials with crenezumab (an
anti-Ap antibody), tilavonemab (an anti-tau antibody)
and solanezumab [13, 17, 35]. The potential adverse
effects of ADA in passive immunotherapy in AD should
be further investigated in future studies.

Besides ADA, other factors may be involved in influ-
encing the outcomes of passive immunotherapy tri-
als. The formation and deposition of antigen—antibody
complexes in multiple organs and tissues can trigger
pathological inflammatory response via stimulating com-
plement cascade and Fc receptors in immune cells [36].
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p Given that the therapeutic anti-Ap and anti-tau antibod-
g ies can pass through BBB in passive immunotherapy and
.g = penetrate into disease plaques to bind with AP peptides,
R the AP peptides-antibody complex needs to be cleared
from patient brains in time. Otherwise, antigen—antibody
3 E complex deposition may trigger inflammatory response
ae to aggravate neurodegeneration in affected areas. The
presence of anti-AP autoantibodies in CSF have been
reported to induce amyloid angiopathy-related inflam-
mation in patients with focal neurological symptoms
and cognitive impairment [37]. Furthermore, numerous
s studies suggest that autoantibodies target cell surface,
g intracellular and extracellular proteins. These can trig-
B g s ger auto-immune response, resulting in neuronal injury
% o %_g g and neurodegeneration [38]. The potential adverse effects
5¢ g9t induced by antigen—antibody complex formation and
%é £y §_§§ © deposition during passive immunotherapy should be

é 8_% g g s §§ taken into consideration in future studies.
3203255 It is known that neuronal debris and toxic proteins
& A need timely clearance through phagocytosis of microglia
é %%Z and astrocytes to maintain brain homeostasis [39]. In
g |g&3 passive immunotherapy in AD, the formation of antigen—
é é é = v antibody complexes will need phagocytotic clearance by
2 Sg=¢ microglia and astrocytes. However, recent observations
S |Fedd showed that the phagocytosis capacities of microglia
o and astrocytes are significantly impaired in AD. In PS1-
v |38 APP mice the phagocytosis capacity of microglia was
g “8’% significantly reduced with down-regulated expression of
e |ms scavenger receptors and pathogenic protein degrading
. enzymes [40]. The astrocytes from AD mice have a lower
c g ng é capacity to scavenge the extracellular AB, as AP peptides
2 jé % T ; directly suppress the phagocytosis capacity of astrocytes
3 32%¢5 [41]. The impaired phagocytosis of microglia and astro-
R 0T cytes in AD will disturb the clearance of antigen—anti-
@ 9;% £ Es% B3 @‘é 53 body complexes in passive immunotherapy, leading to
I é gg 2 “S ég 2 ‘ég Eg 2 2% potential accumulation and deposition of antigen—anti-
§ |B53E82°582nggs22gs body complex, and subsequent inflammatory response
o s and neuron injury. So far three anti-Af antibodies, adu-
g 2 é canumab, lecanemab and donanemab, have showed some
g é g, beneficial effects only in early stage AD patients. The
L phagocytosis capacity of microglia and astrocytes may
g ﬁ be higher in early stage AD patient brains, which may
:EJL g( be a favorable factor for the aducanumab, lecanemab
and donanemab trials as they target the early stage AD

£ § - patients.

§ |2& Studies suggest that the phagocytosis capacities of
" microglia and astrocytes can be enhanced by modula-
el ‘;3 - tion of peroxisome proliferator-activated receptor y
§ 2 |5 (PPARy) and AXL receptor tyrosine kinase pathways. It
& 2 is reported that in PS-1/APP AD mice model the phago-
‘: . § cytosis capacity of microglia can be enhanced by small
|3 |2 molecular PPARy modulator, DSP-8658, with up-regu-
E g = lated expression of scavenger receptor in microglia cells
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[42]. Genistein can also activate PPARy signaling path-
way to promote AP clearance, reduce AB plaques and
improve cognitive function in AD mice model [43]. The
intranasal administration of recombinant mouse growth
arrest-specific 6 (rmGas6) protein, a specific ligand of
AXL receptor, activates AXL receptor tyrosine kinase
and promotes the conversion of astrocytes into phago-
cytic phenotype and enhances phagocytic capacity of
astrocytes in traumatic brain injury mice model [44]. In
addition, administration of jujuboside A or ganoderic
Acid A can activate AXL signaling pathway to promote
Ap clearance and ameliorate cognitive deficiency in AD
mice model [45, 46]. Therefore combination therapy
including passive immunotherapy antibodies and modu-
lators of PPARy and /or AXL pathways may achieve bet-
ter therapeutic effects in AD. However, all PPARy and
AXL pathways modulators have not been validated in
human. Furthermore, the AXL receptor tyrosine kinase
is a biomarker and therapeutic target associated with
tumor growth and poor prognosis in cancer [47]. Further
studies on regulations of phagocytic capacities of human
microglia and astrocytes by PPARy and AXL signaling
pathways modulators to enhance therapeutic effects of
AD passive immunotherapy are needed.

Conclusions

Passive immunotherapy trials in AD have not produced
consistent results, with disappointing results from the
studies using solanezumab, bapineuzumab, crenezumab,
and gantenerumab. Though aducanumab, lecanemab and
donanemab show some promising results in early stage
AD patients [15-17], long term follow-up data and stud-
ies in middle and late stage AD patients will be needed.
To date, only lecanemab and aducanumab have received
FDA approval. The prevalence and severity of side effects
(such as infusion-related reactions, ARIA with cerebral
microhemorrhages, cerebral macrohemorrhages, superfi-
cial siderosis, etc.) will be clearer with more widespread
clinical use. The poor antibody penetration across BBB,
ADA neutralization of administrated antibodies, brain
inflammation triggered by antigen—antibody complex
deposition as well as adverse effects induced by impair-
ment of phagocytosis capacities of microglia and astro-
cytes in AD brains can be challenges for AD passive
immunotherapy studies. The intranasal administration
of antibodies to avoid BBB obstacle can be an alternative
delivery strategy to increase their concentrations in the
brain. Combination strategies such as passive immuno-
therapy antibodies with pharmaceutical agents that can
promote microglia and astrocytes phagocytosis activities
may be potentially more effective and should be further
explored.
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