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Abstract 

Background  Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting 
from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers 
to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-
related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms 
between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics 
analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using 
a murine model.

Methods  Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using inte-
grated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. 
Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well 
as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We 
also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the inte-
grated analysis in a retinoic acid-induced NTDs mouse model.

Results  Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both tran-
scriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and path-
ways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated 
neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages 
and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflam-
mation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, 
CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating 
their promise as prospective markers for prenatal diagnosis of NTDs.
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Conclusions  Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines 
the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide 
important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, 
and offer valuable insights for the future development of prenatal diagnostics.

Keywords  Neural tube defects (NTDs), Multi-omics analysis, Neuroinflammation, JAK-STAT signaling pathway, 
Macrophage polarization, Prenatal diagnosis

Background
Neural development is a complex and highly orchestrated 
process that gives rise to the intricate architecture of the 
nervous system [1]. The formation of the neural tube, the 
embryonic precursor of the brain and spinal cord, repre-
sents a critical event during early embryogenesis [2]. Any 
disruptions in this process can lead to severe congenital 
malformations known as neural tube defects (NTDs), 
which encompass conditions such as spina bifida, 
encephalocele, and anencephaly [3]. NTDs are a signifi-
cant public health concern, contributing to substantial 
morbidity and mortality worldwide. The prevalence of 
NTDs varies by geographical region and population. On 
a global scale, the estimated average prevalence of NTDs 
is approximately 1 in 1,000 pregnancies [4]. The etiol-
ogy of NTDs is multifactorial, involving both genetic and 
environmental factors, and their precise pathogenesis 
remains incompletely understood [5].

Neuroinflammation refers to the inflammatory 
response in the nervous system, typically resulting from 
damage to neural tissues due to various reasons, includ-
ing infections, trauma, autoimmune diseases, or other 
conditions [6]. During neuroinflammation, immune cells 
such as microglia and lymphocytes release inflammatory 
mediators that can have detrimental effects on neurons 
and other neural cells [7]. Prolonged neuroinflamma-
tion is believed to be associated with many neurological 
disorders, including Parkinson’s disease [8], Alzheimer’s 
disease [9], and multiple sclerosis [10]. A recent study 
has identified a series of immune-related genes in human 
NTDs [11]. Similarly, upregulated inflammation-related 
processes were found in spinal cords from rats with 
NTDs [12]. Additionally, the use of scRNA-Seq has 
revealed the origin and heterogeneity of cellular con-
tents in the cultured amniotic fluid (AF) from human 
fetuses with NTDs and briefly mentioned the existence 
of immune cells [13]. However, the immune and neural 
cell landscapes, gene regulatory networks (GRNs), and 
underlying mechanisms linking neuroinflammation to 
the pathogenesis, development, and progression of NTDs 
have not been extensively investigated.

Mouse models provide a valuable tool for investigating 
the molecular mechanisms underlying NTDs due to their 
genetic similarity to humans and the ability to control 

for environmental factors. By inducing specific genetic 
mutations [14] or manipulating certain environmental 
factors, such as folate deficiency [15], sodium valproate 
induction [16], and retinoic acid induction [17], mouse 
models can be created to mimic different types of NTDs 
observed in humans. The use of these mouse NTDs 
models has allowed for the identification of key genes, 
biomarkers, and signaling pathways involved in NTDs 
development [18–20].

Prenatal diagnosis of NTDs plays a crucial role in the 
management and counseling of affected pregnancies [21]. 
Current diagnostic modalities, such as maternal serum 
alpha-fetoprotein screening, fetal ultrasonography, and 
amniocentesis, have limitations in terms of sensitiv-
ity, specificity, and invasiveness [21–23]. A recent study 
has identified immune-related genes as diagnostic bio-
markers of NTDs in fetal tissues [11]. However, these 
biomarkers lack practical application because the detec-
tion of fetal tissue during pregnancy is challenging and 
carries risks. Therefore, there is a pressing need for the 
development of novel, non-invasive prenatal diagnostic 
approaches that can accurately detect NTDs and provide 
valuable prognostic information to expectant parents.

In this study, we integrated nine public datasets from 
transcriptomics, epigenomics, and single-cell transcrip-
tomics of human and mouse to comprehensively dissect 
the complex molecular and cellular networks governing 
the interplay between neuroinflammation and NTDs. 
We identified neuroinflammation as the significant 
pathological feature in both central nervous system 
(CNS) and AF form fetuses with NTDs. Moreover, we 
revealed that macrophages, exhibiting distinct polari-
zation, were responsible for the NTDs-associated neu-
roinflammation in AF. Finally, with a focus on prenatal 
diagnostic markers, we proposed a conserved “M + N” 
(Macrophage + Neural) method that utilizes AF samples 
to provide an indication of the severity of NTDs after val-
idation in a RA-induced mouse NTDs model.

Methods and materials
RA (retinoic acid)‑induced NTDs mouse animal model
SPF grade C57BL/6J male and female mice (GemPhar-
matech, Nanjing, China), aged between 10 and 16 weeks, 
were utilized  to establish the NTDs mouse model. At 
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E7.5, pregnant dams were gavaged with 16 mg/kg all 
trans-retinoic acid (RA) (Sigma Aldrich, St. Louis, MO, 
USA) solubilized in corn oil or an equivalent volume of 
corn oil only. At E13.5, pregnant dams were euthanized, 
and fresh AF samples were collected from the fetuses 
using a syringe. The collected samples were then imme-
diately snap-frozen in liquid nitrogen for subsequent 
analysis.

Real‑time quantitative PCR (qPCR)
Total mRNA was extracted from mouse AF using the Tri-
zol Reagent, following the manufacturer’s isolation pro-
tocol (Thermo Fisher, MA). Subsequently, 1 μg of RNA 
was used to synthesize cDNA using the PrimeScript™ RT 
reagent Kit (Takara, Japan), following the manufacturer’s 
instructions. The expression of specific genes was deter-
mined using SYBR Green master mix (Takara, Japan). 
Gapdh was utilized as the housekeeping gene, and the 
2−△△Ct method was employed for data analysis. The 
sequences of all primers used for qPCR are provided in 
Additional file 10: Table S1.

Differentially expressed genes (DEGs) analysis
R (version 4.2.1) was used for all data analysis. The R 
package limma (version 3.52.4) [24] was employed for 
microarray data analysis, while the R package DESeq2 
(version 1.36.0) [25] was utilized for high-through-
put RNA-seq data analysis. In the case of microarray 
data, the avereps function was used to correct within-
array replicate probes, and missing expression data was 
imputed using the impute.knn function. Subsequently, 
the microarray data was normalized between samples 
using the normalizeBetweenArrays function. DEGs were 
then identified using the contrasts.fit and eBayes func-
tions. For high-throughput RNA-seq data, the differential 
matrix was constructed using the DESeqDataSetFrom-
Matrix function, and DEGs were identified with the 
DESeq function. In the analysis of brain and spinal cord 
tissues, a threshold of P value < 0.05 and |log2FC|> 0.5 
was applied to identify DEGs. For AF, an absolute value 
of log2FC greater than 1 was used as the threshold to 
identify DEGs. The pseudobulk-seq analysis was per-
formed using a method described previously [26].

Protein–protein interaction (PPI) analysis
The protein–protein interaction (PPI) analysis was con-
ducted using the STRING database [27] (https://​string-​
db.​org/) with DEGs as input. Subsequently, the results 
underwent hub gene analysis in the CytoHubba app and 
were further analyzed and visualized in Cytoscape (ver-
sion 3.9.1) [28].

Gene function enrichment analysis
Gene function enrichment analysis was carried out 
using the R package clusterProfiler (version 4.7.1.001) 
[29]. Prior to the analysis, the symbols of DEGs were 
converted into ENTREZID IDs using the bitr function. 
Enrichment analysis encompassed KEGG (Kyoto Ency-
clopedia of Genes and Genomes), GO (Gene Ontology), 
and GSEA (Gene Set Enrichment Analysis) and was con-
ducted using the enrichKEGG, enrichGO, gseKEGG, 
and gseGO functions, respectively. The results of the 
enrichment analysis were visualized using the emapplot 
function.

Differentially DNA methylated regions (DMRs) analysis
Differentially DNA methylated regions (DMRs) were ana-
lyzed using the R package ChAMP (version 2.26.0) [30], 
specifically employing the 450k analysis methods. The 
input data, in the form of a matrix of β values, underwent 
filtering using the champ.filter function and subsequent 
normalization using the champ.norm function. DMRs 
were identified using the champ.DMP function. DMRs 
showing statistical significance with a P-value < 0.05 and 
an absolute difference in β values (|Δβ|) greater than 0.10 
were selected for further functional enrichment analysis.

Integrated transcriptome and methylome to construct 
GRNs
The integration of transcriptome and methylome data 
was conducted using the R package ELMER (version 
2.20.0) [31]. A MAE object was constructed by normal-
izing the transcriptome matrix and a β value methyla-
tion matrix. A comparison of methylation levels for all 
distal probes between the NTDs group and the normal 
group was carried out, selecting methylation sites with 
a P-value < 0.05 and |Δβ|> 0.1. Subsequently, the corre-
lation between the methylation level of the distal probe 
and the expression level of the target gene was analyzed 
to establish probe-gene pairs. Enrichment analysis was 
performed using the probes included in the probe-gene 
pairs to identify enriched motifs. The TF binding motif 
database was then employed to predict the TFs bind-
ing to these motifs. Finally, the relationship between the 
identified motifs and the upstream TFs was screened to 
determine the TFs with regulatory effects.

GRNs analysis in bulk‑ and scRNA‑seq
The NetAct (version 1.0.6) [32] R package was utilized 
for analyzing GRNs in bulk-seq data. The normalized 
matrix data was used as input, and DEGs were identi-
fied using the RNAseqDegs_limma function. Follow-
ing this, TFs were selected through the TF_Selection 
function, and their activities were calculated using 

https://string-db.org/
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the TF_Activity function. For the analysis of GRNs in 
scRNA-seq data, the SCENIC (version 1.3.1) [33] R pack-
age was employed. The analysis commenced with pre-
processing the scRNA-seq data, which involved filtering 
out low-quality cells, normalizing gene expression values, 
and identifying highly variable genes. Subsequently, a co-
expression analysis was conducted to identify clusters or 
modules of genes with similar expression patterns across 
cells. Motif enrichment analysis was then performed to 
identify enriched TF binding motifs within the gene pro-
moters of each gene cluster or module. Finally, utilizing 
the GENIE3 algorithm, the GRNs were inferred by calcu-
lating the direct regulatory effect of TFs on target genes, 
leveraging their expression levels.

Cell trajectory analysis for scRNA‑seq
The cell trajectory analysis using the R package mono-
cle (version 2.14.0) [34] involved using the matrix and 
metadata of processed scRNA-seq data as input to con-
struct a CellDataSet object. The top 20 markers of each 
subcluster were used to order the cells along the trajec-
tory. Additionally, a DDRTree method was employed for 
dimension reduction analysis. Visualization of the trajec-
tory and gene expression dynamics was achieved through 
plotting functions, providing insights into the underlying 
biological processes.

Cell communication analysis
The CellChat (version 1.6.1) [35] R package was utilized 
for cell communication analysis. Initially, the scRNA-seq 
data underwent standard quality control measures and 
normalization methods. Subsequently, the identifyOver-
ExpressedInteractions function was employed to identify 
expressed ligand-receptor pairs in each cell type. Follow-
ing this, the computeCommunProb function in CellChat 
was used to calculate the communication scores between 
each pair of cell types. Further analysis included the cal-
culation of communication results for all ligand-recep-
tor interactions associated with each signaling pathway 
using the computeCommunProbPathway function. To 
visualize the strength and directionality of the interac-
tions between different cell types, a network diagram 
was generated utilizing the netVisual_aggregate function. 
Additionally, the netVisual_bubble function was used to 
visualize the ligand-receptor pairs.

Integrating bulk‑ and scRNA‑seq data
The integration of bulk- and scRNA-seq data was car-
ried out using the R package Scissor (version 2.0.0) [36]. 
For this integration, the input consisted of processed 
scRNA-seq data with dimensionality reduction informa-
tion and normalized bulk-seq data. The selection of the 

alpha value was based on ensuring that the percentage of 
selected cells was closest to 30%.

scRNA‑seq data analysis
The analysis of scRNA-seq data was performed using 
the R package Seurat (version 4.3.0) [37], involving sev-
eral key steps. Initially, the raw matrix was read using the 
Read10X function, followed by quality control measures 
to ensure that the percentage of mitochondrial genes 
per cell was below 20% and selecting genes with a fea-
ture count greater than 1500. Cell cycle scoring was 
performed using the CellCycleScoring function, and dou-
blets were identified using the R package DoubletFinder 
(version 2.0.3) [38]. To address the potential presence of 
ambient RNA contamination, we employed the R pack-
age decontX (version 0.99.3) [39], and removed any cells 
with a contamination value exceeding 0.2. Subsequently, 
normalization, identification of highly variable genes, 
and data scaling were performed using the SCTransform 
function. Regression analysis was conducted to account 
for mitochondrial gene expression and cell cycle effects. 
Principal Component Analysis (PCA) reduction was per-
formed, retaining 50 dimensions. Sample integration was 
carried out using the R package harmony (version 0.1.0) 
[40]. UMAP (Uniform Manifold Approximation and Pro-
jection) dimensionality reduction was then applied using 
50 dimensions, followed by cell clustering using the Find-
Clusters function with a resolution of 1.2. All markers 
used for cluster definition were generated using the Find-
AllMarkers function. Finally, gene expression density was 
visualized using the Nebulosa R package (version 1.6.0) 
[41].

Statistical analysis
In the study, the data were expressed as mean ± stand-
ard error of the mean (SEM). Statistical significance was 
determined using the Student’s t-test and analysis of vari-
ance (ANOVA). A P-value less than 0.05 was considered 
significant, denoted as *P < 0.05; **P < 0.01; ***P < 0.001, 
while non-significant results were indicated as N.S. It’s 
noted that GraphPad Prism 9.0 software was utilized 
to conduct all statistical analyses in the study, ensuring 
robust and widely recognized statistical methodologies 
were applied.

Results
Differentially expressed genes (DEGs) analysis in different 
tissues of NTDs
All data analysis and experimental validation for this 
study are illustrated in the schematic diagram (Addi-
tional file 1: Fig. S1). First, we analyzed the human tran-
scriptomic data of 12 NTDs and 12 normal controls in 
the second trimester obtained from GEO with accession 
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number GSE33111 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE33​111). Given the high cellular 
heterogeneity during development, we compared the dif-
ferent tissues of NTDs with those of normal controls to 
accurately identify differentially expressed genes (DEGs). 
The top 10 DEGs, ranked by log2FC and p-value, were 
visualized in heatmaps and volcano plots for each group 
(Fig. 1A–L). Notably, the brain group exhibited the high-
est number of DEGs, with 383 down-regulated genes and 
360 up-regulated genes (Fig.  1F). In contrast, the skin 
group showed the fewest DEGs, with only 22 down-reg-
ulated genes and 23 up-regulated genes (Fig. 1L). Addi-
tionally, the all tissues group shared 245 and 216 DEGs 
with the brain group and the spinal cord group, respec-
tively (Fig.  1M). Furthermore, the brain group and the 
spinal cord group shared 141 DEGs (Fig. 1M). However, 
the skin group had only ten and four DEGs in common 
with the all tissues group and the spinal cord group, 
respectively (Fig.  1M). These findings suggest that the 
DEGs associated with NTDs are predominantly located 
in the CNS, including brain and spinal cord, thus justify-
ing a focused subsequent analysis on these two tissues.

Identifying neuroinflammation as a notable pathological 
feature in NTDs
To elucidate the function of the DEGs identified in the 
brain and spinal cord, we conducted GO and KEGG 
enrichment analyses, along with GSEA pathway analy-
sis. The up-regulated genes were notably enriched in 
immune-related processes such as leukocyte activation, 
cytokine-mediated signaling, and response to interferon-
gamma (Fig. 2A, C). Furthermore, immune-related path-
ways such as the chemokine signaling pathway, NF-kappa 
B signaling pathway, and TNF signaling pathway exhib-
ited significant enrichment among the up-regulated 
genes (Fig. 2B, D). In contrast, the down-regulated genes 
were associated with processes related to neurotrans-
mitters, synapses, and the MAPK signaling pathway 
(Fig.  2A–D). Interesting, we also observed remarkable 
enrichment in metabolic processes such as cholesterol, 
sterol, taurine, fatty acids metabolism, and the AMPK 
signaling pathway among the down-regulated genes 
(Fig. 2C, D). Similar enrichment patterns were identified 
in the GSEA pathway analysis (Fig. 2E, F). These results 
indicate that neuroinflammation is a notable pathologi-
cal feature of NTDs, while diverse metabolic processes 
are implicated in the development of the brain and spinal 
cord.

NF‑kappa B and JAK‑STAT signaling uncovered as the key 
pathways involved in NTDs‑associated neuroinflammation
To identify the hub genes involved in NTDs, we con-
structed the protein–protein interaction (PPI) network 

for the DEGs of the brain and spinal cord, respectively. 
The top 40 hub genes identified by cytoHubba displayed 
a preference for NTDs in both brain and spinal cord 
(Fig.  3 A). Not surprisingly, the up-regulated hub genes 
were immune-related, such as STAT1, IRF8 and NFKB1, 
in both brain and spinal cord. Notably, the interaction 
network for down-regulated hub genes involved in cho-
lesterol metabolism (HMGCS1, FDFT1 and SQLE) was 
significantly enhanced in the spinal cord (Fig.  3A). Fur-
thermore, we observed differential activity in 36 tran-
scriptional factors (TFs) in the brain and 27 TFs in the 
spinal cord (Fig.  3B). Additionally, these two tissues 
shared a common set of five genes (STAT1, NFKB1, 
IRF1, IRF8, and HDAC1) among the identified TFs and 
hub genes (Fig.  3C). Among these genes, NFKB1 and 
STAT1 were implicated in most of the top 10 pathways 
mentioned above (Fig.  3D). NFKB1 and STAT1 are key 
regulatory proteins involved in the NF-kappa B and JAK-
STAT signaling pathways, respectively, which are associ-
ated with immune and inflammatory responses [42, 43]. 
Interestingly, the cross-talk between components of the 
JAK-STAT signaling pathway and the NF- kappa B sign-
aling pathway is extensive [44]. Further GSEA analysis 
confirmed the significant upregulation of the NF-kappa B 
and JAK-STAT signaling pathway associated with NTDs 
in the brain and spinal cord (Fig. 3 E). These results indi-
cate that the NF-kappa B and JAK-STAT pathways play 
important roles in neuroinflammation related to NTDs.

Unveiling transcriptionally and epigenetically regulated 
neuroinflammation in NTDs
Folic acid, serving as a methyl donor, is involved in DNA 
methylation [45]. Sufficient intake of folic acid helps 
maintain normal DNA methylation levels, which may 
contribute to reducing the risk of NTDs [46]. Therefore, 
we investigated the methylome data, categorized by dif-
ferent tissues, from human NTDs during the second tri-
mester (GEO, GSE69502) [47]. In spinal cord tissues (23 
NTDs vs. 9 normal controls), 781 up-regulated and 2441 
down-regulated differentially DNA methylated regions 
(DMRs) were identified (Fig.  4A–C). Similarly, in brain 
tissues (9 NTDs vs. 11 normal controls), 198 up-regu-
lated and 1659 down-regulated DMRs were observed 
(Fig.  4D–F). The prevalence of down-regulated DMRs 
surpassed that of up-regulated ones, indicating the sig-
nificant role of hypomethylation in NTDs progress. The 
GSEA analysis of genes corresponding to the DMRs 
revealed enrichment of immune-related processes and 
pathways in the down-regulated DMRs. (Fig. 4G–J). Spe-
cifically, several NF-kappa B signaling-related GO and 
KEGG terms were identified in the spinal cord (Fig. 4I, J).

To further elucidate the GRNs, we employed ELMER 
to integrate the transcriptome and methylome data 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33111
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Fig. 1  DEGs analysis in various tissues of human NTDs transcriptome. A, D, G, J PCA plot depicting all samples, as well as brain, spinal cord, and skin 
tissue samples involved in DEGs analysis, respectively. B, E, H, K Heatmaps illustrating DEGs in all, brain, spinal cord, and skin tissue samples, 
respectively, with the top DEGs highlighted. C, F, I, L Volcano plots visualizing DEGs in all, brain, spinal cord, and skin tissue samples, respectively, 
with the top DEGs highlighted. M Venn diagram displaying common DEGs across different tissues
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Fig. 2  Gene function enrichment analysis of DEGs in human NTDs transcriptome. A, B Visualization of GO and KEGG enrichment of DEGs 
in the brain using emapplot, respectively. C, D Visualization of GO and KEGG enrichment of DEGs in the spinal cord using emapplot, respectively. E, 
F Visualization of GSEA for the enriched KEGG pathways in the brain and spinal cord, respectively

(See figure on next page.)
Fig. 3  Hub genes and TFs in the brain and spinal cord of human NTDs transcriptome. A PPI network of hub genes in the brain and spinal cord 
of human NTDs transcriptome. B NetAct analysis of TF expression and activity in the brain and spinal cord of human NTDs transcriptome. C 
Venn diagram illustrating the intersection of TFs and hub genes in both the brain and spinal cord of human NTDs transcriptome. D Heatmap 
displaying the top 10 pathways in the brain and spinal cord of human NTDs transcriptome, highlighting the involved DEGs. E GSEA plot depicting 
the NF-Kappa B and JAK-STAT signaling pathways in the brain and spinal cord of human NTDs transcriptome
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Fig. 4  Analysis of DMRs in different tissues of human NTDs methylome. A, D PCA plots illustrating spinal cord and brain tissue samples involved 
in DMRs analysis, respectively. B, E Heatmaps displaying the DMRs in the spinal cord and brain of NTDs methylome, respectively, with the top DMRs 
being shown. C, F Volcano plots visualizing DMRs in the spinal cord and brain, respectively, with the top DMRs being shown. G, I GSEA GO analysis 
of genes corresponding to DMRs in the spinal cord and brain of NTDs methylome, respectively. H, J GSEA KEGG analysis of genes corresponding 
to DMRs in the spinal cord and brain of NTDs methylome, respectively
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described above. Specifically, we focused on the analy-
sis of methylated regions-gene expression pairs in pro-
moter and enhancer regions. We observed a negatively 

correlated expression pattern in these pairs, revealing 
distinct neural (FBXL16, SH2B2, KIF1A, and HOXA4) 
or immune (IFIT3, STAT2, IL27RA, SP110, and CSF3R) 
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Fig. 5  GRNs constructed by integrating human NTDs transcriptome and methylome. A Heatmap visualizing the gene-methylated region pairs 
in the brain and spinal cord, with representative pairs displayed. B Heatmap displaying the enriched motifs and corresponding TFs in the spinal cord 
and brain of NTDs. C, D GSEA KEGG analysis of hypomethylated and hypermethylated TFs, respectively



Page 11 of 24Wang et al. Journal of Translational Medicine          (2024) 22:257 	

signatures in both brain and spinal cord tissues (Fig. 5A). 
By utilizing these pairs, we identified motifs for TFs bind-
ing and determined the most enriched TFs binding to 
these motifs. The hypomethylation-associated motifs 
enriched TFs, such as STAT2, STAT1, STAT6, IRF4, 
IRF1, IRF8, EGR2, and GFI1B, were markedly linked to 
immune processes (Fig. 5B, C). Among these TFs, a series 
of STATs molecules (STAT1, STAT2, STAT6) in the JAK-
STAT signaling pathway were observed (Fig.  5B). On 
the other hand, the hypermethylation-associated motifs 
enriched TFs, including OLIG1, BHLHE23, OLIG2, 
ZBTB12, and ZFP37, were evidently associated with 
nervous system development (Fig.  5B, C). These results 
suggest that the neuroinflammation of the nervous sys-
tem is regulated at both the transcriptional and epige-
netic levels in NTDs.

Characterizing the single‑cell resolution landscapes 
of AF‑derived neural and immune cells from fetuses 
with NTDs
To obtain more precise details about NTDs, we under-
took a reanalysis of the scRNA-seq data derived from 
cultured human AF obtained from fetuses with spina 
bifida (GEO, GSE206696, 4 NTDs vs. 1 normal control) 
[13] (Additional file 2: Fig. S2 A, D). We observed a sig-
nificant increase in neural (neural and glial) and immune 
cells in NTDs compared to normal samples, as previ-
ously described (Additional file  2: Fig. S2 B, C). To fur-
ther elucidate the cellular heterogeneity within these two 
clusters, which was not clearly defined previously, we 
computationally isolated the neural and immune cells 
for subsequent subcluster analysis. The immune cells 
were identified as macrophages (MΦ) based on their 
high expression of MSR1 (Fig. 6G). Following the correc-
tion of ribosomal gene expression, reclustering yielded 
12 subclusters labeled as M1-M12 (Fig.  6A, B). Among 
these, the M1, M2 and M4 subclusters were character-
ized as pro-inflammatory due to their high expression of 
IL1B, HS3ST2 and S100A8, respectively. The M3 subclus-
ter was identified as antigen-presenting cells based on 
their high expression of MHC-II molecules (HLA-DQA1, 
HLA-DPB1, and HLA-DMB). In contrast, the M6, M7, 
and M8 represented three anti-inflammatory subclus-
ters due to their high expression of CD52, IL1RN, and 
GREM1, respectively. The identification of these sub-
clusters suggested the presence of macrophage polariza-
tion. Surprisingly, two double-marker subclusters were 
identified based on the expression of stromal (M12, high 
COL1A1) or neural (M9, high SOX2) markers, in addi-
tion to immune genes (Fig.  6B, G). Recent research has 
reported the identification of stromal and immune dou-
ble-positive [48], as well as neural and immune double-
positive clusters [49–51]. However, it is important to 

exercise caution when considering these clusters due 
to the potential impact of remnants in other locations, 
which could affect the characterization of other cell types 
but may also reflect intimate interactions between the 
two cell types [52]. Additional macrophage subclusters 
were identified based on their highly expressed genes, 
including M5 (high NMB), M10 (high GGCX), and M11 
(high ABCG1). Normal cells were found in small quanti-
ties in M2, M3, M5, M6, M7, M8, M10, and M11 sub-
clusters, while they were absent in the pro-inflammatory 
(M1and M4) and MΦ-neural (M9) subclusters (Fig. 6 C). 
In contrast, cells from NTDs were generally elevated in 
all of the macrophage subclusters, especially in the SBA3 
sample (Fig.  6 C). Regarding expression levels, a sig-
nificantly higher expression of most marker genes was 
observed in normal cells compared to NTDs cells only 
in the M12 subcluster, while the other subclusters exhib-
ited the opposite trend (Additional file 3: Fig. S3A). In the 
neural clusters, two subclusters were identified as neu-
ral glia (N7, high S100B and N8, high CRYAB), three as 
cycling (N1, high CCNB2, N6, high HIST1H1D, and N10, 
high FAM83D), and two as neuron subclusters (N2, high 
NEFM and N4, high SLC7A11) (Fig. 6 D, E). Additionally, 
four double-positive subclusters were identified, includ-
ing neuromuscular (N9, high ACTA2), neurostromal (N3, 
high DSP, and N5, high COL6A2), and neuroimmune 
(N11, high MSR1) (Fig. 6 E, G). The emergence of these 
double-positive subclusters in neural cells may have the 
same underlying reason as in immune cells. Normal cells 
were found in N3, N5, N9, and N10 subclusters, but were 
absent in N1, N2, N6, N7, N4, N8, and N11 subclusters 
(Fig. 6F). On the other hand, cells from NTDs showed a 
significant increase in all neural subclusters, particularly 
in the SBA3 and SBA4 samples (Fig.  6F). Furthermore, 
normal cells displayed higher expression levels of most 
marker genes in N3 and N5 subclusters compared to 
NTDs cells, while cells in other subclusters showed the 
opposite trend (Additional file 3: Fig. S3B). These findings 
suggest that stromal signatures reflect cells shed during 
fetal development, while increased pro-inflammatory, 
neuron, and glia signatures indicate NTDs progression. 
Notably, two subclusters (M9 and N11) expressed both 
neural and immune markers, but cannot be categorized 
as typical microglia due to their absence of P2RY12, 
TMEM119, and CX3CR1 (Additional file  3: Fig. S3D, 
E). However, these results may reflect close interactions 
between macrophages and neural cells, which could 
potentially contribute to neuroinflammation in NTDs.

Significant macrophage polarization uncovered in NTDs
The macrophage landscape in NTDs exhibited both anti-
inflammatory and pro-inflammatory properties, suggest-
ing the possible emergence of macrophage polarization. 
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Fig. 6  The single-cell resolution profiling of AF-derived neural and immune cells from human fetuses with NTDs A, D UMAP-based dimension 
reduction analysis of reclustering macrophage and neural cells, respectively. M and MΦ: Macrophage, N: neural cells. B, E Display of the top five 
markers of each subtype in macrophage and neural cells using dot plots, respectively. C, F Proportion of cells from different samples in each 
subtype of macrophage and neural cells, respectively. SBA: Spina Bifida. G Scatter and density plots of macrophage and neural cell marker genes
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To further explore this process, we conducted cell trajec-
tory analysis. Two distinct branches were clearly identi-
fied along the differentiation pseudotime (Fig.  7A). The 
first branch predominantly encompassed four subclus-
ters: M1, M2, M3, and M4 (Fig.  7B). These subclusters 
exhibited the expression of well-known pro-inflamma-
tory markers such as IL1B, S100A8, TLR2, and CCL3, 
along with a novel pro-inflammatory marker, HS3ST2 
[53] (Figs.  6B, 7D). In contrast, the second branch con-
sisted of M6, M7, and M8 subclusters, which expressed 
known anti-inflammatory markers such as CD52, IL1RN, 
GREM1 and MMP7 (Figs. 6 B, 7B, D). Additionally, cells 
in subcluster M9 (expressing SOX2) were confined to 
the initial position, while subcluster M11 was distrib-
uted along the per-branch of the pseudotime trajectory 
(Fig.  7B). Notably, subclusters M5 (expressing NMB), 
M10 (expressing GGCX), and M12 (expressing COL1A1) 
were not restricted to any specific location (Fig.  7B). 
Focusing on M9, the positional pattern of this neuroim-
mune subcluster in the cell trajectory might imply that 
the initiation of macrophage activation was triggered 
by intimate interactions between neural and immune 
cells. The expression patterns of these subclusters exhib-
ited divergent trends in the expression of pro- and anti-
inflammatory genes, indicating distinct polarization of 
macrophages (Fig.  7D). The cells in NTDs were located 
along the entire cell trajectory, reflecting divergent acti-
vation properties (Fig.  7C). In contrast, cells in normal 
tissue predominantly gathered only at the initiation posi-
tion of the cell trajectory, representing a resting state 
(Fig.  7C). Furthermore, we conducted GRNs analysis to 
assess the activities of regulons in each subclusters. A 
total of 216 regulons were identified in macrophages, 
and the average activities of regulon in each subcluster 
were calculated (Fig. 7E). The top five regulons for each 
subcluster further confirmed the polarization of mac-
rophages, as indicated by the higher expression of anti-
inflammatory TFs such as STAT6 and PPARG in M7 
and M6, and pro-inflammatory TFs such as STAT3 and 
CEBPD in M1, M2, M3, and M4 (Fig. 7 E, F). Addition-
ally, in the subclusters where normal cells were present, 
the Regulon specificity score (RSS) of top specific regu-
lons (z-score > 2) in NTDs cells was higher compared to 
normal cells, except for the M12 subcluster (Additional 
file  3: Fig. S3C). These findings collectively confirm the 

distinct properties of normal and NTDs cells in terms of 
macrophage polarization.

Revealing cell communications between macrophages 
and neural cells in NTDs
To further investigate the neuroimmune characteris-
tics, the cell communication analysis was conducted. 
The numbers of interactions between macrophages and 
neural cells were assessed to construct their respec-
tive cell communication networks (Fig.  8A, B). Nota-
bly, subcluster M9 exhibited a high level of interactions 
with other cell types (Fig.  8A). This observation led 
to the identification of two signaling pathways, stem-
ming from the intense interaction between neuroim-
mune cells and other subclusters (Fig. 8C). In the MIF 
signaling pathway, subcluster M9, serving as a source, 
effectively targeted subclusters M1, M2, M3 and M4. 
Conversely, in the TWEAK signaling pathway, subclus-
ter M9, acting as a receptor, was prominently targeted 
by subcluster M1 (Fig.  8 C). These two pathways have 
been reported to exhibit pro-inflammatory signaling 
[54, 55]. Additionally, subcluster N10, as a source, tar-
geted all neural subclusters except for N7 in TWEAK 
signaling pathway. These interactions were predicated 
on the receptor-ligand pairs of MIF-(CD74 + CD44), 
MIF-(CD74 + CXCR4), and TNFSF12-TNFRSF12A 
(Fig. 8D). Combined with the GRN analysis, TNFSF12 
was a downstream gene regulated by PDLIM5 and 
ZNF580 in N11-interacted subclusters, and was regu-
lated by IRF8 in M9-interacted subclusters (Fig.  8 E). 
Interestingly, IRF8 also emerged as a key TF revealed 
in the bulk transcriptome and methylome of the brain 
and spinal cord (Fig. 3B, C, Fig. 5B). Furthermore, IRF8 
is suppressed by STAT5, an anti-inflammatory TF, and 
conversely promoted by STAT1, a pro-inflammatory 
TF [44]. The gene and regulon expression of IRF8 and 
its target TNFSF12 were enriched in pro-inflamma-
tory subclusters, while TNFRSF12A, as the target of 
TNFSF12, was enriched in neuroimmune subclusters 
(Fig.  8 F), thus forming a comprehensive regulatory 
network. These observations suggest that the TWEAK 
signaling pathway may play an important role in medi-
ating pro-inflammatory cell communication between 
macrophages and neural cells in NTDs.

(See figure on next page.)
Fig. 7  Cell trajectory and GRNs analysis for macrophage revealing distinct polarization in human NTDs. A Cell trajectory of macrophage displayed 
by subtypes (left) and pseudotime (right), respectively. B Each subtype exhibited separately along the cell trajectory of macrophage. C Cells 
from different samples projected to the macrophage trajectory. D Visualization of genes related to macrophage polarization state using branch 
heatmap. E Display of the top 5 regulons of average activity for each subtype using heatmap. F GRNs of the top 5 regulons in M1, M2, M3, M4, M6, 
M7, and M9 showing the TFs and target genes
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Potential prenatal diagnostic markers unveiled in NTDs 
through integrating bulk‑ and scRNA‑seq transcriptome
Since we have identified neuroinflammation as a promi-
nent pathological feature of NTDs, we were interested in 
determining whether this feature could serve as a reliable 
biomarker for the prenatal diagnosis of NTDs through 

AF examination. First, to address potential differences 
between cultured cells and primary cells, we integrated 
bulk-seq data from human primary amniotic fluid cells 
(AFCs, GEO, GSE4182, 4 NTDs vs. 5 normal controls) 
[56], as well as human cell-free AF (GEO, GSE101141, 
10 NTDs vs. 10 normal controls) [57], with scRNA-seq 
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Fig. 8  Cell communication of macrophage and neural cells in human NTDs. A, B Construction of cell communication based on the number 
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data from cultured human AFCs (GEO, GSE206696, 4 
NTDs vs. 1 normal control) [13]. This integration allowed 
us to identify common characteristics present in NTDs. 
Our analysis of bulk-seq data from primary AFCs and 
cell-free AF, as well as CNS tissues and cultured AFCs, 
revealed a significant increase in immunological signa-
tures (Additional file 4: Fig. S4A, B). In contrast, neural 
features such as FEZ1, GAP43, FABP4 and PTPRZ1 were 
found to be elevated in AF compared to those that were 
downregulated in CNS tissues (Additional file  4: Fig. 
S4A, B, Fig.  1E, H). By integrating bulk-seq AFCs and 
AF data with single-cell macrophage data, we discovered 
that cells positively associated with NTDs (Scissor +) 
shared common signatures enriched in pro-inflammatory 
subclusters, including M1, M2, M3, and M4 (Fig. 9A–D). 
Furthermore, upon integrating bulk-seq AFCs with sin-
gle-cell neural cells, we observed that Scissor + cells were 
highly enriched in N1, N2, N6, N7, and N8, but not in 
double-positive cells, which exhibited an accumulation 
of Scissor- cells (negatively related to NTDs) (Fig.  9E, 
F). However, no phenotypically related cells were identi-
fied when integrating bulk-seq AF with single-cell neural 
cells (Fig. 9G). The common pattern of AF across differ-
ent contexts allowed for the identification of shared pre-
natal diagnostic markers. It is generally recognized that 
prenatal diagnostic markers should be detectable in a 
cost-effective and straightforward manner at the bulk 
level, rather than through complex and expensive single-
cell analysis. Therefore, we conducted pseudobulk-seq 
DEGs analysis using the scRNA-seq data from cultured 
AFCs (GEO, GSE206696, 4 NTDs vs. 1 normal control) 
and performed routine DEGs analysis using two bulk-
seq datasets from AF (GEO, GSE101141, 10 NTDs vs. 10 
normal controls) and AFCs (GEO, GSE4182, 4 NTDs vs. 
5 normal controls) (Fig. 9H–J). A total of 17 genes were 
found to be upregulated in all three analysis results, com-
prising 11 immune genes (TREM1, SLC16A10, RNASE6, 
RNASE1, VMO1, ADAP2, HCK, VSIG4, CD53, FCER1G, 
and NPL), four neural genes (FABP7, PMP2, CRMP1, and 
SCG3), and two other genes (HPCAL1 and GLYATL2) 

(Fig. 9 K). These genes were enriched in immune or fatty 
acid related process (Fig. 9 L), consistent with results in 
CNS mentioned above (Fig.  2) These immune and neu-
ral genes were expressed in immune or neural clusters at 
the single-cell level of AFCs (Additional file 2: Fig. S2A, 
Fig.  9M). As anticipated, the immune genes showed 
upregulation in the transcriptomic data of brain and spi-
nal cord with NTDs, while the neural genes displayed 
downregulation (Additional file  4: Fig. S4C, D). Subse-
quently, these 15 genes were identified as candidate pre-
natal diagnostic markers for further analysis.

Identifying the conserved prenatal diagnostic markers 
indicating the severity of NTDs
Retinoic acid (RA), an active derivative of vitamin A, 
plays a critical role in neural system development [58]. 
Imbalances in RA levels, either deficiency or excess, can 
contribute to certain types of NTDs [59]. Macrophages, 
being target cells for RA, express retinoic acid recep-
tors (RARs) and produce inflammatory cytokines, which 
are inhibited by RA [60]. Consistently, we observed 
that RARA​ (Retinoic Acid Receptor Alpha) was highly 
expressed in pro-inflammatory macrophage subclusters, 
including M1, M2, M3, and M4 (Fig.  7E). Furthermore, 
we detected dysregulation of several genes related to the 
RA signaling pathway in human NTDs, including RAI1, 
RARRES1, RARRES3, CYP26B1, RARB, THRB, RARG​, 
RARA​, RXRA, THRA, BRINP3, and PPARG​ (Additional 
file 5: Fig. S5). This suggests a close relationship between 
the human samples used in our study and RA metabo-
lism. Therefore, we subsequently established a mouse 
model of RA-induced NTDs [17] to identify conserved 
markers among prenatal diagnostic candidates. The inci-
dence of NTDs caused by maternal RA overdose was 
30.43% in our study (7 out of 23 embryos). Our study 
identified four subtypes of NTDs: anencephaly (severe), 
severe encephalocele, mild cranial meningocele, and 
mild spinal meningocele, each demonstrating diverse 
lesions in the brain or spinal cord compared to normal 
conditions (Fig. 10 A). AF was extracted from the E13.5 

(See figure on next page.)
Fig. 9  Integrated human bulk- and scRNA-seq data revealing potential prenatal diagnostic markers of NTDs. A Integration of bulk-seq data 
of human primary AFCs with scRNA-seq data of human macrophages. The Scissor + designation represents a positive association with NTDs, 
while Scissor- signifies the opposite. Cells with no identified correlation were defined as Background. B Proportion of human primary 
AFCs-integrated cells with different correlations in each phenotypically related subtype of macrophages. C Integration of bulk-seq data of human 
cell-free AF with scRNA-seq data of human macrophages. D Proportion of human cell-free AF- integrated cells with different correlations in each 
phenotypically related subtype of macrophages. E Integration of bulk-seq data of human primary AFCs with scRNA-seq data of human neural cells. 
F Proportion of human primary AFCs-integrated cells with different correlations in each phenotypically related subtype of human neural cells. 
G Integration of bulk-seq data of human cell-free AF with scRNA-seq data of human neural cells. H Pseudobulk DEGs analysis of scRNA-seq data 
from cultured human AFCs. I DEGs analysis of bulk-seq data from human cell-free AF. J DEGs analysis of bulk-seq data from human primary AFCs. K 
Venn diagram displaying DEGs shared in different contexts of human AF. L GO enrichment analysis of 15 candidate genes for prenatal diagnosis. M 
Expression patterns of the 15 candidate genes for prenatal diagnosis in human AFCs at single-cell resolution
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embryos, followed by gene expression analysis with a 
qPCR assay. Initially, we evaluated the expression of the 
key inflammatory TFs (STAT3, STAT1, STAT2, NFKB1, 
IRF1, IRF8, HDAC1, EGR2, IRF4, and STAT6) men-
tioned above in AF, and most of them exhibited higher 
expression in mice with NTDs (Additional file  6: Fig. 
S6). The presence of neural gene expression in AF sug-
gests abnormal leakage from the nervous system. Conse-
quently, we investigated the gene expression of the four 
neural genes (FABP7, SCG3, CRMP1, and PMP2) in both 
the developing brain and spinal cord across mouse and 
human (Additional file  7: Fig. S7, Additional file  8: Fig. 
S8). Our analysis revealed that PMP2 was nearly absent 
in the developing mouse brain (Mouse Brain Atlas, 
http://​mouse​brain.​org/​devel​opmen​t/) [61] and spinal 
cord (ArrayExpress, E-MTAB-7320) [62] (Additional 
file 7: Fig. S7), while it was highly expressed in the devel-
oping human brain (GEO, GSE120046) [63] and spinal 
cord (GEO, GSE136719) [64] (Additional file 8: Fig. S8). 
Therefore, PMP2 was excluded from further analysis. It 
is worth noting that the CNS is known to host various 
immune cells, particularly microglia, under normal con-
ditions, indicating the potential presence of candidate 
immune markers within the CNS (Additional file 7: Fig. 
S7, Additional file  8: Fig. S8). Through qPCR assay, we 
discovered that the four subtypes of NTDs had specific 
gene expression patterns associated with their severity 
(Additional file 9: Fig. S9). In the two main groups (NTDs 
vs. Normal), the expression levels of all candidate genes, 
except Adap2, were significantly higher than normal 
in RA-induced mouse NTDs detected by qPCR assay. 
(Fig.  10B). Subsequently, we conducted an analysis to 
examine the correlation between gene expression and the 
severity of NTDs. This analysis revealed a positive cor-
relation between the expression levels of all 14 genes and 
the severity of NTDs. Among them, Fabp7, Crmp1, Scg3, 
Slc16a10, Rnase6, and Rnase1 stood out as the strong-
est candidates due to their coefficient (R) exceeding 0.8 
(Fig. 10C). These genes were selected for Receiver Oper-
ating Characteristic (ROC) analysis to assess their diag-
nostic capabilities. The results indicated that these six 
genes held diagnostic value, as evidenced by their Area 
Under the Curve (AUC) exceeding 0.5 in both mouse 
(qPCR assay) and human (transcriptome data) (Fig. 10D). 
Therefore, FABP7, CRMP1, SCG3, SLC16A10, RNASE6, 

and RNASE1 may serve as potential prenatal diagnostic 
markers, indicating the severity of NTDs. The approach, 
which we term the “M + N” (macrophage + neural) 
method, has the potential to provide valuable insights 
into the diagnosis of NTDs.

Discussion
By integrating data of multiomics, the findings of this 
study provide valuable insights into the interplay of neu-
roinflammation and NTDs within the context of the CNS 
and AF. Our results uncover the cellular heterogeneity, 
gene regulatory networks, and pinpoint several pivotal 
genes and pathways that are instrumental for compre-
hending and conducting prenatal diagnosis of NTDs.

Understanding the pathological characteristics of 
NTDs is crucial for guiding research into prevention 
strategies, prenatal diagnosis, and potential interventions 
aimed at minimizing the impact of these debilitating 
congenital malformations. We found that neuroinflam-
mation, a complex process involving the activation of 
various immune cells within the central nervous system, 
is an important pathological feature of NTDs. Among 
these immune cells, microglia, the resident macrophages 
of the CNS, play a pivotal role in orchestrating the 
inflammatory response [65]. Emerging evidence sug-
gests that microglia are not only involved in the main-
tenance of normal CNS function, but also participate in 
the pathogenesis of neuroinflammatory diseases, includ-
ing multiple sclerosis [66], Alzheimer’s disease [67], and 
Parkinson’s disease [68]. However, due to the lack of sin-
gle-cell resolved atlas of CNS tissues, it remains unclear 
whether microglia are involved in the pathogenesis of the 
neuroinflammatory condition in human NTDs. In a rat 
model of RA-induced NTDs, activated microglia were 
observed in the exposed neural spinal cord [69]. Our 
findings indicated an absence of microglial signature in 
cultured AFCs from NTDs, failing to accurately reflect 
the actual condition of the CNS and primary AFCs. 
Thus, future research efforts should aim to elucidate the 
precise cell heterogeneity and key regulatory pathways 
of CNS and primary AFCs in NTDs at single-cell reso-
lution. Furthermore, as the human samples we analyzed 
were only from the second trimester (gestational week 
13–27) and not during the critical period of neural tube 
closure (gestational week 3–4), our study’s findings 

Fig. 10  Identification of conserved prenatal diagnostic markers indicating the severity of NTDs. A Assessment of RA-induced NTDs mouse models, 
exhibiting distinct lesions in the brain or spinal cord. B Relative expression levels of candidate genes for prenatal diagnosis in these mouse models 
detected by qPCR assay. C Performance of correlation analysis between gene expression (qPCR detected) and the severity of NTDs in mouse 
models, with R representing the coefficient value. D Application of ROC analysis for prenatal diagnostic genes in the RA-induced mouse model 
(qPCR detected) and human transcriptome. *P < 0.05; **P < 0.01; ***P < 0.001, non-significant, N.S

(See figure on next page.)

http://mousebrain.org/development/)
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regarding the role of neuroinflammation in understand-
ing the pathogenesis of NTDs are quite limited. There-
fore, more research is needed to establish the temporal 
relationship and underlying mechanisms between NTDs 
and neuroinflammation.

The AF, a crucial component of the intrauterine envi-
ronment, is known to harbor a diverse population of 
immune cells that play a pivotal role in maintaining 
maternal–fetal tolerance and protecting against intrau-
terine infections [70]. Among the various immune cells 
present in the AF, macrophages, neutrophils, T cells, B 
cells, and natural killer cells have been identified as key 
players in orchestrating immune responses within the 
gestational compartment [71–73]. However, we only 
identified macrophage in cultured AFCs from fetuses 
with NTDs. This could possibly be cell competition in 
culture [74] or the “drop-out” phenomenon in scRNA-
seq [75]. Macrophages play a crucial role in the immune 
system and can be polarized into distinct phenotypes in 
response to different microenvironmental signals [76]. 
Traditionally, macrophage polarization is categorized 
into two main phenotypes. One is classically activated 
and involved in pro-inflammatory responses, while the 
other is alternatively activated and contribute to tissue 
repair and anti-inflammatory processes [77]. In this pro-
cess, the JAK-STAT signaling pathway has been reported 
to play important roles [78], which aligns with our results 
(Fig.  7 E, F). The relationship between macrophage 
polarization and NTDs is still not fully understood. One 
hypothesis suggests that fetal-origin anti-inflammatory 
macrophages might have a significant impact on the 
development and closure of the neural tube. Generally, 
factors that prevent NTDs tend to enhance the activity 
of anti-inflammatory macrophages, while teratogenic 
factors are likely to influence macrophage polarization 
toward pro-inflammatory macrophages and away from 
anti-inflammatory macrophages [79]. In a mouse model, 
it has been reported that maternal diabetes exacerbates 
inflammation induced by teratogens, leading to NTDs 
accompanied by increased activity of amoeboid micro-
glia/brain macrophages (activated) and elevated expres-
sion of pro-inflammatory cytokines [80]. Our findings 
highlighted the diverse phenotypic states of macrophage 
in NTDs, ranging from a surveillant phenotype under 
homeostatic conditions to an activated, pro- or anti- 
inflammatory state in response to neural lesion, thereby 
contributing to the neuroinflammation of NTDs.

We found that TWEAK signaling (TNFSF12-
TNFRSF12A) plays a significant role in NTDs by facili-
tating pro-inflammatory cell communication between 
macrophages and neural cells. Tumor necrosis factor 
(TNF)-like weak inducer of apoptosis (TWEAK, encoded 
by TNFSF12) is a member of the TNF superfamily. When 

it binds to fibroblast growth factor-inducible 14 (Fn14, 
encoded by TNFSF12A), the TWEAK/Fn14 pathway 
can activate both canonical and noncanonical NF-kappa 
B signaling pathways, which regulate cellular apoptosis 
and inflammation [81]. In the context of multiple scle-
rosis, the presence of TWEAK-expressing macrophages/
microglia in cortical lesions and inflamed leptomeninges, 
along with extensive myelin loss, astrocytosis, neuronal 
damage, and vascular abnormalities, supports the pos-
sibility that TWEAK signaling-mediated macrophages/
microglia may have potentially detrimental effects on 
neural cells expressing the Fn14 (TNFSF12A) receptor 
[82].

AF examination is a common method for prenatal 
diagnosis of potential genetic disorders or congenital 
abnormalities [83, 84]. Focusing on NTDs, the existing 
prenatal diagnostic markers such as acetylcholinesterase 
and alpha-fetoprotein have limitations in terms of sensi-
tivity, specificity, and technical requirements [23, 85]. We 
identified a set of six novel markers, including FABP7, 
CRMP1, SCG3, SLC16A10, RNASE6, and RNASE1, for 
the prenatal diagnosis of NTDs across a spectrum of 
severity. Surprisingly, these genes have not been pre-
viously reported in relation to either human patients 
or animal models with NTDs. Among them, nervous 
system-related genes, including FABP7, CRMP1, and 
SCG3, play important roles in neural development, neu-
rodegenerative disorders, and neuroendocrine systems 
[86–90]. On the other hand, immune system-related 
genes, including SLC16A10, RNASE1, and RNASE6, 
function in immune responses, antimicrobial activity, 
and enhancing anti-tumor immunity [91–94]. And these 
genes were highly expressed in macrophage or neural 
clusters at the single-cell level of AFCs. (Additional file 2: 
Fig. S2A, Fig.  9M). Therefore, we termed this approach 
as the "M + N" (Macrophage + Neural) method. The dou-
ble type markers may enable high specificity in prenatal 
diagnosis of NTDs. For example, it has been reported 
that the number of macrophages in AF was increased in 
the presence of intra-amniotic infection [70] and spina 
bifida [95]. Thus, our “M + N” method may exhibit more 
specificity due to the ability to exclude nonspecific results 
from other inflammatory conditions with no neural sig-
natures such as intra-amniotic infection. This diagnosis 
tool should be further validated in larger human cohorts 
to translate our findings into clinical application.

Conclusions
In conclusion, our study underscores the importance 
of neuroinflammation in the progress of NTDs and 
highlights the potential of specific inflammatory and 
neural markers as novel diagnostic tools. Our findings 
pave the way for future research aimed at elucidating 



Page 21 of 24Wang et al. Journal of Translational Medicine          (2024) 22:257 	

the mechanisms linking neuroinflammation and NTDs, 
and developing effective strategies for early detection 
and prevention of these congenital disorders.
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