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Abstract 

Machine learning (ML) methods are increasingly becoming crucial in genome-wide association studies for identifying 
key genetic variants or SNPs that statistical methods might overlook. Statistical methods predominantly identify SNPs 
with notable effect sizes by conducting association tests on individual genetic variants, one at a time, to determine 
their relationship with the target phenotype. These genetic variants are then used to create polygenic risk scores 
(PRSs), estimating an individual’s genetic risk for complex diseases like cancer or cardiovascular disorders. Unlike 
traditional methods, ML algorithms can identify groups of low-risk genetic variants that improve prediction accuracy 
when combined in a mathematical model. However, the application of ML strategies requires addressing the feature 
selection challenge to prevent overfitting. Moreover, ensuring the ML model depends on a concise set of genomic 
variants enhances its clinical applicability, where testing is feasible for only a limited number of SNPs. In this study, 
we introduce a robust pipeline that applies ML algorithms in combination with feature selection (ML-FS algorithms), 
aimed at identifying the most significant genomic variants associated with the coronary artery disease (CAD) phe-
notype. The proposed computational approach was tested on individuals from the UK Biobank, differentiating 
between CAD and non-CAD individuals within this extensive cohort, and benchmarked against standard PRS-based 
methodologies like LDpred2 and Lassosum. Our strategy incorporates cross-validation to ensure a more robust evalu-
ation of genomic variant-based prediction models. This method is commonly applied in machine learning strategies 
but has often been neglected in previous studies assessing the predictive performance of polygenic risk scores. Our 
results demonstrate that the ML-FS algorithm can identify panels with as few as 50 genetic markers that can achieve 
approximately 80% accuracy when used in combination with known risk factors. The modest increase in accuracy 
over PRS performances is noteworthy, especially considering that PRS models incorporate a substantially larger num-
ber of genetic variants. This extensive variant selection can pose practical challenges in clinical settings. Additionally, 
the proposed approach revealed novel CAD-genetic variant associations.
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Introduction
A major goal of genetics researchers is to identify group 
of  interacting genetic loci that contribute to complex 
phenotypic traits and human diseases. This is often 
conducted through genome-wide association studies 
(GWAS), which are a research approach used to associ-
ate specific genetic variations—often single nucleotide 
polymorphisms (SNPs)—with particular diseases. GWAS 
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involve scanning genomes from many individuals to find 
genetic markers that correlate with observable traits or 
diseases. The process starts with association tests that 
evaluate one SNP at a time across the genome to find 
variants with statistically significant associations with the 
target phenotype. These tests typically measure the fre-
quency of each SNP in individuals with the phenotype 
(cases) versus control individuals without the phenotype 
(controls). SNPs that show a significant difference in fre-
quency between cases and controls are considered to be 
associated with the phenotype. SNPs have the potential 
to enhance the differentiation of complex phenotypes 
where clinical data alone may be insufficient. They can 
help identify new disease subtypes or trajectories, offer-
ing utility beyond clinical settings [1]. For example, SNPs 
can act as accurate markers for distinguishing between 
plant species or varieties [2]. Once these associated 
SNPs are identified, they are used to construct polygenic 
risk scores (PRS). A PRS is a number that represents an 
individual’s genetic predisposition to a disease, derived 
from the sum of effect sizes of SNPs associated with 
the disease. PRS has shown effectiveness in distinguish-
ing complex phenotypes, such as coronary artery dis-
ease (CAD), by aggregating the effects of many genetic 
variants across the genome. For instance, studies like the 
CARDIoGRAMplusC4D consortium have demonstrated 
the utility of PRS in CAD risk prediction [3, 4]. However, 
a significant challenge with PRS is that it may rely on a 
large number of genomic variants. This creates a barrier 
to clinical translation, as testing for hundreds or thou-
sands of SNPs is not always practical or cost-effective 
in clinical settings. Moreover, incorporating too many 
weak predictors may lead to biased results and challenges 
in replicating findings across different cohorts [5–7]. 
While prior research has largely concentrated on associa-
tion testing and polygenic risk scores, the application of 
Machine Learning (ML) to discern significant genotype–
phenotype correlations has been marginally explored. 
ML-based strategies approach can discover associations 
that do not necessarily meet statistical significance at the 
level of single genetic locus, yet still contributing to the 
combined predictive power at the level of variant pan-
els. However, using ML algorithms with  a  large num-
ber of features, such as those generated by genome-wide 
association studies (GWASs), results  in complex models 
that are slower to execute and, most importantly, prone 
to overfitting. One way to reduce overfitting is feature 
selection [8–10]. Feature selection aims to reduce data 
dimensionality, remove noisy and irrelevant data, and 
thus it can preserve the most useful variables from the 
dataset. Furthermore, feature selection helps identify 
a concise set of omics-based features for complex clas-
sification tasks [11–13], enhancing the development 

of cost-effective biomarker panels. In scenarios where 
two predictive models show similar performance but 
one uses significantly fewer features, the more compact 
biomarker model would be the preferred choice for cli-
nicians due to its potential for cost-effective implemen-
tation. There are mainly three types of feature selection 
methods: filtering, embedded, and wrapper methods 
[14, 15]. Filter-based feature selection is the most used 
method for selecting relevant genotypes for GWAS, since 
it relies on statistical measures to score the association 
between a single genetic variant and the target variable 
(e.g., known phenotypic trait, disease status, etc.). Then, 
the computed scores (e.g., size effects, p-values, etc.) can 
be used to choose (or prioritize) the most relevant fea-
tures or genetic loci. However, such a strategy does not 
try to remove redundant features, making it challenging 
to select genetic variants for accurate ML models.

In this study, we systematically evaluate three methods 
for feature selection in ML models: (1) using univariate 
test statistics with PLINK; (2) employing the Maximum 
Relevance Minimum Redundancy (mRMR) algorithm 
[16], which tries to identify predictive and uncorrelated 
features; (3) utilizing Random Forest (RF) feature impor-
tance scores to account for complex interactions. The 
goal of all tested methods is to identify a compact, effec-
tive combination of single-nucleotide polymorphisms 
(SNPs) for use in machine learning models that classify 
individuals with Coronary Artery Disease (CAD) in the 
UK Biobank, while discovering pertinent CAD variants. 
Each feature selection strategy is systematically com-
bined with linear and non-linear ML-based classifica-
tion algorithms: Logistic Regression (LR), Lasso (LA), 
Support Vector Machine (SVM) and Random Forests 
(RF). We assessed the quality of selected SNP combi-
nations using the Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC), a comprehensive 
performance measure for binary classifiers, considering 
both sensitivity and specificity to distinguish between 
CAD and non-CAD cases [17]. We also compared clas-
sification performance of feature selection (FS)-driven 
ML models with polygenic risk scores (PRSs) using three 
methods: P + T, LDPred2, and Lassosum, since they rep-
resent the primary approach for disease risk prediction 
[18, 19]. To evaluate the performance of ML- and PRS-
based approaches, we employed tenfold cross-validation 
(10FCV), a method that enhances the accuracy of clas-
sification performance estimates and enables the assess-
ment of feature selection stability. The stability refers 
to the robustness of the feature selection process, with 
respect to data sampling in cross validation studies [20]. 
Finally, functional annotation of  frequently selected 
genetic variants  from the FS-ML approaches was per-
formed using FUMA [21].
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Results
Machine learning‑based identification of risk loci for CAD 
via feature selection
Here we describe a computational framework to per-
form machine learning and feature selection algo-
rithms on large-scale genotyped data. Figure 1 provides 
a graphic overview of the main steps. The first step, 

depicted in Fig. 1A, aimed at gathering individuals for 
analyzing CAD phenotypes.

We defined CAD and non-CAD phenotypes using 
ICD-9, ICD-10, and OPCS-4 codes. Refer to Additional 
file 1: Table S1 for a comprehensive list of diagnoses and 
health statuses considered associated with the CAD phe-
notype. Moreover, at this stage, kinship estimates are 
computed to identify related individuals, who are then 

Fig. 1 Computational framework comparing different feature selection strategies for the selection of risk loci panels for CAD. A–C The data 
collected from the UKB is subjected to preprocessing to extract the phenotype of interest (CAD vs. non-CAD) and generate high-quality 
genotype imputed data. D, E To identify the most relevant covariates for association tests, we performed an analysis of CAD-associated risk 
factors and conducted principal component analysis on the genotype data. F tenfold cross-validation was used to perform a fair comparison 
between ML-based methods and PRSs. G Genomic variants for predicting CAD were selected based on three feature selection strategies 
encompassing filter-based and embedded methods. H, I Three PRS methods were implemented and combined with Logistic Regression-based 
classifier for the classification. J Genomic variants selected through FS were systematically uses to train three different classification algorithms: 
Lasso, RF and SVM. K The Area Under the ROC Curve (AUC) statistics as the main accuracy metric. Moreover, we also recorded the frequency of each 
feature being selected across different training set and feature selection methods. L The most informative SNPs were further analyzed to assess their 
biological relevance
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removed before performing association tests, calculat-
ing PRS scores, and applying ML-based feature selec-
tion methods across the CV iterations. Imputation and 
quality control were performed to generate the initial set 
of single nucleotide polymorphisms (SNPs), which are 
genetic variations in a population at specific positions 
in the DNA sequence (Fig.  1B–C). Imputation refers to 
the process of filling in missing data in a dataset, while 
quality check refers to removing markers and individuals 
with low quality or that are unlikely to contribute to asso-
ciation analysis, thus increasing the power and accuracy 
of downstream analyses. Quality control on the genetic 
markers included checking for markers that were in link-
age disequilibrium (LD), which can lead to redundant 
information, and markers that had high levels of missing 
data or low minor allele frequency (MAF). Markers that 
failed these quality control criteria were removed from 
the analysis. Association tests between CAD and known 
risk factors were performed and principal component 
analysis (PCA) was applied to genotype data to uncover 
population structure (Fig. 1D–E). The steps illustrated in 
Fig. 1F–K shows the machine learning framework which 
aims to compare PRS with standard ML and feature 
selection algorithms. In more details, three feature selec-
tion strategies, encompassing filter-based and embedded 
methods, were used in combination with three classifica-
tion algorithms (Fig. 1G). These methods were then com-
pared against three PRS strategies (Fig. 1H–I). Machine 
learning helps identify new risk loci for complex dis-
eases, selecting genetic variants that, when combined, 
yield higher prediction accuracy compared to PRS-
based approaches. To guarantee a fair comparison, PRS 
was defined within the training set and evaluated on an 
independent test set, preventing bias. The computational 
framework offers a more accurate assessment, enabling 
informed comparisons between ML and PRSs. 10-folds 
cross validation was used to more robustly estimates 
prediction performance of all tested methods (Fig.  1F), 
while the Area Under the ROC Curve (AUC) statistics 
was used to as main accuracy metric (Fig.  1K). Subsets 
of SNPs that are most informative for the identification 
of the CAD phenotype, which were selected through 
ML-driven feature selection algorithms, were further 
analyzed to assess their biological relevance, by using the 
tool Functional Mapping and Annotation (Fig.  1L). For 
further details on the methodology used in this study, 
please refer to the “Materials and Methods” section.

Population characteristics and association between CAD 
and known risk factors
We examined the UKB population characteristics and 
associations between CAD patients and known risk fac-
tors across the entire UK Biobank population. Baseline 

characteristics of CAD are summarized in Table  1 by 
sex, age and commonly used risk factors. CAD partic-
ipants’ average age is 60.33  years, and non-CAD con-
trols’ average is 56.24  years. Triglycerides are slightly 
higher in CAD cases, as expected [22].

LDL and total cholesterol values are higher in non-
CAD cases, likely due to statin treatment in CAD 
patients, which reduces both LDL and total choles-
terol levels. Associations  between known risk factors 
and CAD cases were then estimated through logistic 
regression  analysis. The logistic regression model also 
included basic covariates (e.g., sex and age), ethnic 
background, genotype batch, assessment center, and 
PCs adjusting for population structure. Figure 2 shows 
odds ratios and 95% confidence intervals from multi-
variable ordinal regression, indicating the association 
between cardiovascular risk factors and CAD cases. 
HDL is a protective factor, while LDL and cholesterol 
show no increased risk, likely due to statin treatment 
in CAD-diagnosed individuals [23, 24]. Principal com-
ponent analysis (PCA) was applied to genotype data 
to uncover population structure and use the PCs as 

Table 1 Baseline characteristics of UK Biobank participants 
included in the present study

The number of participants or observations is displayed in the first row of the 
table

BMI Body Mass Index, CRP C-reactive protein, HDL High-density lipoprotein 
cholesterol, LDL low-density lipoprotein cholesterol

Number of parecipants UKBB CAD non‑CAD
502 504 35 920 467 215

Diabetes
(%with no diabates)

501 573
(94,4%)

35 181
(85,5%)

466 392
(95,1)

Blood pressure
Mean (std) mmHg

468 063
139,7 (19,7)

32 617
142,4(20,5)

435 446
139,5 (19,6)

VHP
(%no problem reported)

501 575
(69,9%)

35 181
(35,8%)

466 394
(72,5%)

Smoking
(%none smoker)

501 613
(54,5%)

35 186
(40,4%)

466 427
(55,6%)

BMI mean
(std)

499 399
27,4 (4,8)

34 880
28,7 (4,9)

464 519
27,3 (4,8)

Age
Mean (std) years

502 504
56,5 (8,1)

35 290
60,3(7,1)

467 214
56,2 (8,1)

Sex
(%female)

502 504
(54,4%)

35 290
(31,9%)

467 214
(56,1%)

CRP mean (std)
mg/L

468 568
2,6 (4,3)

32 624
3,3 (5,4)

435 944
2,6 (4,3)

Triglycerides
Mean (std) mmol/L

469 214
1,7 (1)

32 691
2 (1,4)

436 523
1,7 (1)

HDL
Mean (std) mmol/L

429 871
1,4 (0,4)

30 001
1,3 (0,4)

399 870
1,5 (0,4)

LDL
Mean (std) mmol/L

468 706
3,6 (0,9)

32 657
3,2 (1)

436 049
3,6 (0,9)

Cholesterol
Mean (std) mmol/L

469 589
5,7 (1,1)

32 723
5,2 (1,3)

436 866
5,7 (1,1)
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covariates (Additional file  1: Fig.  S2) for subsequent 
analyses.

Additional file 1: Fig. S3 includes the SHAP summary 
plot, which shows the contribution or the importance of 
each feature, including risk factors, batches, and PCs, on 
the  CAD risk and their effect on the single predictions. 
Shapley values help detect risk factors, batches, or PCs 
affecting predictions. Features are ranked by their abil-
ity to improve predictions, with age and sex having mild 
contributions. Genotype batch and assessment center 
show no contributions to CAD status, while vascular 
heart problem diagnosis has a high positive contribution. 
However, it should be acknowledged that the lack of diag-
nosis is not necessarily associated with non-CAD cases. 
Additional file 1: Fig. S4 shows correlation and VIF analy-
sis outcomes, assessing multicollinearity between predic-
tor variables in a CAD status regression model. High VIF 
score variables were removed, specifically total choles-
terol and ethnic background, represented by LDL/HDL 
levels and the first 20 PCs. The final set of covariates was 
used for genotype-CAD association analysis, generating 
summary statistics for CAD-relevant single-nucleotide 
variants. It should be noted that summary statistics are 
systematically computed within each generated training 
dataset in a cross-fold validation framework, as they are 
used in one of the feature selection strategies to select 
risk loci evaluated in this study and to build PRSs. This 

aligns with the machine learning framework, where fea-
ture selection and model training must be implemented 
within a training set and evaluated within an unseen test 
set to avoid data leakage [25].

Using PRS and ML methods for CAD prediction based 
on panels of genetic variants
Predicting phenotypes with panels of genetic variants 
captures cumulative effects, reducing noise and false 
positives for accurate predictions. To this end, we first 
applied various ML strategies, foregoing the use of fea-
ture selection, to establish baseline models for CAD 
prediction utilizing panels of genetic variants. We then 
compared the predictive performance of these machine 
learning models to those achieved using PRS-based mod-
els. ML-based models were trained on genomic variants 
as well as on known risk factors to determine the extent 
to which genomic variants can enhance the predic-
tive power of risk factor-based models. It should also be 
noted that PRS-based predictions start from the analysis 
of a pre-selected set of genetic variants. However, in con-
trast to the ML approach, variants are selected based on 
association tests, which evaluates each feature individu-
ally and selects the ones with the highest statistical sig-
nificance. In each employed method, the feature selection 
process commences with a refined set of SNPs, achieved 
by applying a Minor Allele Frequency (MAF) filter of 0.01 

Fig. 2 Odds ratios of traditional cardiovascular risk factors. A larger odds ratio indicates a stronger association between the risk factor and CAD. The 
red color is used to indicate significant associations (p < 0.05). The vertical line at x = 1 indicates an odds ratio of 1, in which case there is "no effect". 
For the calculation of odds ratios pertaining to traditional cardiovascular risk factors, we considered the complete set of UK Biobank individuals 
or non-CAD, which consisted of 467,215 and 35,290 individuals for the respective categories
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and an R2 threshold value of 0.1 for linkage disequilib-
rium (LD) to the entire pool of imputed variants (7.87 
million). Then, ten fold cross-validation was used to 
assess model stability and mitigate overfitting by generat-
ing 10 training and test data sets. These sets were used 
to build and evaluate predictive models of CAD based on 
PRS (PLINK-PRS, LDpred2 and lassosum), and stand-
ard ML algorithms coupled with FS approaches. Figure 3 
shows the area under the receiver operating characteris-
tic (ROC) curve (AUC) computed on 10 test sets by using 
CAD-based classification models covering PRS-based 
strategies (Fig.  3A) and standard ML algorithms work-
ing with genotype data (Fig.  3B) or known risk factors 
for CAD (Fig. 3C). Notably, when excluding risk factors 
and other relevant covariates, the best methods among 
PRSs is lassosum, which achieves an AUC of about 0.55. 
Lassosum uses penalized regression (LASSO)  in  its 
approach to  PRS  calculation. This implies that the best 
performances for the PRS  calculation are achieved by 
reducing or even eliminating some of the genetic vari-
ants selected with association (or univariate) tests. It is 
also possible to observe that standard ML methods are 
not able to improve the performance of PRSs. Indeed, the 
best performing method is LASSO, which also achieves 
an AUC of about 0.55. However, PRS-based meth-
ods exhibit a higher variance on the test sets. This may 
result from PRS-based predictions being more prone 

to overfitting compared to the ML approach. Figure  3C 
shows ML models trained with risk factors achieve high 
accuracy (AUC > 75%), with LASSO models achieving 
the best accuracy. PRS and standard ML algorithms do 
not improve accuracy. SVM with a Gaussian kernel had 
the lowest performance, as it struggles to model high-
dimensional genetic data effectively. In the case of high-
dimensional genetic data, the number of dimensions is 
too high, and the manifold becomes too complex for the 
kernel to model effectively, resulting in poor prediction 
performance.

Predicting CAD susceptibility via ML‑driven feature 
selection
Adding genomic variants to traditional risk factors can 
improve the accuracy of predicting complex diseases 
such CAD. To this end, different ML-driven feature selec-
tion strategies were implemented to assess the effective-
ness of various ML-based feature selection techniques in 
enhancing the accuracy and optimizing the panel size of 
genomic variants for CAD susceptibility prediction based 
on genotype SNPs data. Feature selection is important 
in selecting panels of genetic variants because it helps in 
reducing the dimensionality of data by selecting a sub-
set of relevant and informative variants. This not only 
improves the interpretability and understanding of the 
data, but also enhances the accuracy and performance of 

Fig. 3 Classification performance obtained by using PRS, standard classification algorithms and known CAD risk factors. Bar-plots showing 
the AUC values computed with tenfold cross-validation. Error bars are used to assess model stability, while the different subplots aim to highlight 
the performance of PRS methods, and ML approaches using genotype data or known risk factors as predictors. A The AUC values obtained 
by combining PRS scores with logistic regression. B The AUC values obtained by using standard machine learning algorithms. C The AUC values 
obtained by using known risk factors as input to standard machine learning algorithms
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predictive models, as it reduces the potential for overfit-
ting and biases. Additionally, feature selection helps in 
identifying the most important variants that contribute 
to the phenotype, providing insights into the underlying 
biological mechanisms. Three different ML algorithms 
were implemented. The first is based on Random Forest-
based feature selection. In this approach, a Random For-
est classifier is trained on the data, and the importance of 
each feature is calculated based on its contribution to the 
classifier’s performance. By considering then top k fea-
tures based on their importance, it is possible to select a 
subset of the most informative features for further analy-
sis or to train a predictive model with improved perfor-
mance. We then implemented a second feature selection 
strategy using the mRMR algorithm, which can identify 
a subset of genotype data that is both highly relevant to 
a phenotype of interest and distinct from other features. 
It measures both the relevance of each feature with the 
phenotype and their mutual dependencies and selects 
a subset of features that maximizes the relevance while 
minimizing redundancy. Finally, a feature selection strat-
egy based on the result of a standard case/control asso-
ciation analysis using Fisher’s exact test implemented in 
PLINK association analysis was used. The methods gen-
erate a score for each variant’s contribution to CAD pre-
diction, and different cut-offs were applied to select the 
top features. These cut-offs were explored to determine 
the influence of the number of selected features on pre-
diction performance. The feature selection strategy was 
implemented for each training set of 10-CV and used to 
train three classification models based on RFs, SVM, and 
LASSO. Figure  4 shows the performance of ML-driven 
feature selection algorithms based on AUC values com-
puted with classification models trained with subsets of 
selected genomic variants (top k) and known risk fac-
tors. It is possible to observe that RF-based models sys-
tematically outperform LASSO and SVM-based models. 
Notably, feature selection based on RF classifiers lead to 
CAD prediction models with an AUC value close to 0.8 
(Fig. 4C). This result is achieved by using the top 50 fea-
tures. Moreover, SVM and LASSO do not perform better 
than a classification model trained on known risk fac-
tors (red dash-dot line) and that SVM-based classifiers 
achieve high AUC values only when considering large 
set of features. Finally, we observed a plateau in the clas-
sification performance when using the top 50 features 
selected by the employed feature selection algorithms, 
possibly indicating that a relatively small set of genetic 
variants is sufficient for improving risk factor-based 
models. Figure 5 compares different classification models 
for CAD prediction, including those based solely on risk 
factors, all genetic variants (without feature selection), 
the best performing PRS, which is based on the lassosum, 

and genomic variants selected through feature selection. 
Notably, feature selection effectively selects genomic var-
iants enhancing risk factor-based models, with the top 
50 variants performing comparably across methods. PRS 
integration does not increase accuracy, and the best PRS 
combined with risk factors yields slightly lower perfor-
mance than top 50 RF-selected features with risk factors.

Evaluating the stability of feature selection algorithms
ML-driven feature selection strategies were evaluated 
within a 10-CV framework. We therefore sought to eval-
uate how frequently the same features or genomic vari-
ants are selected across different training sets. Figure 6A 
displays the consistency of feature selection by depicting 
the percentage of overlap in the top K features selected 
across multiple runs of cross-validation. GWAS-based 
feature selection, which expected to be more robust 
than RF-based feature selection, since it uses a filtering 
method for feature selection, it provides the most stable 
results only when considering the top 10 features. How-
ever, when reaching the plateau in the classification per-
formance, which corresponds to the selection of the top 
50 features, all feature selection methods exhibit a similar 
level of model stability.

Figure  6B includes detailed information on the num-
ber of features that are always selected across the multi-
ple runs of cross-validation. Our subsequent goal was to 
identify genomic variants that are consistently selected 
as important by each feature selection strategy and are 
deemed relevant across all methods. To this end, we 
identified genomics variants that appear in the top 50 
genomic features at least five times, and that are selected 
across all methods. Figure  6C reports that 6 genomics 
variants are consistently selected as important by the fea-
ture selection strategies.

Assessing the biological relevance of ML‑driven variants 
for predicting CAD
A literature review was conducted in early 2023 to under-
score the significance of the selected genes, and the 
association between genomic variants and genes was 
determined using FUMA software version 1.5.2. We 
identified the top 6 genetic variants that were selected 
by all feature selection methods and used FUMA [21] to 
map these genetic variants to their corresponding genes 
(see Table 2). Selected loci have been described in recent 
CAD-related GWASs, and the mechanism of action for 
several of them has been linked either with lipid levels 
(LDLR, SORT1, and LPA) or with molecular changes 
within the vascular wall implicated in atherosclero-
sis (CDKN2A/B, FES/FURIN, PHACTR1) (Additional 
file  1: Tables  S2 and S3). LDLR and SORT1 loci have 
been associated with changes in low-density lipoprotein 



Page 8 of 14Alireza et al. Journal of Translational Medicine          (2024) 22:356 

A

B

C

Fig. 4 Evaluating the accuracy of models that utilize both genotype SNPs and risk factors in predicting CAD susceptibility through various machine 
learning techniques. Bar-plots showing the AUC values computed with tenfold cross-validation. Error bars are used to assess model stability, 
while the different subplots aim to highlight the performance of three feature selection strategies. Selected features were systematically evaluated 
with three different classification algorithms: RF, SVM and LASSO. Each classifier was trained with selected genotypes, known risk factors and PCs. A 
The AUC values obtained by using GWAS-driven feature selection. B The AUC values obtained by using mRMR-based feature selection. C The AUC 
values obtained by RF-based feature selection and by selecting the top 50 features. The red dash-dot line represents the classification accuracy 
achieved by using known CAD risk factors
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(LDL) levels [26, 27], whereas LPA is also associated with 
lipoprotein (a) levels [28]. On the other hand, the 9p21 
locus, harboring ANRIL and CDKN2A/B genes, is one 
of the strongest genetic associations for CAD identified 
through GWAS. ANRIL is a long non-coding RNA that 
regulates gene expression, cell proliferation, senescence, 
apoptosis, extracellular matrix remodeling, and inflam-
mation [29]. ANRIL exerts its effects through endothelial 
cell function, macrophage polarization, and VSMC phe-
notypic transition. ANRIL also regulates plaque stability 
and is involved in thrombogenesis, vascular remodeling 
or repair, and plaque stability through its regulation of 
the tumor suppressor genes, CDKN2A/B. In contrast, the 
15q26.1 locus harbors two genes, FES and FURIN, which 
have been shown to regulate the migration of mono-
cytes and vascular smooth muscle cells and monocyte‐
endothelial adhesion, respectively [30, 31]. Finally, the 
genetic risk locus on chromosome 6p24, which contains 
PHACTR1 and EDN1 genes, is associated with multiple 
vascular diseases, including CAD, migraine headache, 
coronary calcification, hypertension, fibromuscular dys-
plasia, microvascular angina, and arterial dissection [32, 
33]. The expected mechanism of action involves the regu-
lation of vascular smooth muscle cell proliferation and 
vasoconstriction, as well as the promotion of natriuresis 
and lower systemic blood pressure through the oppos-
ing effects of the ET-A and ET-B receptors. Altogether, 
this evidence supports that that the ML-selected variants 

capture widely the mechanistic aspects of the disease 
etiology, including the risk that arises from lipid levels, 
inflammation, and vascular biology.

Conclusion
Our study highlights the significant advantages of using 
machine learning (ML) and feature selection in GWAS 
for identifying key genomic variants related to CAD. 
Unlike traditional association analysis, which tests one 
SNP at a time, and polygenic risk scores (PRS) that may 
rely on a broad set of SNPs, our approach enhances the 
development of risk prediction models that rely on a 
compact panel of genomic variants. Specifically, we dem-
onstrated how feature selection can play a crucial role 
in identifying a compact set of highly predictive SNPs. 
This focused approach could significantly simplify the 
clinical validation and application of genetic variants for 
disease risk prediction. Furthermore, our research tack-
les critical methodological challenges encountered when 
utilizing machine learning (ML)-based approaches for 
the discovery of disease-associated genomic variants, 
including feature selection, data leakage, and cross-vali-
dation. Cross-validation was also employed in evaluating 
methods for building PRSs since it contributes to assess-
ing their robustness. Our study demonstrates that their 
performance remains comparable to those achieved by 
ML-based approaches, even though PRS utilizes a larger 
set of SNPs. Our findings are supported by earlier studies 

Fig. 5 Comparing the accuracy of different classification models, feature selection techniques and predictors. Bar-plots showing the AUC values 
computed with tenfold cross-validation by using two main classification algorithms (RF and LASSO) and different sets of features (or predictors). 
Feature sets include known risk factors, all SNPs, PRS, and the top 50 genomic variants selected by RF, mRMR and GWAS results. Moreover, 
classification models were trained with both genotype data and a combination of genotype data and risk factor. Classifiers annotated with top PRS 
are trained with the best performing PRS method, which is lassosum. Error bars are used to assess model stability
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aimed at employing advanced data mining algorithms 
to select more effective genomic variants [34]. Notably, 
employing feature selection with RF-based classifiers 
resulted in CAD prediction models achieving an AUC 
value near 0.8, comparable to that of PRS models. How-
ever, unlike PRS, this approach utilizes a smaller panel 
of genomic variants. Furthermore, six genomic variants 
were consistently identified as significant by all feature 
selection methods, exhibiting crucial associations with 
lipid levels, inflammation, and vascular biology, which 
are key aspects of CAD etiology. However, our study also 
found that incorporating PRS did not result in an increase 
in accuracy, and the best-performing PRS achieved simi-
lar performance to ML-driven models. Overall, this study 
emphasizes the significance of employing machine learn-
ing and feature selection to identify panels of genetic 
variants, rather than single variants, for predicting com-
plex diseases like CAD. It also proposes a computational 

protocol that should be utilized when comparing ML-
based approaches with PRS-based methods for disease 
risk prediction. In future research, the proposed proto-
col can be expanded to include initial steps focusing spe-
cifically on rare genetic variants. Such an approach could 
leverage recent statistical methods designed to analyze 
associations between rare functional variants and com-
mon diseases [35–37]. Ultimately, this would contribute 
to improving the accuracy of CAD risk prediction [38, 
39].

Materials and methods
Data collection, phenotype extraction and quality control 
(QC) at the individual and phenotype levels
We collected more than 300000 individuals with 
CAD and non CAD phenotypes from the intial set of 
500,000 individuals in the UK Biobank (ID Application: 
58990). The R package ukbpheno v1.0 [40] was used for 

No. Selected SNPs
more than 5 times

No. selected SNPs
across 10-folds 

% Rate
No. Selected SNPs
more than 5 times

No. selected SNPs
across 10-folds

% Rate
No. Selected SNPs
more than 5 times

No. selected SNPs
across 10-folds

% Rate

Top 5 2 27 7,41 5 13 38,46 5 10 50,00
Top 10 3 57 5,26 7 41 17,07 11 21 52,38
Top 15 4 82 4,88 8 74 10,81 13 42 30,95
Top 20 9 103 8,74 8 109 7,34 13 65 20,00
Top 50 29 221 13,12 13 337 3,86 32 181 17,68

Top 100 63 417 15,11 22 732 3,01 64 389 16,45
Top 200 131 801 16,35 24 1547 1,55 128 765 16,73
Top 300 205 1175 17,45 37 2357 1,57 194 1123 17,28
Top 500 347 1879 18,47 61 3935 1,55 350 1757 19,92

No. Selected GENEs
more than 5 times

No. selected GENEs
across 10-folds

% Rate
No. Selected GENEs

more than 5 times
No. selected GENEs

across 10-folds
% Rate

No. Selected GENEs
more than 5times

No. selected GENEs
across 10-folds

% Rate

Top 50 100 488 20,49 70 1080 6,48 240 618 38,83

mRMR RF GWAS

# Top50<RF> Top50<mRMR> Top50<GWAS> #

1 rs55730499 rs55730499 rs55730499 1
2 rs77140532 rs77140532 rs77140532 2
3 rs9644860 rs9644860 rs9644860 3
4 rs646776 rs646776 rs646776 4
5 rs7168951 rs7168951 rs7168951 5
6 rs1412740 rs1412740 rs1412740 6
7 rs8191772 rs8083358 rs268 7
8 rs12059066 rs12144801 rs62570233 8
9 rs2148562 rs76184175 rs7561528 9
10 rs111799632 rs75882399 rs117515500 10
11 rs206490 rs112449894 rs3755014 11
12 rs28461472 rs4722413 rs10845006 12
13 rs2496141 rs75139511 rs12356826 13

rs268 rs61772626 14
rs13113330 rs8191772 15
rs10143160 rs114785974 16
rs28461472 rs11120317 17
rs75358228 rs72605340 18
rs17217477 rs17810433 19
rs116433596 rs118081307 20

A

B

C

Fig. 6 Feature selection stability and selection of the most stable genomic variants. A Bar-plots showing the reliability of the feature selection 
process by visualizing the extent to which the same features were chosen repeatedly across multiple iterations of cross-validation, shown 
as a percentage of overlap in the top K selected features. B Features that are selected more than 5 times across 10-CV and total number of selected 
features across the same runs. C Genomic variants that are consistently recognized as significant by different feature selection techniques and are 
deemed to have a significant impact on the results by all methods used are selected in order to define a small set of novel SNPs for CAD risk 
prediction
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phenotype extraction, while QCs were done using PLINK 
software v1.9 and v2.0 [41, 42]. CAD patients were then 
selected based on a combination of self-reported UKB 
statuses, standard medical codes (ICD9, ICD10, OPCS4), 
diagnosed conditions, and various combinations of these 
criteria. A complete list of ICD9, ICD10 and OPCS4 
codes, along with their description is provided in Addi-
tional file 1 Table S1. Then, only white participants from 
the UK Biobank were selected to create a more homog-
enous population sample. Exclusions were made for 
those individuals identified with sex chromosome ane-
uploidy, and participants who had withdrawn their con-
sent. Importantly, we calculated kinship coefficients to 
filter out related individuals, aiming to maintain a dataset 
of unrelated participants only, which resulted in a final 
cohort of 337,110 individuals—23,559 with CAD and 
313,551 classified as non-CAD. This selected group of 
individuals was utilized for the machine learning analy-
sis, including conducting association tests and calculat-
ing polygenic risk scores. We also selected information 
on CAD-associated risk factors (diabetes, blood pressure, 
vascular/heart problems diagnosed by doctor, smok-
ing, BMI, CRP, Triglycerides, HDL, LDL and the total 
cholesterol), basic covariates (e.g., sex and age), ethnic 
background, genotype batch and assessment center. This 

information all together can help address better genome-
wide association analysis for the detection of CAD risk 
loci.

Genotype‑level QC using imputed genotype data
Genetic analyses were done using UKBB imputed gen-
otypes from ~ 96  M SNPs [43], see Additional file  1: 
Fig.  S1. Autosomal markers were extracted solely from 
SNPs with an imputation information metric (INFO) 
greater than 0.3 to ensure high-quality imputed geno-
types [43]. Proportions [44, 45]. Next, we filtered the 
genotype data based on marker minor allele frequency 
and missingness per marker. The MAF (--maf) filter was 
set to 0.01 (MAF < 1%), in order to remove rare vari-
ants, while the option --geno 0.2 removed markers with 
high rates of missing data. The value 0.2 indicates that a 
marker will be removed if more than 20% of the geno-
types are missing. SNPs with minor allele count less than 
100 were also removed. Similarly, we also removed indi-
viduals with > 20% missing genotypes (--mind 0.2). Next, 
we filtered our data based on Hardy–Weinberg equi-
librium (HWE) (--hwe 1E-25). It removed markers that 
deviate significantly from the expected HWE The value 
1E-25 indicates the p-value threshold for HWE deviation. 
The pre-processing of genotype was used to conduct 
exploratory analysis by using PCA and correlation anal-
ysis between risk factors, covariates, PCA and the CAD 
status. We finally generated a total number of 7,874,484 
SNPs with genotyping rate 0.99.

Principal component analysis, multi‑collinearity and SHAP 
values
We assessed population stratification through Principal 
Component Analysis (PCA) to identify and control the 
effects of hidden population structure on genotype–phe-
notype association tests [46]. Moreover, since principal 
components (PCs) will be considered in the association 
tests to account for hidden population structures by 
associating SNPs with the CAD phenotype, we aimed to 
determine if they also correlate with known risk factors 
and basic covariates (e.g., age, sex, ethnic background). 
This helps assess multicollinearity and identify a set of 
variables with lower correlation. Our PCA analysis ini-
tially included the entire participant set to verify the 
effective encapsulation of population structure. Sub-
sequently, PCA was recalculated for each iteration of 
cross-fold validation on the selected set of unrelated, 
white individuals for the machine learning analysis. How-
ever, we first applied PCA to the whole set of genotypes 
including 487,408 participants and used the first 20 PCs 
along with known risk factors and basic covariates (e.g., 
age, sex, ethnic background) to assess multicollinearity 
and identify a set of variables with lower correlation. If 

Table 2 Mapping the top 6 selected variants to genes

The table displays the genetic variants and their corresponding gene mappings 
identified by the FUMA software (26 February 2023-version 1.5.2)

SNP ID GENE Symble SNP ID GENE Symbol

rs9644860 CDKN2A rs55730499 LPA

rs9644860 CDKNSB/ANRIL rs55730499 PLG

rs9644860 MBD4 rs55730499 WTAP

rs9644860 FAM172A rs55730499 SLC22A2

rs9644860 RP11-145E5.5 rs55730499 SLC22A3

rs7168951 FES rs77140532 P2RY11

rs7168951 FURIN rs77140532 DNMT1

rs7168951 VPS33B rs77140532 ICAM1

rs646776 KIAA1324 rs77140532 ZGLP1

rs646776 SARS rs77140532 S1PR5

rs646776 CELSR2 rs77140532 ATG4D

rs646776 PSRC1 rs77140532 AP1M2

rs646776 SORT1 rs77140532 SLC44A2

rs646776 SYPL2 rs77140532 DNM2

rs646776 ATXN7L2 rs77140532 C19orf52

rs646776 AMIGO1 rs77140532 SMARCA4

rs646776 GSTM1 rs77140532 LDLR

rs646776 GSTM2 rs77140532 RGL3

rs646776 GSTM3 rs77140532 ACP5

rs646776 GSTM4 rs77140532 CHKB

rs1412740 PHACTR1 rs1412740 TBC1D7



Page 12 of 14Alireza et al. Journal of Translational Medicine          (2024) 22:356 

high correlation is found, those variables will be removed. 
The preference is to retain the PCs as they encapsulate 
the population structure effectively. We evaluated multi-
collinearity using correlation analysis and variance infla-
tion factor analysis (VIF). The corr() method in Pandas 
was used to compute a correlation matrix displaying 
the pair-wise relationships between variables, while VIF 
[47] was used to measure the degree of multicollinearity 
between predictor variables in a regression model pre-
dicting the CAD status with basic covariates (e.g., sex 
and age), CAD-risk factors, ethnic background, genotype 
batch, assessment center, and PCs adjusting for popula-
tion structure. The VIF was performed in R by using the 
car package and it generates a VIF value for each predic-
tor. Differently from the correlation analysis, VIF quanti-
fies the extent of correlation between one predictor and 
the other predictors (PCs and phenotypic information) 
in a model predicting the CAD status. It is calculated as 
the ratio of the variance of an estimated regression coef-
ficient to the variance that would be expected if the pre-
dictor (or clinical) variable were uncorrelated with all 
other predictor (or clinical) variables in the model. Clini-
cal variables with a high VIF value were removed. The 
resulting set of risk factors, clinical variables and the first 
20 PCs was used to compute association statistics and 
model machine learning-based classifiers using polygenic 
risk scores or genomics variants selected by the imple-
mented ML-driven feature selection strategies. Since 
principal components are also used as covariates in the 
machine learning framework and to adjust for population 
structure in GWAS which are then used to compute PRs, 
PCA was also systematically applied to each training set 
generated by the tenfold cross-validation. Moreover, we 
also performed SHAP (SHapley Additive exPlanations) 
analysis [48], which is a method used in machine learn-
ing for explaining the output of a model by attributing 
the contribution of each feature to the prediction. In the 
context of this research on CAD prediction, SHAP values 
were used to better understand the contribution of each 
risk factor, genetic variant and covariate to the prediction 
of the CAD status.

Machine learning and feature selection algorithms
Different feature selection strategies were compared to 
assess ML effectiveness against traditional association 
tests. The study also aimed to evaluate if ML-based mod-
els using PRS from new training datasets outperformed 
those developed through feature selection, by using cross 
validation. It should be noted that computing polygenic 
risk score (PRS) within a training and validation frame-
work (e.g., cross validation) is important when comparing 
PRS performance with ML performance, since it allows 
for an assessment of the stability and generalizability of 

the PRS model. In cross-validation, the original dataset 
is divided into multiple folds, and the PRS model is esti-
mated and evaluated on each fold. This helps to ensure 
that the PRS model is not overfitting to the training data 
and can provide an estimate of the expected performance 
of the model when applied to independent datasets. 
By evaluating the PRS model within a cross-validation 
framework helps ensure that PRS-based predictions are 
properly compared with those obtained by using models 
generated through ML and feature selection algorithms. 
To compute PRS, association testing was first performed 
to generate summary statistics and estimate SNP effects 
by using the PLINK software. This step is re-computed 
with each training set to guarantee a fair comparison with 
the ML approach. Since the phenotype in the present 
data sets is dichotomous (CAD/non-CAD cases), a logis-
tic regression was performed by using sex, age, the geno-
typing batch, the assessment center, the first 20 PCs and 
CAD risk factors as additional covariates [49]. It should 
be noted that the PCA was repeated for each training 
set generated by 10CV. The estimated effects were then 
used to compute PRS-based scores or rank SNPs for a 
filter-based feature selection strategy. Three different 
genome-wide PRS strategies, PLINK-PRS, LDpred2 [50], 
and lassosum [51], were computed and used as input for 
logistic regression-based classifiers to distinguish CAD 
from non-CAD cases. In this research, we methodically 
examine three techniques for feature selection in ML 
models: (1) applying univariate test statistics with PLINK; 
(2) implementing the Maximum Relevance Minimum 
Redundancy (mRMR) algorithm [16], aimed at discover-
ing predictive and uncorrelated features; (3) using Ran-
dom Forest (RF) feature importance scores to capture 
complex interactions. The objective of these methods is 
to pinpoint a concise and efficient set of single-nucleotide 
polymorphisms (SNPs) for incorporation into machine 
learning models that classify individuals with CAD. Each 
adopted feature selection method delivers a final ranking 
score for the selected variants. The top k variants (with 
k + 5, 10, 15, 20, 50, 100, 200, 300, and 500) were then 
used as input for several ML-based classifiers, includ-
ing Logistic Regression (LR), Lasso (LA), Support Vec-
tor Machine (SVM) and Random Forest-based (RF). The 
entire machine learning-based pipeline was constructed 
using Python and Scikit-learn. We used the following 
configurations for our chosen machine learning methods:

LR with a maximum iteration parameter (max_iter) set 
to 1000, and ‘liblinear’ as the solver. RF classifiers with 
500 trees, setting the maximum number of features con-
sidered for making the best split at 35. SVM for classifi-
cation purposes, utilizing the radial basis function (rbf ) 
as the kernel method to allow for non-linear classifica-
tion. Each of these configurations was designed to cater 
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to different requirements: while the Random Forest pro-
vided a quadratic classifier and the LR and Lasso as lin-
ear one, the Support Vector Machine offered a non-linear 
classification model.

Preparation of the training set for CAD prediction 
and the implemented evaluation strategy
The study aims to improve CAD prediction models using 
genomic variants and machine learning-based feature 
selection. By employing a supervised learning approach, 
we randomly selected 35,000 non-CAD individuals from 
UKB to guarantee a balanced training dataset. Repeated 
sampling verified a consistent distribution of CAD-asso-
ciated risk factors, confirming random sampling as an 
effective method to avoid unbalanced classification prob-
lems. After randomly selecting a set of individual labels 
as non-CAD, we applied a MAF cut-off value and LD 
pruning to reduce the number of SNPs for subsequent 
ML- and PRS-based analyses. We selected a very low 
minor allele frequency (MAF < 0.01) and used the link-
age disequilibrium, which assesses the non-random asso-
ciation of alleles at different loci in each population, to 
remove SNPs so that no pair within 500 kbs had squared 
allele count correlation  (r2) greater than 0.1. In more 
detail, a windows size of 500 kb, a step size of 25 and an  r2 
greater than 0.1 were used to drastically reduce the num-
ber of SNPs to 177,017 variants. At this stage the training 
and validation dataset retrieved from the UKB includes 
63,216 (34,056 cases, 27,295 controls) individuals. To 
evaluate the performance of machine learning (ML) 
models applied to genotypic data and or clinical vari-
ables, we divided the computed dataset into training and 
test sets using a tenfold cross-validation approach. The 
samples were then stratified based on phenotype (CAD) 
and sex, and the proportion of CAD/non-CAD cases for 
males and females was preserved in each fold. The per-
formance of each algorithm was evaluated using AUC-
ROC, which assesses the model’s ability to distinguish 
between positive and negative samples. High AUC-ROC 
values indicate accurate identification with minimal false 
positives. To assess stability, feature selection frequency 
across datasets and methods was recorded. Features 
consistently selected were deemed stable, biologically 
relevant, and contributed to a reliable and generalizable 
predictive model.
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loci and CAD in various cohort-based studies. Table S3. List of other major 
CVD GWAS associations by using the selected ML-driven loci. Figure S1. 
Summary of GWAS QC and initial pre-processing. UKBB raw imputation 
genotypes consisted of 97 million markers, that were subjected to QCs 
steps shown here. Figure S2. Principal component analysis applied to 
genotype data to uncover population structure and use the PCs as covari-
ates. A Variance explained by the first 20 PCs. B Scatter plots that display 
the variance explained by the first 6 PCs. Different colors are associated to 
different ethnic groups in order to visually show the population structure 
among the individual of the UK Biobank cohort. Figure S3. SHAP sum-
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