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Abstract
Background Patients with alpha-fetoprotein (AFP)-positive hepatocellular carcinoma (HCC) have aggressive 
biological behavior and poor prognosis. Therefore, survival time is one of the greatest concerns for patients with AFP-
positive HCC. This study aimed to demonstrate the utilization of six machine learning (ML)-based prognostic models 
to predict overall survival of patients with AFP-positive HCC.

Methods Data on patients with AFP-positive HCC were extracted from the Surveillance, Epidemiology, and End 
Results database. Six ML algorithms (extreme gradient boosting [XGBoost], logistic regression [LR], support vector 
machine [SVM], random forest [RF], K-nearest neighbor [KNN], and decision tree [ID3]) were used to develop the 
prognostic models of patients with AFP-positive HCC at one year, three years, and five years. Area under the receiver 
operating characteristic curve (AUC), confusion matrix, calibration curves, and decision curve analysis (DCA) were 
used to evaluate the model.

Results A total of 2,038 patients with AFP-positive HCC were included for analysis. The 1-, 3-, and 5-year overall 
survival rates were 60.7%, 28.9%, and 14.3%, respectively. Seventeen features regarding demographics and 
clinicopathology were included in six ML algorithms to generate a prognostic model. The XGBoost model showed 
the best performance in predicting survival at 1-year (train set: AUC = 0.771; test set: AUC = 0.782), 3-year (train set: 
AUC = 0.763; test set: AUC = 0.749) and 5-year (train set: AUC = 0.807; test set: AUC = 0.740). Furthermore, for 1-, 3-, and 
5-year survival prediction, the accuracy in the training and test sets was 0.709 and 0.726, 0.721 and 0.726, and 0.778 
and 0.784 for the XGBoost model, respectively. Calibration curves and DCA exhibited good predictive performance as 
well.

Conclusions The XGBoost model exhibited good predictive performance, which may provide physicians with an 
effective tool for early medical intervention and improve the survival of patients.
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
form of liver cancer, accounting for approximately 
75‒85% of cases [1, 2]. It is a highly fatal cancer and a 
major cause of cancer-related death worldwide, lead-
ing to more than 700,000 deaths each year [3].

Alpha-fetoprotein (AFP) is often expressed at high 
levels in HCC, and approximately 75% of patients with 
HCC were AFP positive [4, 5]. Compared to patients 
with AFP-negative HCC, patients with AFP-positive 
HCC were associated with worse biological behavior 
and inferior survival [4, 6]. Patients with AFP-positive 
HCC were more likely to present with higher clinical 
stage, TNM classification, fibrosis scores, and a more 
vessel invasion [4, 7, 8]. A recent study showed that 
regardless of surgical or adjuvant therapy, the median 
overall survival time of patients with AFP-positive 
HCC was much lower than those of patients with AFP-
negative HCC (13 months vs. 48 months) [4]. There-
fore, it is imperative to create prognostic prediction 
models for patients with AFP-positive HCC, thereby 
contributing to accurately answer their concerns about 
survival and helping to implement individualized 
management.

Machine learning, a new type of artificial intelli-
gence (AI), has recently become a topic of paramount 
importance, providing methods, techniques, and tools 
for the analysis of data generated by the biological 
sciences [9–11]. It can learn from examples to make 
patient-level survival predictions and establish clini-
cal AI prognostic models with significantly improved 
accuracy [9, 12]. Extreme gradient boosting (XGBoost) 
is a newer ensemble-learning algorithm, which can be 
applied to adjust the errors generated by existing mod-
els [13, 14]. XGBoost has been used for effective sur-
vival prediction of cancer patients [14–17]. However, it 
has rarely been applied for the prediction of prognosis 
for patients with AFP-positive HCC.

In this study, we implemented six machine learn-
ing algorithms including XGBoost, logistic regression 
(LR), support vector machine (SVM), random forest 
(RF), K-nearest neighbor (KNN), and decision tree 
(ID3) to predict 1-, 3- and 5-year survival of patients 
with AFP-positive HCC, using data retrieved from the 
Surveillance, Epidemiology, and End Results (SEER) 
database. The present study contributes to developing 
machine learning-based models to provide insight into 
the prognosis of patients with AFP-positive HCC.

Methods
Data source and patient selection
Data on patients with AFP-positive HCC were 
extracted from the SEER database, which is an impor-
tant population-based program of the National Cancer 

Institute and covers approximately 30% of the United 
States population [18]. According to the International 
Classification of Diseases for Oncology, Third Edi-
tion (ICD-O-3), the inclusion primary site code was 
C22.0 and the histological codes were 8170/3‒8175/3. 
Patients diagnosed between 2004 and 2015 were col-
lected. The following cases were excluded: (1) patients 
with AFP-negative HCC patients; (2) patients with 
multiple primary tumors; (3) incomplete information 
including tumor size, race, survival data, AFP, fibrosis 
score, grade, cause of death, marital status, insurance 
status, and median household income; (4) unknown 
TNM stage; and (5) unknown whether surgery was 
performed. Finally, 2,038 eligible patients with AFP-
positive HCC were included and further analyzed in 
this study. Figure  1 presents the flowchart of study 
design and patient selection.

Study variables
The following factors were included as explanatory 
variables: race, sex, age at diagnosis, histological grade, 
tumor size, TNM stage [American Joint Committee on 
Cancer (AJCC) 7th version], SEER stage, fibrosis score, 
marital status, insurance status, median household 
income, and treatment strategy (surgery, radiotherapy, 
and chemotherapy). The outcome variables were sur-
vival months and overall survival.

XGBoost model
XGBoost is a newer ensemble-learning algorithm, 
which was officially published in 2016 [13, 14]. It is 
more novel and complex compared to traditional 
machine learning algorithms [19]. The basic concepts 
of each machine learning algorithm are presented in 
Supplementary Text 1. In this study, the model was 
built on the training set by 10-fold cross-validation, in 
order to ensure the stability of the model. We tested 
and adjusted the model repeatedly and finally deter-
mined the key hyperparameters. In addition, a test set 
was devoted to further validate the model. Here, we 
aimed to develop a machine learning-based model to 
predict the overall survival of patients with AFP-posi-
tive HCC at 1-, 3-, and 5-year.

Statistical analysis
In terms of basic characteristics, categorical variables 
were presented as number (n) and percentage (%). Chi-
square test was used to compare differences between 
training and test sets. Normally distributed continuous 
variables were expressed as mean ± standard deviation, 
and non-normally distributed continuous variables 
were illustrated as median (range). When appropriate, 
t test or Mann-Whitney U test was used. Age, tumor 
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size, and median household income were presented as 
continuous variables.

In this study, six machine learning algorithms 
(XGBoost, LR, SVM, RF, KNN, and ID3) were used 
to develop the prognostic models for patients with 
AFP-positive HCC. We evaluated the predictive per-
formance of six machine learning-based prognostic 
models using the receiver operating characteristic 
(ROC) analysis and confusion matrix. Area under the 
ROC curve (AUC) was calculated to evaluate the 

model, using the ROC curve analysis. Accuracy was 
also calculated, which is one of the primary assessment 
parameters in the confusion matrix [15]. In addition, 
calibration curves and decision curve analyses (DCA) 
were also performed. All statistical analyses were per-
formed with SPSS version 26 and Python version 3.6 
(Python Software Foundation). A P value < 0.05 was 
considered statistically significant.

Fig. 1 Flowchart of study design and patient selection. AFP alpha-fetoprotein; HCC hepatocellular carcinoma; SEER Surveillance, Epidemiology, and End 
Results; TNM tumor lymph node metastasis; ROC curve receiver operating characteristic curve; AUC area under the curve
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Results
Patient characteristics
We obtained the information on 2,038 eligible patients 
with AFP-positive HCC from the SEER program. The 
1-, 3-, and 5-year overall survival rates of patients 
with AFP-positive HCC were 60.7%, 28.9%, and 14.3%, 
respectively. The baseline characteristics of the train-
ing and test sets are shown in Table 1 and summarized 
below. There was no difference in baseline data (except 
for marital status and median household income) 
between the training and test sets.

Of these patients, 76.3% were male, and 63.4% were 
white. The average age was 61.07 years. Patients with 
grade III or IV tumors accounted for 23.3%. In terms 
of marital status, about 57.9% of patients were mar-
ried. There were 1,509 (74.0%) patients who were 
insured. The majority of patients (74.0%) had a high 
fibrosis score (fibrosis score 5–6, i.e., severe fibrosis or 
cirrhosis). Regarding tumor size, tumors with ≤ 3 cm, 

3–5  cm, and ≥ 5  cm accounted for 33.3%, 27.2%, and 
39.5% of patients, respectively. In the treatment field, 
across the entire study population, more than half of 
the patients received surgical treatment, accounting 
for approximately 59.0%, followed by 41.6% with che-
motherapy, while only 6.7% received radiotherapy.

Feature predictor selection
The importance of each feature in the XGBoost prog-
nostic model is illustrated in Fig.  2. The findings 
revealed that for the 1-year prognostic model, the top 
five variables affecting prognosis were surgery, AJCC 
stage, tumor size, marital status, and median house-
hold income, while surgery, AJCC stage, tumor size, 
SEER stage, and age were the top five variables for 3- 
and 5-year prognostic models. Among them, surgery 
was the most important variable for 1-, 3- and 5-year 
prognostic models of XGBoost.

Fig. 2 The importance of each feature in the XGBoost prognostic model. A The importance of each feature in the 1- year prognostic model; B the im-
portance of each feature in the 3-year prognostic model; C the importance of each feature in the 5-year prognostic model. XGBoost extreme gradient 
boosting
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Characteristics Total (n = 2,038)
n (%)

Training set (n = 1,428) n (%) Test set (n = 610) n (%) χ2/t/Z P value

Age (mean ± SD), years 61.07 ± 10.11 61.04 ± 10.29 61.12 ± 9.68 -0.151 0.880
Sex 2.746 0.098
 Male 1,555 (76.3) 1,075 (75.3) 480 (78.7)
 Female 483 (23.7) 353 (24.7) 130 (21.3)
Race 3.162 0.206
 White 1,293 (63.4) 892 (62.5) 401 (65.8)
 Black 290 (14.2) 202 (14.1) 88 (14.4)
 Others 455 (22.3) 334 (23.4) 121 (19.8)
Marital status 5.027 0.025
 Married 1,179 (57.9) 849 (59.5) 330 (54.1)
 Others 859 (42.1) 579 (40.5) 280 (45.9)
Grade 2.743 0.433
 I 541 (26.5) 368 (25.8) 173 (28.4)
 II 1,022 (50.2) 726 (50.8) 296 (48.5)
 III 446 (21.9) 311 (21.8) 135 (22.1)
 IV 29 (1.4) 23 (1.6) 6 (1.0)
Tumor size (mm)
 Median (range) 40.00 (4-850) 40.00 (4-850) 41.00 (6-461) -1.052 0.293
AJCC stage 3.958 0.266
 I 807 (39.6) 578 (40.5) 229 (37.5)
 II 647 (31.8) 459 (32.1) 188 (30.8)
 III 437 (21.4) 294 (20.6) 143 (23.4)
 IV 147 (7.2) 97 (6.8) 50 (8.2)
AJCC T stage 4.942 0.176
 T1 843 (41.4) 604 (42.3) 239 (39.2)
 T2 695 (34.1) 490 (34.3) 205 (33.6)
 T3 437 (21.4) 288 (20.2) 149 (24.4)
 T4 63 (3.1) 46 (3.2) 17 (2.8)
AJCC N stage 0.131 0.718
 N0 1,930 (94.7) 1,354 (94.8) 576 (94.4)
 N1 108 (5.3) 74 (5.2) 34 (5.6)
AJCC M stage 1.259 0.262
 M0 1,891 (92.8) 1,331 (93.2) 560 (91.8)
 M1 147 (7.2) 97 (6.8) 50 (8.2)
Surgery 0.924 0.336
 Yes 1,202 (59.0) 852 (59.7) 350 (57.4)
 No 836 (41.0) 576 (40.3) 260 (42.6)
Radiotherapy 0.275 0.600
 Yes 136 (6.7) 98 (6.9) 38 (6.2)
 No 1,902 (93.3) 1,330 (93.1) 572 (93.8)
Chemotherapy 0.998 0.318
 Yes 848 (41.6) 584 (40.9) 264 (43.3)
 No/unknown 1,190 (58.4) 844 (59.1) 346 (56.7)
SEER stage 1.086 0.581
 Localized 1,271 (62.4) 901 (63.1) 370 (60.7)
 Regional 616 (30.2) 423 (29.6) 193 (31.6)
 Distant 151 (7.4) 104 (7.3) 47 (7.7)
Fibrosis score 1.646 0.199
 0–4 530 (26.0) 383 (26.8) 147 (24.1)
 5–6 1,508 (74.0) 1,045 (73.2) 463 (75.9)
Insurance status 2.415 0.299
 Any medicaid 481 (23.6) 342 (23.9) 139 (22.8)

Table 1 Baseline characteristics of AFP-positive HCC patients
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Construction of AI prognostic model
The total cases were randomly divided into a training 
set (n = 1,428) and a test set (n = 610) at a ratio of 7:3, 
for the construction and verification of AI prognostic 
models, respectively. In the training set, we used ten-
fold cross-validation for iterative testing and tuning, 
and tested and adjusted the model repeatedly. The key 

hyperparameters were finally confirmed. The main 
parameters of the XGBoost model are summarized as 
follows: Colsample_bytree = 0.8, Gamma = 0, Learn-
ing_rate = 0.1, Max_depth = 1, Min_child_weight = 1, 
and Subsample = 1.

Fig. 3 XGBoost model evaluation. A ROC curve for the 1-year prognostic model in the training and test sets; B ROC curve for the 3-year prognostic model 
in the training and test sets; C ROC curve for the 5-year prognostic model in the training and test sets. XGBoost extreme gradient boosting; ROC receiver 
operating characteristic curve; AUC area under the curve

 

Characteristics Total (n = 2,038)
n (%)

Training set (n = 1,428) n (%) Test set (n = 610) n (%) χ2/t/Z P value

 Insured 1,509 (74.0) 1,048 (73.4) 461 (75.6)
 Uninsured 48 (2.4) 38 (2.7) 10 (1.6)
Median household incomea

 Median (range) 3,904 (1597–6275) 3,904 (1802–6275) 3,904 (1597–6275) -2.305 0.021
aMedian household income (in tens) in U.S. dollars

AFP alpha-fetoprotein; AJCC American Joint Committee on Cancer; HCC Hepatocellular Carcinoma; SD standard deviation; SEER Surveillance, Epidemiology, and End 
Results

Table 1 (continued) 
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Evaluating predictive models for estimating the prognosis 
of patients with AFP-positive HCC
Using ROC curve analysis, we calculated the cor-
responding AUCs for the training and test sets. The 
XGBoost model performed well in predicting survival 
of patients with AFP-positive HCC at 1-year (train set: 
AUC = 0.771; test set: AUC = 0.782), 3-year (train set: 
AUC = 0.763; test set: AUC = 0.749) and 5-year (train 
set: AUC = 0.807; test set: AUC = 0.740) (Fig. 3).

In the ROC curve analysis, the 1-year AUC values of 
LR, SVM, RF, KNN, and ID3 were 0.758, 0.703, 0.761, 
0.746, and 0.762, respectively, in the training set, cor-
responding to 0.750, 0.734, 0.779, 0.631, and 0.750 in 
the test set (Table 2). In the 3-year prognostic model, 
the AUC values of LR, SVM, RF, KNN, and ID3 were 
0.756, 0.687, 0.760, 0.744, and 0.752, respectively, in 
the training set, corresponding to 0.740, 0.739, 0.753, 
0.607, and 0.718 in the test set. In the 5-year prognos-
tic model, the AUC values of LR, SVM, RF, KNN, and 
ID3 were 0.753, 0.686, 0.754, 0.786, and 0.748, respec-
tively, in the training set, corresponding to 0.708, 
0.715, 0.718, 0.586, and 0.699 in the test set. Compared 
to the five machine learning algorithms, the XGBoost 
model performed the best.

Furthermore, we evaluated the accuracy of the 
XGBoost model by constructing a confusion matrix 
(Supplementary Fig. 1). For 1-, 3-, and 5-year survival 
prediction, the accuracy in the training and test sets 
was 0.709 and 0.726, 0.721 and 0.726, and 0.778 and 
0.784, respectively. Supplementary Table 1 shows the 
accuracy of each model in predicting 1-, 3-, and 5-year 
survival in the training and test sets.

The XGBoost model-related calibration curves dis-
played good consistency in the probability of 1-, 3-, 
and 5-year survival between the actual observation and 
the model prediction in the training (Supplementary 
Fig.  2A, B and C; respectively) and test (Supplemen-
tary Fig. 2D, E and F; respectively) sets. Meanwhile, the 
DCA curves of 1-, 3-, and 5-year survival in the train-
ing (Fig. 4A, B and C; respectively) and test (Fig. 4D, E 
and F; respectively) sets also demonstrated good clini-
cal utility, showing preferable positive net benefit.

Discussion
Patients with AFP-positive HCC have aggressive 
biological behavior and poor prognosis, therefore, 
survival time is one of the greatest concerns [4]. In 
current clinic practice, however, there is a lack of reli-
able predictive models. Accurate and powerful models 
are thus clearly needed. In this study, we developed 
six machine learning-based prognostic models for 
AFP-positive HCC to comprehensively analyze sur-
vival data. The 1-, 3-, and 5-year overall survival rates 
of AFP-positive HCC patients were 60.7%, 28.9%, and 
14.3%, respectively.

To our knowledge, the current study is the first 
investigation to create AI prognostic models for 
patients with AFP-positive HCC. The XGBoost model 
showed good prediction accuracy, and the AUCs of the 
ROC curves in 1-, 3- and 5-year overall survival were 
0.771, 0.763, and 0.807, respectively, in the training 
set, corresponding to 0.782, 0.749, and 0.740 in the test 
set. Compared to the five machine learning algorithms 
including LR, SVM, RF, KNN, and ID3, our results 
revealed that the XGBoost model performed best. 
It holds promise for early medical intervention and 
improving the survival of patients.

In recent years, machine learning-based AI mod-
els attracted increasing attention in clinical practice 
[14, 20, 21]. Especially, AI-based technologies have 
made a significant contribution to the field of cancer 
research [21]. Recent studies have examined the use 
of the XGBoost model in predicting the survival of 
cancer patients, and verified that this model is of bet-
ter prediction ability in various types of cancer. In a 
recent study, Xu et al. [14] reported that the XGBoost 
model exhibited a better performance than the AJCC 
staging system in predict postoperative survival in 
elderly intrahepatic cholangiocarcinoma patients, with 
the AUCs of more than 0.7 both in the training and 
test sets. Li et al. [15] found that the XGBoost model 
behaved efficiently and successfully in predict the 
survival of patients with breast cancer brain metasta-
ses, with an AUC of 0.8 or above (test data). In addi-
tion, Zhong et al. [16] applied the XGBoost algorithm 
to create a prognostic model for patients with breast 

Table 2 Performance of prognostic models built by machine 
learning algorithms in the training and test sets (area under the 
ROC curve)

1-year survival 3-year survival 5-year survival
Training set
 XGBoost 0.771 0.763 0.807
 LR 0.758 0.756 0.753
 SVM 0.703 0.687 0.686
 RF 0.761 0.760 0.754
 KNN 0.746 0.744 0.786
 ID3 0.762 0.752 0.748
Test set
 XGBoost 0.782 0.749 0.740
 LR 0.750 0.740 0.708
 SVM 0.734 0.739 0.715
 RF 0.779 0.753 0.718
 KNN 0.631 0.607 0.586
 ID3 0.750 0.718 0.699
ROC receiver operating characteristic curve; XGBoost extreme gradient 
boosting; LR logistic regression; SVM support vector machine; RF random forest; 
KNN K-nearest neighbor; ID3 decision tree
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cancer with bone metastasis and showed AUC values 
of 0.88 and 0.80 in the training and test sets. Consis-
tent with the previous studies [14–16], our present 
study also revealed that the XGBoost model showed 
good performance in prognostic survival prediction 
models, showing AUCs greater than 0.7 and even the 
5-year AUC value over 0.8 (training data). Generally, 
an AUC ≥ 0.7 indicates that the model has an adequate 
predictive ability [22]. This suggests that XGBoost is 
an efficient machine learning classifier.

Notably, in this study, a total of 17 features in the 
basic characteristics of patients with AFP-positive 
HCC were considered in the survival prediction, which 
could be helpful in providing a comprehensive and 
accurate prediction. Our findings revealed that sur-
gery, AJCC stage, tumor size, marital status, median 
household income, SEER stage, and age were rela-
tively important variables affecting prognosis. Among 
them, surgery was the most important one. This is 
consistent with previous results. Several recent studies 

Fig. 4 Decision curve analysis curves of the XGBoost model in the training and test sets. Decision curve analysis curves for A 1-year, B 3-year, and C 5-year 
prognostic models in the training set; and D 1-year, E 3-year, and F 5-year prognostic models in the test set. XGBoost extreme gradient boosting
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showed that surgery was an independent prognostic 
factor for patients with HCC [23–26]. Currently, sur-
gical resection is still considered to be the gold stan-
dard treatment for HCC [27]. This result suggested 
the importance of surgical treatment in AFP-positive 
HCC, which is a favorable conclusion for both clini-
cians and patients. Consistently, AJCC stage, tumor 
size, and age were related to the survival of HCC 
patients [23, 25]. Previous studies have shown that 
patients with HCC with a tumor diameter ≤ 3  cm 
was low malignant potential and had better survival 
after treatment [28, 29]. Of note, age, tumor size, and 
median household income were presented as con-
tinuous variables rather than categorical variables. 
This implies that individualized survival prediction 
could be made for a particular patient, as opposed to 
a collective prediction for a group of patients, thus 
highlighting the concept of personalized prognosis 
prediction. In this study, marital status and median 
household income, two socio-economic factors, were 
also identified as important predictors for survival in 
patients with AFP-positive HCC. Psychological and 
economic support from spouses may help to improve 
survival in married patients [30].

This study has its unique aspects. This is the first 
study to create AI prognostic models for patients with 
AFP-positive HCC. We implemented six machine 
learning algorithms and used ten-fold cross-valida-
tion for iterative testing and tuning, and tested and 
adjusted the model repeatedly. Moreover, based on 
different machine learning algorithms, we comprehen-
sively analyzed 17 demographic/clinicopathological 
features, thus helping to provide an accurate predic-
tion. Nonetheless, the present study has some potential 
limitations. First, this is a retrospective study. Second, 
we obtained the information on patients with AFP-
positive HCC from the SEER database and, therefore, 
representativeness for other populations may be lim-
ited. Third, some other important information, such 
as concrete values of AFP, vascular invasion, etiology 
of HCC, and serum biochemical parameters, was not 
available in the SEER program. The model may miss 
some important features and lead to results bias. For 
example, previous studies revealed that microvascular 
invasion was an important and independent prognos-
tic factor for patients with HCC [31, 32]. Finally, the 
AI prognostic models we created were internally vali-
dated, and despite their promising predictive perfor-
mance, external validation using prospective studies is 
required to assess their applicability.

Conclusions
In conclusion, our study developed six novel machine 
learning-based prognostic models for the survival of 
patients with AFP-positive HCC. The XGBoost model 
exhibited good predictive performance, which may pro-
vide physicians with an effective tool for early medical 
intervention and improve the survival of patients.

Abbreviations
HCC  Hepatocellular carcinoma
AFP  Alpha-fetoprotein
AI  Artificial intelligence
XGBoost  Extreme gradient boosting
SEER  Surveillance, Epidemiology, and End Results
ICD-O-3  International Classification of Diseases for Oncology, Third Edition
AJCC  American Joint Committee on Cancer
LR  Logistic regression
SVM  Support vector machine
RF  Random forest
KNN  K-nearest neighbor
ID3  Decision tree
ROC  Receiver operating characteristic
AUC  Area under the receiver operating characteristic curve
DCA  Decision curve analyses

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12967-024-05203-w.

Supplementary Material 1

Acknowledgements
We thank the SEER database for its open data access. We also thank Boya Du 
for the help with machine learning analysis.

Author contributions
Conceptualization, BD, HZ and YD; methodology, BD, HZ, YD and SY; formal 
analysis, BD and HZ; data curation, BD, HZ, YD and YC; writing-original 
draft preparation, BD and HZ; writing-review and editing, YD, SY and YC; 
supervision, YC and CZ. All authors have read and agreed to the published 
version of the manuscript.

Funding
None.

Data availability
Publicly available datasets were analyzed in this study. This data can be found 
here: https://seer.cancer.gov/.

Declarations

Ethics approval and consent to participate
Ethical review and approval were waived for this study due to the fact that the 
data are fully de-identified and no intervention on patients was performed.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 December 2023 / Accepted: 15 April 2024

https://doi.org/10.1186/s12967-024-05203-w
https://doi.org/10.1186/s12967-024-05203-w
https://seer.cancer.gov/


Page 10 of 10Dong et al. Journal of Translational Medicine          (2024) 22:455 

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et 

al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and 
Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71(3):209–49.

2. Suk FM, Liu CL, Hsu MH, Chuang YT, Wang JP, Liao YJ. Treatment with a 
new benzimidazole derivative bearing a pyrrolidine side chain overcomes 
sorafenib resistance in hepatocellular carcinoma. Sci Rep. 2019;9(1):17259.

3. Villanueva A, Hepatocellular Carcinoma. N Engl J Med. 2019;380(15):1450–62.
4. He H, Chen S, Fan Z, Dong Y, Wang Y, Li S, et al. Multi-dimensional single-cell 

characterization revealed suppressive immune microenvironment in AFP-
positive hepatocellular carcinoma. Cell Discov. 2023;9(1):60.

5. Taketa K. Alpha-fetoprotein: reevaluation in hepatology. Hepatology. 
1990;12(6):1420–32.

6. Zhao T, Jia L, Li J, Ma C, Wu J, Shen J, et al. Heterogeneities of site-specific 
N-Glycosylation in HCC Tumors with Low and High AFP concentrations. Front 
Oncol. 2020;10:496.

7. Bai DS, Zhang C, Chen P, Jin SJ, Jiang GQ. The prognostic correlation of AFP 
level at diagnosis with pathological grade, progression, and survival of 
patients with hepatocellular carcinoma. Sci Rep. 2017;7(1):12870.

8. Munson PV, Adamik J, Butterfield LH. Immunomodulatory impact of 
α-fetoprotein. Trends Immunol. 2022;43(6):438–48.

9. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep 
learning in cancer diagnosis, prognosis and treatment selection. Genome 
Med. 2021;13(1):152.

10. Nguyen TT, Ho CT, Bui HTT, Ho LK, Ta VT. Multidimensional Machine Learning 
for assessing parameters Associated with COVID-19 in Vietnam: Validation 
Study. JMIR Form Res. 2023;7:e42895.

11. Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev 
Biomed Eng. 2006;8:537–65.

12. Senders JT, Staples P, Mehrtash A, Cote DJ, Taphoorn MJB, Reardon DA, 
et al. An online calculator for the prediction of Survival in Glioblastoma 
patients using classical statistics and machine learning. Neurosurgery. 
2020;86(2):E184–92.

13. Chen T, Guestrin C, XGBoost:. A Scalable Tree Boosting System. 2016.
14. Xu Q, Lu X. Development and validation of an XGBoost model to predict 

5-year survival in elderly patients with intrahepatic cholangiocarcinoma after 
surgery: a SEER-based study. J Gastrointest Oncol. 2022;13(6):3290–9.

15. Li C, Liu M, Zhang Y, Wang Y, Li J, Sun S, et al. Novel models by machine 
learning to predict prognosis of breast cancer brain metastases. J Transl Med. 
2023;21(1):404.

16. Zhong X, Lin Y, Zhang W, Bi Q. Predicting diagnosis and survival of 
bone metastasis in breast cancer using machine learning. Sci Rep. 
2023;13(1):18301.

17. Kinoshita F, Takenaka T, Yamashita T, Matsumoto K, Oku Y, Ono Y, et al. Devel-
opment of artificial intelligence prognostic model for surgically resected 
non-small cell lung cancer. Sci Rep. 2023;13(1):15683.

18. Duggan MA, Anderson WF, Altekruse S, Penberthy L, Sherman ME. 
The Surveillance, Epidemiology, and end results (SEER) Program and 

Pathology: toward strengthening the critical relationship. Am J Surg Pathol. 
2016;40(12):e94–102.

19. Jiang J, Pan H, Li M, Qian B, Lin X, Fan S. Predictive model for the 5-year 
survival status of osteosarcoma patients based on the SEER database and 
XGBoost algorithm. Sci Rep. 2021;11(1):5542.

20. Çubukçu HC, Topcu Dİ, Yenice S. Machine learning-based clinical decision 
support using laboratory data. Clin Chem Lab Med. 2023;62(5):793–823.

21. Kumar Y, Gupta S, Singla R, Hu YC. A systematic review of Artificial Intelligence 
techniques in Cancer Prediction and diagnosis. Arch Comput Methods Eng. 
2022;29(4):2043–70.

22. Fischer JE, Bachmann LM, Jaeschke R. A readers’ guide to the interpretation 
of diagnostic test properties: clinical example of sepsis. Intensive Care Med. 
2003;29(7):1043–51.

23. Yang R, Yu X, Zeng P. Construction and validation of a SEER-based prognostic 
nomogram for young and middle-aged males patients with hepatocellular 
carcinoma. J Cancer Res Clin Oncol. 2023;149(12):10099–108.

24. Liu K, Huang G, Chang P, Zhang W, Li T, Dai Z, et al. Construction and valida-
tion of a nomogram for predicting cancer-specific survival in hepatocellular 
carcinoma patients. Sci Rep. 2020;10(1):21376.

25. Yan B, Su BB, Bai DS, Qian JJ, Zhang C, Jin SJ, et al. A practical nomogram and 
risk stratification system predicting the cancer-specific survival for patients 
with early hepatocellular carcinoma. Cancer Med. 2021;10(2):496–506.

26. Xiao Z, Yan Y, Zhou Q, Liu H, Huang P, Zhou Q, et al. Development and 
external validation of prognostic nomograms in hepatocellular carcinoma 
patients: a population based study. Cancer Manag Res. 2019;11:2691–708.

27. Yang LY, Fang F, Ou DP, Wu W, Zeng ZJ, Wu F. Solitary large hepatocellular car-
cinoma: a specific subtype of hepatocellular carcinoma with good outcome 
after hepatic resection. Ann Surg. 2009;249(1):118–23.

28. Yamashita YI, Imai K, Yusa T, Nakao Y, Kitano Y, Nakagawa S, et al. Microvascu-
lar invasion of single small hepatocellular carcinoma ≤ 3 cm: predictors and 
optimal treatments. Ann Gastroenterol Surg. 2018;2(3):197–203.

29. Cammà C, Di Marco V, Orlando A, Sandonato L, Casaril A, Parisi P, et al. 
Treatment of hepatocellular carcinoma in compensated cirrhosis with 
radio-frequency thermal ablation (RFTA): a prospective study. J Hepatol. 
2005;42(4):535–40.

30. Chen Z, Cui J, Dai W, Yang H, He Y, Song X. Influence of marital status on small 
intestinal adenocarcinoma survival: an analysis of the Surveillance, Epidemi-
ology, and end results (SEER) database. Cancer Manag Res. 2018;10:5667–76.

31. Ouyang X, Yan Y, Zhang S, Li M, Li M, Liu Q. Microvascular invasion is associ-
ated with poor survival in patients with dual-phenotype hepatocellular 
carcinoma. Am J Clin Pathol. 2023:aqad143.

32. Wu F, Sun H, Zhou C, Huang P, Xiao Y, Yang C, et al. Prognostic factors for 
long-term outcome in bifocal hepatocellular carcinoma after resection. Eur 
Radiol. 2023;33(5):3604–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma
	Abstract
	Introduction
	Methods
	Data source and patient selection
	Study variables
	XGBoost model
	Statistical analysis

	Results
	Patient characteristics
	Feature predictor selection
	Construction of AI prognostic model
	Evaluating predictive models for estimating the prognosis of patients with AFP-positive HCC

	Discussion
	Conclusions
	References


