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Multi‑omic profiling reveals associations 
between the gut microbiome, host genome 
and transcriptome in patients with colorectal 
cancer
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Abstract 

Background  Colorectal cancer (CRC) is the leading cancer worldwide. Microbial agents have been considered 
to contribute to the pathogenesis of different disease. But the underlying relevance between CRC and microbiota 
remain unclear.

Methods  We dissected the fecal microbiome structure and genomic and transcriptomic profiles of matched tumor 
and normal mucosa tissues from 41 CRC patients. Of which, the relationship between CRC-associated bacterial taxa 
and their significantly correlated somatic mutated gene was investigated by exome sequencing technology. Differen-
tially expressed functional genes in CRC were clustered according to their correlation with differentially abundant spe-
cies, following by annotation with DAVID. The composition of immune and stromal cell types was identified by XCELL.

Results  We identified a set of 22 microbial gut species associated with CRC and estimate the relative abundance 
of KEGG ontology categories. Next, the interactions between CRC-related gut microbes and clinical phenotypes were 
evaluated. 4 significantly mutated gene: TP53, APC, KRAS, SMAD4 were pointed out and the associations with cancer 
related microbes were identified. Among them, Fusobacterium nucleatum positively corelated with different host 
metabolic pathways. Finally, we revealed that Fusobacterium nucleatum modified the tumor immune environment 
by TNFSF9 gene expression.

Conclusion  Collectively, our multi-omics data could help identify novel biomarkers to inform clinical decision-mak-
ing in the detection and diagnosis of CRC.

Keywords  Colorectal cancer, Gut microbiota, Metagenomic sequencing, Somatic mutations, Transcriptome, 
Metabolism, Immune response
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Introduction
Colorectal cancer (CRC) is highly aggressive and ranks 
as the third leading malignancy in the world popu-
lation, causing nearly 500,000 deaths per year. The 
incidence of CRC remains a health care challenge 
worldwide [1–3]. Therefore, there is an urgent need to 
characterize biomarkers for CRC​.

Advances in metagenome-wide association studies of 
fecal samples have identified microbial markers of CRC, 
and the causal effect of bacteria on cancer has been rec-
ognized [4–7]. The gut microbiota, containing at least 
38 trillion bacteria, is critical for the maintenance of 
homeostasis and health, including the digestion of 
food, vitamin biosynthesis, behavioral responses, and 
protection from pathogens. Emerging evidence has 
shown that the dysbiosis of gut microbiota can lead to 
alterations in host physiology, resulting in the patho-
genesis of CRC [4, 8].

The interplay between microorganisms and the host 
immune system frequently occurs in the gastroin-
testinal tract [9]. Eleven bacterial strains that induce 
IFNγ + CD8 T cells, including Eubacterium limosum, 
have been isolated, and these strains can enhance host 
resistance to Listeria monocytogenes and increase the 
efficacy of immune checkpoint inhibitor therapy [10]. 
On the other hands, the microbiome also impacts intes-
tinal inflammation, a hallmark of the neoplastic trans-
formation of epithelial cells, which thereby furthers 
CRC development [11]. For instance, Fusobacterium 
nucleatum can activate TLR4 signaling to NFκB which 
facilitates tumorigenesis [12]. However, the detailed 
mechanisms mediating host–microbiota interactions 
in CRC remain unclear. Few studies have addressed the 
relationship between human intestinal microbiota and 
tumor gene expression profiling during tumorigenesis. 
The limitations may be due to the difficulty in obtaining 
microbiota and tumor samples from the same cohort 
for analysis.

In this study, stool and tissue samples were collected 
from a cohort of 41 CRC patients. We performed the 
high-throughput profiling of bacterial communities and 
figured out its interlink with the genomic landscape 
and transcriptome of CRC. Cancer associated microbi-
ome alterations were firstly identified and their correla-
tions with clinical covariates were then discussed. Also, 
we identified frequently mutated genes and investigated 
their effects on microbiome structure and function. 
The dynamic changes in microbiota composition and 
tumor gene expression were further compared. Finally, 
the interplay between differentially abundant species 
and immune and metabolic pathways were explored to 
uncover more important factors for gut homeostasis.

Materials and methods
Sample collection
We obtained snap-frozen tissue samples from a cohort 
of 41 CRC patients who underwent curative resection 
at the Sixth Affiliated Hospital of Sun Yat-sen University 
with patients’ written informed consent and approval. 
Stool samples from the same cohort of 41 CRC patients 
were collected and stored at − 20 °C within 4 h and sub-
sequently − 80 °C within 24 h. None of the patients had 
taken antibiotics within 2  months or received preop-
erative chemotherapy or radiotherapy prior to sample 
collection.

Metagenomic DNA sequencing and analysis
Microbial DNA was extracted from stool samples 
(200  mg) by the phenol/chloroform/isoamyl alcohol 
method. Qualified fecal genomic DNA was extracted to 
construct libraries using a TruSeq DNA HT Sample Prep 
Kit and then subjected to sequencing on the Illumina 
platform (paired-end 150  bp). The raw sequencing data 
were filtered with SOAPnuke to remove the low-quality 
reads and adapter contamination. Subsequently, host 
(human) contamination was removed by aligning reads 
to the human genome with SOAP2 [13] After sequence 
quality control, we employed MetaPhlAn2 [14] to align 
the high-quality reads to the clade-specific marker genes 
and calculate the taxonomic relative abundance profile. 
To identify disease associated biomarkers, we conducted 
the LEfSe [15] analysis on taxonomy relative abundance 
using the parameters “-w 0.05 -l 2.0”. Functional changes 
were estimated using HUManN2 [16] with a customized 
KEGG database. Differentially abundant KEGG pathways 
were determined using the previously described reporter 
scores [17].

Exome DNA sequencing and analysis
Human genomic DNA was extracted from both tumor 
and adjacent normal tissues. The qualified genomic 
DNAs were randomly fragmented by Covaris Ultra-
sonicator, and then ligated to Illumina sequenced adapt-
ers. DNA fragments with length ranging from 350 to 
500  bp were extracted, amplified by ligation-mediated 
PCR (LM-PCR), purified, and subsequently hybridized 
to the NimbleGen SeqCap EZ Exome (44  M) array for 
enrichment. The captured libraries were then sequenced 
on the Illumina HiSeq X Ten platform, generating 150-
bp paired-end reads. After DNA sequencing, SOAP-
nuke was utilized to remove low-quality sequence and 
adapter contamination from the raw reads. The clean 
sequencing reads were aligned to the human reference 
genome with the Burrows-Wheeler Aligner (BWA) [18]. 
SAMtools [19] was employed to mark and remove PCR 
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duplicates. For somatic mutations, we used MuTect [20] 
to detect somatic SNVs, with a minimum depth requir-
ments of 20 × for both normal and tumor samples. 
Somatic INDELs were called using the Somatic Indel 
Detector command from Genome Analysis Toolkit [21] 
with default parameters. Highly confident INDELs were 
determined by an in-house pipeline and further classified 
as either germline or somatic based on the presence of 
any evidence of the event at the same locus was observed 
in the normal data. Finally, SNVs and INDELs were com-
bined and annotated with Oncotator [22]. To identify sig-
nificantly mutated genes, we applied the MutSigCV [23] 
on the annotated somatic SNVs and INDELs.

Host RNA sequencing and analysis
We extracted total human RNA from tumor and matched 
adjacent normal tissues. The human RNA was frag-
mented and further purified with the RNA Clean XP Kit. 
Subsequently, these RNAs were qualified using a Nano 
Drop and Agilent 2100 bioanalyzer. RNA sequencing 
(RNA-seq) was carried out on the Illumina platform, gen-
erating 150 bp paired-end reads. SOAPnuke was used to 
remove the low-quality reads and reads containing adapt-
ers from the raw sequencing data. Subsequently, rRNA 
contamination was then removed by mapping the reads 
against the rRNA database with SOAP2 (doi: https://​
doi.​org/​10.​1093/​bioin​forma​tics/​btp336). To quantify 
gene expression, we first aligned the clean sequencing 
reads to the human reference genome using STAR [24]. 
HTSEQ [25] was subsequently employed to count the 
number of reads aligned to each protein-coding genes. 
We used EBseq [26] to identify differentially expressed 
genes based on normalized read count data. Gene set 
enrichment analysis (GSEA) [27] was adopted to assess 
the pathway alterations, and significant pathways were 
determined by p values calculated on the basis of hyper-
geometric distribution with Benjamini correction. xCell 
[28] was employed to determine the cell-type enrichment 
scores from the RNA expression data.

Integrated analysis of microbiome data with somatic 
alterations and deregulated genes
Based on the taxonomic profiles and functional pathway 
abundance, we used LEfSe to assess microbial differ-
ence between subjects with or without specific somatic 
mutated genes. The significance was determined by LDA 
scores with a threshold of 2.0. Furthermore, the correla-
tions between differentially abundant species and dereg-
ulated genes were estimated using spearman’s rank test. 
Associations with P values < 0.01 were considered statisti-
cally significant.

Results
Identification of a set of gut microbes associated with CRC​
Most colorectal cancers arise from adenoma to carci-
noma as verified by diet, inflammatory processes, gut 
microbiota, and genetic alterations. Nonetheless, the 
mechanism by which the microbiota interacts with these 
etiologic factors to promote CRC is not clear. Therefore, 
we collected stool samples, tumor and matched normal 
tissues from 41 CRC individuals, and carried out multi-
omics sequencing analyses to evaluate the interplay 
between cancer cells and gut microbiome (Fig.  1 and 
Additional file 1: Table S1). As shown in Additional file 1: 
Fig. S1a, the stool samples were subjected to metagen-
omic sequencing, achieving an average of 7  Gb clean 
data. Additionally, we conducted whole exome sequenc-
ing, ensuring a minimum of more than 100X coverage 
and 20 Gb data, respectively (Additional file 1: Table S2).

We first examined the microbiome dysbiosis by inte-
grating our metagenomic sequencing data with a pub-
lic Chinese colorectal cancer cohort3 (CRC cohort2 
and CON) (Fig.  2A). Compared with healthy controls, 
the CRC patients in our cohort exhibited a significantly 
decreased alpha diversity (Additional file 1: Fig. S1b), but 
no obvious difference in the beta diversities (Additional 
file  1: Fig. S1c). To investigate the alterations in micro-
biota structure, we conducted the linear discriminant 
analysis effect size (LEfSe) analysis to compare healthy 
controls and combined tumor samples. Totally, there 
were 2 taxa (Viruses_noname and Fusobacteria) at the 
phylum level and 10 at the genus level significantly altered 
respectively (Fig.  2B and Additional file  1: Table  S3). 
Notably, we figured out 22 species associated with dis-
ease status, of which 14 were elevated in CRC group 
(Fig.  2C). Of them, Bacteroides fragilis (LDA = 3.897), 
Parabacteroides spp. (LDA = 3.499) and Prevotella inter-
media (LDA = 3.452) exhibited the highest abundances in 
CRC patients. In contrast, eight species were enriched in 
healthy controls, including Faecalibacterium prausnitzii 
(LDA = 4.299), Eubacterium rectale (LDA score = 4.255), 
Eubacterium eligens (LDA = 4.002), and so on.

To further investigate the functions of 22 tumor-associ-
ated bacteria, we used HUManN2 to estimate the relative 
abundance of KEGG ontology (KO) categories. Disease 
associated KEGG pathway changes were further iden-
tified using the method described in Feng Q. et  al.4 We 
observed that bacteria related metabolic pathways were 
enriched in CRC groups. Especially, one carbon pool by 
folate metabolic pathway of microbiota was significantly 
(Reporter score = 3.471) higher in CRC patients (Fig. 2D). 
The one carbon pool by folate is a universal cell meta-
bolic process supporting tumorigenesis, obtaining folate 
(vitamin B9) and cobalamin (vitamin B12) from diet. Fur-
thermore, the cancer enriched species showed positive 

https://doi.org/10.1093/bioinformatics/btp336
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correlations with the metabolic pathways such as car-
bon metabolism and oxidative phosphorylation, whereas 
some well-known beneficial bacteria (including Faecali-
bacterium prausnitzii), displayed negative correlations 
(Additional file 1: Fig. S2).

Clinical phenotypes and related microbial taxonomic 
in CRC​
Next, we investigated associations between overall 
microbiome configuration with CRC clinical covariates. 
Clinically, of the cohort’s 41 individuals (63% male; ages 
46–79), 26 subjects (63%) belong to COAD and 15 sub-
jects (37%) had carcinomas at rectum. Additionally, 

10 subjects were diagnosed at early stage and 31 sub-
jects (76%) at later stage. Among all 41 individuals, we 
observed that several paraprevotella.ssp were elevated 
in patients with age < 65 (for example, paraprevotella 
clara, LDA score = 3.051; paraprevotella xylaniphila, 
LDA score = 2.478) (Additional file  1: Fig. S3a). Fur-
thermore, Clostridium clostridioforme was predomi-
nated found in females (Additional file 1: Fig. S3b, LDA 
score = 3.182). As to Bacteroides genus, the abundance 
of Bacteroides eggerthii was significantly increased 
in COAD (LDA score = 3.625) whereas Bacteroides 
massiliensis was enriched in READ (LDA score = 4.985) 
(Additional file 1: Fig. S3c). Bifidobacterium, one of the 

Fig. 1  Metagenomics sequencing of the stool sample and exome and transcriptome sequencing of mucosa tissue in colorectal cancer. 
We collected stool specimens and matched tumor and normal mucosa tissue from 41 colorectal cancer patients. The former samples were 
metagenomically shotgun sequenced to yield taxonomic and functional profiles; the latter were processed using exome and transcriptome 
sequencing technology respectively. Features of the microbiome were correlated with clinic elements somatic mutations, and differentially 
expressed genes, respectively
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Fig. 2  A Microbiome alteration between healthy and CRC subjects. PCoA plot showed the two cohorts used in our project. B Taxonomic profile 
difference detected with LEfSe. C Differentially abundant species between healthy controls and CRC patients. D Differentially abundant KEGG 
pathways between healthy controls and CRC patients. E Unsupervised clustering uncovered associations between differentially abundant species 
and clinic covariates



Page 6 of 13Zou et al. Journal of Translational Medicine          (2024) 22:175 

major probiotics, exhibited a significant increase in the 
early stage and individuals with age < 65 (Bifidobacte-
rium longum, LDA score = 3.698; Bifidobacterium den-
tium, LDA score = 2.102) (Additional file 1: Fig. S3a and 
d).

We also assessed the connections between clinical 
characteristics and 22 cancer associated bacteria in 
our subjects through unsupervised clustering (Fig.  2E 
and Additional file  1: Table  S4). Of note, we observed 
significant gender differences (p = 0.01) among the C3 
community type (Additional file  1: Fig. S4a). Tumor 
locations (colon or rectum; p = 0.01) were linked to the 
C4 community type, which primarily consisting of the 
beneficial species (Additional file 1: Fig. S4b).

Gene mutation profile and microbiota composition 
and functional features
Previous studies indicated that gut microbes may induce 
DNA damage, thereby accelerating cancer development 
[29]. Consequently, we detected somatic mutations using 
exome sequencing technology from 41 CRC tumors and 
idntified 4 significantly mutated genes with MutSigCV, 
including TP53 (Q value = 0), APC (Q value = 1.26E-11), 
KRAS (Q value = 1.11E-10) and SMAD4 (Q value = 7.37E-
04) (Fig. 3A and Additional file 1: Table S6).

To explore their associations with microbiota com-
position, we conducted the LEfSe analysis to compare 
tumors with or without mutated genes (Fig. 3B). TP53 is 
the most prevalent somatic altered genes in our cohort. 

Fig. 3  An overview of the associations between cancer genome and microbiome genomes. A Bar plots illustrate the frequently mutated genes 
in 41 tumor tissues. B The interaction between gut microbial taxa and somatic altered genes
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In TP53 mutated subjects, an enrichment of several 
disease-associated species, including Alistipes putredi-
nis (LDA score = 4.402), Porphyromonas asaccharo-
lytica (LDA score = 3.816), and Prevotella intermedia 
(LDA score = 3.795) (Fig.  4A). Previous observations 
uncovered that butyrate treatment could activate the 
TP53 pathway [30]. Consistently, the abundance of 
butyrate-producing bacteria, Butyricicoccus pullicaeco-
rum, exhibited a significant reduction in TP53 mutation 
carriers (LDA score = 2.395). Interestingly, Roseburia 
inulinivorans (LDA score = 3.96) and Ruminococcus gna-
vus (LDA score = 3.426), two other butyrate producers, 
were also significantly depleted in APC mutation carri-
ers (Fig.  4B). Besides, the relative abundance of Entero-
coccus genus was enriched in subjects with KRAS and 
SMAD4 mutations (Enterococcus faecalis, LDA = 2.217; 
Enterococcus avium, LDA score = 3.075) (Fig. 4C, D). We 
also performed similar analysis between gut microbiota 
and other frequently mutated genes (Additional file  1: 

Fig. S5). In stool samples, probiotics, including Rumi-
nococcus lactaris  (LDA score = 3.405), Bifidobacterium 
bifidum (LDA score = 2.425), were dramatically elevated 
in MUC5B or MUC16 mutated individuals (Additional 
file 1: Fig. S5e, f ). Barnesiella intestinihominis, acting as 
an enhancer for anticancer therapy, was proven enriched 
in TNN mutation carriers (LDA score = 3.156) (Addi-
tional file 1: Fig. S5m).

We further characterized the differences of micro-
bial pathways between subjects with specific muta-
tions and control group. Interestingly, the most 
abundant pathways were generally housekeeping 
processes encoded by microbes, such as one carbon 
metabolism, aromatic amino acids, branched chain 
amino acid and so on (Additional file 1: Fig. S6). One-
carbon (1C) metabolism, consistently overexpressed 
in cancer, supports multiple biological processes, 
including nucleotides synthesis, methionine recy-
cling pathway and redox defense [31]. An increased 

Fig. 4  A–D Significantly mutated genes related taxonomic difference. Differentially abundant species between tumors with and without TP53 (A), 
APC (B), KRAS (C), SMAD4 (D) alterations, respectively
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level of bacterial purine (reporter score = 2.909) and 
pyrimidine (reporter score = 3.188) metabolism were 
found in TP53 mutation carriers (Additional file  1: 
Fig. S6a). Similarly, bacterial cysteine-methionine 
metabolism (reporter score = 3.246) and folate bio-
synthesis (reporter score = 1.949) exhibited significant 
alterations in individuals with APC mutations (Addi-
tional file  1: Fig. S6b). Bacteria can synthesize differ-
ent amino acids. Compared to control group, we found 
APC (Additional file 1: Fig. S6c) and SMAD4 mutation 
carriers (Additional file 1: Fig. S6d) were significantly 
associated with high levels of bacterial tryptophan 
(Trp) metabolism pathway (reporter score = 3.045 
and 2.732, respectively). Moreover, we observed an 
elevated abundance of bacterial phenylalanine metab-
olism correlated with KRAS mutations (reporter 
score = 4.345) (Additional file 1: Fig. S6c).

Gene expression signature and metabolic pathways 
reprogramming associated with microbial shifts
We also investigated the relationship between the micro-
biome composition and the gene expression patterns in 
CRC. We observed that certain bacterial species were 
significantly correlated with the gene expression pattern 
(Additional file 1: Fig. S7 and Table S6). The differentially 
expressed functional genes were clustered according to 
their correlation with differentially abundant species, fol-
lowing by annotation with DAVID (Fig. 5). We observed 
that Fusobacterium nucleatum, along with some Clostrid-
ium spp. exhibited positive associations nitrogen metab-
olism and bile secretion pathways, but negatively with 
cytokine-cytokine receptor interaction pathway.

Subsequently, the interaction between 22 bacterial spe-
cies and up-regulated oncogene expression was explored. 
As shown in Fig. 6A, Fusobacterium nucleatum was posi-
tively correlated with PKM (p = 0.03), SCD (p = 0.0186), 
FASN (p = 0.014), which are key enzymes in glycolysis 

Fig. 5  Correlation of differentially abundant species and deregulated genes. Tumor associated deregulated genes were clustered and annotated 
with DAVID. The X axis illustrated the DAVID functional annotation and Y axis showed differentially abundant species. Red color represents positive 
association while green color means negative association
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and fatty acid metabolism. Consistent with the findings, 
we categorized patients into high and low Fusobacte-
rium nucleatum groups, and found that various metabo-
lism related pathways were significantly enriched in the 

high groups (pentose and glucuronate interconversions, 
p = 0.026; starch and sucrose metabolism, p = 0.007; por-
phyrin and chlorophyll metabolism, p = 0.023; oxidative 
phosphorylation, p < 0.00001) (Fig.  6B). Taken together, 

Fig. 6  Gene expression signature and metabolic pathways reprogramming associated with microbial shifts. A The association 
between up regulated oncogene expression and cancer related species. The X axis represents up regulated cancer genes. Significant associations 
were highlighted below the heatmap. B Pathway difference between high and low Fusobacterium nucleatum groups
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the intestinal microbiota promotes CRC progression by 
shaping the expression of host gene expression, especially 
metabolic pathways.

Fusobacterium nucleatum promoted CRC by modifying 
the tumor immune environment and TNFSF9 expression
The composition of immune and stromal cell types was 
identified by XCELL, a gene signature-based method that 
integrates the advantages of gene set enrichment with 
deconvolution approaches. Compared with adjacent nor-
mal tissues, the overall immune score was significantly 
lower in tumor tissue (Fig. 7A). Especially, the abundance 
of most B cells and CD8 + T cells elevated in tumors 
while regulatory T cells and T helper cells exhibited a 
decreasing trend (Additional file  1: Fig. S8), indicating 
the important role of the immune microenvironment in 
the progression of CRC. The associations between dif-
ferent microbial species and immune cell types in the 
CRC were shown in Fig.  7B. Fusobacterium nucleatum 
was negatively associated with dendritic cells and CD8 T 
cells (Fig.  7C). While Faecalibatcerium prausnitzii were 
significantly positively correlated with dendritic cells and 
Macrophages M1 (Additional file 1: Fig. S9a).

Interestingly, Gene set enrichment analysis of revealed 
that the cytokine-cytokine receptor interaction (p < 0.001) 
was significantly altered in CRC (Fig.  7D). Correlation 
analysis of genes related to cytokine-cytokine receptor 
interaction pathway related genes and 22 species uncov-
ered several significant associations (Additional file  1: 
Fig. S9b). Among them, Fusobacterium nucleatum exhib-
ited a positive association with TNFSF9, a member of 
TNF (tumor necrosis factor) family members (r = 0.443, 
p = 0.0037) (Fig.  7E). Previous study showed that Fuso-
bacterium nucleatum autoinducer-2 (AI-2) enhanced the 
mobility and M1 polarization of macrophages, possibly 
through TNFSF9/TRAF1/p-AKT/IL-1β signaling. Our 
results further suggested that pathogenic bacteria, like 
Fusobacterium nucleatum, may interact with CRC cells 
and modify the tumor immune environment by TNFSF9, 
finally facilitating the tumor development.

Discussion
Microbiota studies of stool samples from CRC patients 
have shown that certain Bacteroides spp., including 
B. dorei, B. vulgatus, and B. massiliensis, and E. coli, were 
correlated with tumor stage [32]. We have character-
ized 22 bacterial strains associated with CRC in Chinese 
population. Although we have depicted the diversity of 
the gut microbiota in CRC, the features of most bacterial 
species in CRC remains largely unknown. The complex-
ity of the human intestinal microbiota, with a plethora 
of uncharacterized host-microbe, microbe-microbe, 
and environmental interactions, presents a challenge of 

advancing our knowledge of the intestinal microbiota-
cancer interaction. In this study, a number of bacterial 
metabolism associated pathways, such as one carbon 
pool by folate and oxidative phosphorylation were found 
activated in CRC groups. It’s of great interest for us to 
explore how bacteria interact with host through metabo-
lites in the future.

CRC is considered a disease associated with the accu-
mulation of genetic alterations during tumorigenesis. 
Recently, human gut microbiota has been shown to have 
pivotal roles in contributing to the development of CRC. 
Little is known regarding microbiome-gene interactions 
during CRC tumorigenesis. It has been shown that host 
genetics can influence the abundance of microbial taxa, 
as demonstrated in the studies of monozygotic twins 
[33]. We demonstrated that certain bacterial species are 
particularly affected by specific gene mutations, includ-
ing TP53, KRAS, APC, SMAD4, and so on. We hypoth-
esize that epithelial cells in the colon under a mutated 
status are compensated by species that take advantage of 
this new microenvironment. Therefore, certain bacteria 
could be manifested during colon tumorigenesis. In addi-
tion, we also figured out the bacterial KEGG pathways 
that were enriched in different mutation carriers. Nota-
bly, metabolic pathways came out. However, the correla-
tion between different mutations, CRC-associated taxa 
and its pathways need further investigation.

Some CRC cases are associated with inflammation, 
which is one of the hallmarks of cancer. Inflammatory 
mechanisms are critical drivers of tumorigenesis, which 
has also been observed in a portion of CRC patients with 
inflammatory bowel disease. The microbiota is critical in 
shaping an inflammatory microenvironment, which in 
turn affects the microbial composition. Carcinogenesis 
in the intestine due to gene dysregulation can affect the 
presence of microbes, inflammation, and the modulation 
of intestinal immunity, as demonstrated by the interplay 
between a defective gene status and microbial compo-
sition. We found that the cytokine-cytokine receptor 
interaction and complement and coagulation cascades 
related genes of host are regulated in CRC. Previous 
studies have demonstrated that metabolism could fuel 
the immune system [34, 35]. Consistently, we showed the 
interplay between bacteria and metabolism related path-
ways of host. Since bacteria also have metabolic systems, 
we speculate the metabolites produced by bacteria may 
crosslink with CRC patient metabolim, leading to the 
immune response. Further investigation for the elucida-
tion of the mechanisms needs to be performed.

Microbial biomarkers are already recognized as 
an independent factor in cancer. Given that CRC-
associated taxa can impact inflammatory pathways 
and metabolism, it is possible that targeting the gut 
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microbiota may be effective to improve the clinical 
diagnostic accuracy and efficacy [36]. Microbiota such 
as Fusobacterium nucleatum is highly enriched in 
CRC tissues and fecal, and consequently is an excellent 
diagnostic marker for early diagnosis and prognosis 

prediction of CRC [37]. The convinced crosstalk of 
microbiota (Fusobacterium nucleatum) to host func-
tional pathways indicating that the microbiota also a 
promising therapy target to treat CRC, though further 
studies are needed to investigate its functional impact 
in CRC and the underlying mechanism.

Fig. 7  Fusobacterium nucleatum promoted CRC by modifying the tumor immune environment and TNFSF9 expression. A Comparison of immune 
cell scores between tumor and adjacent normal tissues. B The heatmap illustrates the correlations between differential abundant species 
and immune cells. The stars indicate the level of statistical significance. C Significant association of F. nucleatum and aDC and CD8 T cells. D Pathway 
alteration between normal and tumor tissue. E Significant association between Fusobacterium nucleatum and TNFSF9 gene expression
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Additional file 1: Fig. S1. a Sequencing information for exome sequenc-
ing, transcriptome sequencing and metagenomic sequencing data, 
respectively. b Comparison of shannon index across CRC-cohort1, healthy 
controls and CRC-cohort2. c Comparison of Bray-Curtis distances across 
CRC-cohort1, healthy controls and CRC-cohort2. Fig. S2. The blue nodes 
represent species depleted in cancer group while orange nodes represent 
enriched species. The green nodes represent metabolic pathways. The 
blue and orange lines represent negative and positive correlations, 
respectively. Fig. S3. Bar plots illustrated AGE (a), GENDER (b), LOCATION 
(c) and STAGE (d) associated taxonomy difference. Fig. S4. Box plots 
showed significant association between species’s clusters and clinic 
elements, such as GENDER (a), Location (b). Fig. S5. Bar plots illustrated 
somatic mutated genes associated taxonomy difference. Fig. S6. Bar plots 
illustrated somatic mutated genes associated pathway difference. Fig. 
S7. The overview of interactions between cancer associated deregulated 
genes and differentially abundant species. The X axis represents the 
deregulated genes and Y axis showed differentially abundant species. Red 
color represents positive association while green color means negative 
association. Fig. S8. Illustration of lymphoid and myceloid immune cells 
changes between tumor and adjacent normal tissues. Fig. S9. a Correla-
tion of F. prausnitzii and aDC and Macrophages M1 cells. b Association of 
bacteria and host genes on cytokine-cytokine receptor pathway
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