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Abstract 

Background  Lactylation, a novel contributor to post-translational protein modifications, exhibits dysregulation 
across various tumors. Nevertheless, its intricate involvement in colorectal carcinoma, particularly for non-histone 
lactylation and its intersection with metabolism and immune evasion, remains enigmatic.

Methods  Employing immunohistochemistry on tissue microarray with clinical information and immunofluorescence 
on colorectal cell lines, we investigated the presence of global lactylation and its association with development 
and progression in colorectal cancer as well as its functional location. Leveraging the AUCell algorithm alongside cor-
relation analysis in single-cell RNA sequencing data, as well as cox-regression and lasso-regression analysis in TCGA 
dataset and confirmed in GEO dataset, we identified a 23-gene signature predicting colorectal cancer prognosis. Sub-
sequently, we analyzed the associations between the lactylation related gene risk and clinical characteristics, mutation 
landscapes, biological functions, immune cell infiltration, immunotherapy responses, and drug sensitivity. Core genes 
were further explored for deep biological insights through bioinformatics and in vitro experiments.

Results  Our study innovatively reveals a significant elevation of global lactylation in colorectal cancer, particularly 
in malignant tumors, confirming it as an independent prognostic factor for CRC. Through a comprehensive analysis 
integrating tumor tissue arrays, TCGA dataset, GEO dataset, combining in silico investigations and in vitro experiments, 
we identified a 23-gene Lactylation-Related Gene risk model capable of predicting the prognosis of colorectal cancer 
patients. Noteworthy variations were observed in clinical characteristics, biological functions, immune cell infiltration, 
immune checkpoint expression, immunotherapy responses and drug sensitivity among distinct risk groups.

Conclusions  The Lactylation-Related Gene risk model exhibits significant potential for improving the management 
of colorectal cancer patients and enhancing therapeutic outcomes, particularly at the intersection of metabolism 
and immune evasion. This finding underscores the clinical relevance of global lactylation in CRC and lays the ground-
work for mechanism investigation and targeted therapeutic strategies given the high lactate concentration in CRC.
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Introduction
Colorectal cancer (CRC) ranks among the most com-
monly diagnosed cancers worldwide, stands as a formi-
dable adversary in the realm of oncology, contributing 
significantly to global cancer-related morbidity and mor-
tality [1, 2]. Research has conclusively demonstrated that 
early diagnosis and precise treatment of CRC can mark-
edly enhance patient survival rate [3, 4]. Furthermore, 
commonly employed drugs for the treatment of CRC 
exhibit effectiveness in the initial phases of chemother-
apy. However, it is noteworthy that certain drugs even-
tually develop resistance after multiple treatment cycles 
[5, 6]. In the realm of immune checkpoint inhibitor (ICI) 
which serves as a first-line treatment of MSI-H-dMMR 
metastatic CRC, their effectiveness is notably limited 
when it comes to immunologically "cold" tumors which 
are characterized by microsatellite stable (MSS) or mis-
match repair proficient (pMMR) [7]. While remarkable 
breakthroughs have been realized through ICI therapy, 
either as a standalone approach or in combination with 
chemotherapy, there still exists a cohort of patients who 
struggle to find suitable treatment options due to the 
inherent heterogeneity and complexity of CRC. Nota-
bly, MSS-pMMR patients account for a large proportion 
of CRC patient [8]. Hence, to delve into the mechanism 
behind distinct treatment responses in contemporary 
CRC studies, researchers are actively exploring new bio-
markers and pioneering approaches for early diagnosis 
and treatment. As researchers strive to improve the diag-
nosis, prevention, treatment and prognosis of this dis-
ease, innovative tools and novel approaches are emerging 
as promising allies in the battle against CRC.

Lactylation, a relatively recent addition to the realm 
of post-translational modifications (PTMs), involves 
the covalent attachment of lactate molecules to pro-
teins, specifically through the chemical reaction 
between lactate (derived from lactic acid) and lysine 
residues on proteins [9]. This process, mediated by lac-
tyltransferases [10, 11] and delactylases [10, 12, 13], is 
comparable to other PTMs like glycation and acetyla-
tion. Lactylation can exert its influence on a diverse 
range of proteins, both intracellular and extracellular. 
Histon lactylation, in particular, has been implicated 
in various processes such as macrophage polarization 
under hypoxic conditions [14], tumorigenesis [15], and 
other pathological process [16], while exploration of 
non-histon lactylation remains limited. Given that aer-
obic glycolysis is a hallmark of cancer [17], research on 

lactylation in cancer, especially CRC, is rapidly advanc-
ing to comprehend its biological and clinical signifi-
cance. Colorectal cancer cells often exhibit metabolic 
traits, including lactate accumulation, impacting tumor 
initiation, development and immune environment [18–
21]. Lactate accumulation and efflux in CRC cells are 
associated with epigenetic regulation of immune cells 
[18]. Targeting lactylation modifications, identified as 
a biological feature linked to colorectal cancer devel-
opment and its related genes or pathways, may hold 
therapeutic potential for suppressing the metabolic and 
invasive capabilities of tumor cells, opening new avenue 
for immunotherapy and paving the way for innovative 
treatment strategies.

In this groundbreaking study, we have unveiled, for 
the first time, the intricate association between elevated 
lactylation levels and the development and progression 
of colorectal carcinoma, establishing it as an independ-
ent prognostic factor. Consequently, we devised a lacty-
lation-related pattern that accurately reflects lactylation 
levels at the single-cell transcriptome level. This pattern 
underwent rigorous external validations, including in 
silico analyses and in  vitro experiments, to elucidate 
lactylation characteristics in CRC. Our findings shed 
light on its role in predicting prognosis, providing 
mechanistic insights, and revealing potential treat-
ment avenues in CRC. Given the notable concentration 
of lactate and heightened global lactylation levels in 
CRC, targeting lactylation and its related mechanisms 
emerges as a promising therapeutic strategy.

Materials and methods
Data acquisition
In this study, single-cell RNA sequencing (scRNA-seq) 
data for colorectal adenocarcinoma were obtained from 
the GSE132257 database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/), comprising 10 CRC samples. The training cohort 
included RNA expression patterns of 589 patients with 
colorectal adenocarcinoma (COAD and READ) and 
corresponding clinical information from The Cancer 
Genome Atlas (TCGA) database (https://​portal.​gdc.​can-
cer.​gov/). Validation sets were derived from GSE39582 
(579 patients) and GSE17536 (177 patients) expression 
profiles from the Gene Expression Omnibus (GEO) data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​geo). A total of 332 
lactylation-related genes (LRGs) were selected based on a 
previous study [22] (Additional file 2: Table S1).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo


Page 3 of 22Huang et al. Journal of Translational Medicine          (2024) 22:211 	

scRNA‑seq data processing and identification 
of lactylation‑related genes (LRGs)
The scRNA-seq data were analyzed using the “Seurat” R 
program. Quality control involved filtering cells with a 
minimum expression in three cells, expressing 200–7000 
genes in each cell, and no more than 20% mitochondrial 
genes. After normalization, 18,378 cells were identi-
fied. Data integration, identification of highly variable 
genes (HVGs), and principal component analysis (PCA) 
were performed. Cell clusters were established using the 
“FindClusters” and “FindNeighbors” functions, and cell 
annotation was conducted based on marker genes (Addi-
tional file 2: Table S2) and marker gene references (Addi-
tional file  2: Table  S3, S4). Cell cycle heterogeneity was 
assessed, and lactylation activity scores were assigned 
using the “AUCell”. The “AUCell” R program, dedicated 
to assessing gene set activity, was employed to assign lac-
tylation activity scores to individual cells. Subsequently, 
cells were categorized into high- and low-lactylation-
AUC groups based on the median AUC score, and vis-
ualization was executed using the “ggplot2” R program. 
Differential analyses were then conducted to identify 
differentially expressed genes (DEGs) in high- and low-
lactylation-AUC groups, resulting in the selection of 879 
DEGs for further exploration (Additional file 2: Table S5). 
Additionally, correlation analysis was performed to iden-
tify genes strongly associated with lactylation activity, 
with the top 100 genes (Additional file  2: Table  S6) in 
terms of association selected for future investigations 
which we termed CORGs. The DEGs and CORGs repre-
sented those with the most significant impact on lactyla-
tion activity (918 genes were obtained after intersection) 
(Additional file 2: Table S7).

Functional enrichment analysis
To identify specific biological pathways enriched in high-
lactylation cluster, we conducted a comprehensive analy-
sis which included Gene Set Variation Analysis (GSVA) 
[23] (Additional file  2: Table  S8), Gene Ontology (GO) 
analysis (Additional file 2: Table S9) and Disease Ontol-
ogy (DO) analysis (Additional file 2: Table S10) to figure 
out the function of screened candidate genes and related 
pathways using the “ClustProfiler” and “GSVA” package. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis (Additional file 2: Table S12) was also performed 
to elucidate the function of selected core genes. Further, 
GSEA [24] was employed to identify enriched pathways 
or gene sets based on the differential expression results 
between high-risk and low-risk group. GSVA (Additional 
file  2: Table  S13) and the correlation analysis between 
Hallmark pathways activities and LRG risk score were 
aimed to elucidate potential pathways associated with the 
identified signature.

Construction and validation of LRGs risk signature
We performed univariate analysis on 918 genes associ-
ated with lactylation activity identified from scRNA-seq 
data to identify genes significantly correlated with patient 
survival (p < 0.05). Subsequently, a combination of least 
absolute shrinkage and selection operator (LASSO) and 
multivariate regression analysis was applied to further 
refine the gene selection and determine risk coefficients 
strongly associated with prognosis. The optimal regu-
larization parameter (lambda) was determined through 
tenfold cross-validation, and genes with non-zero coeffi-
cients were considered as potential prognostic markers. 
The coefficients obtained from the multivariate analysis 
were used to calculate a risk score for each CRC patient 
(Additional file  2: Table  S11). Patients from the TCGA-
CRC dataset were stratified into high- and low-risk 
groups based on the Z-mean score, where a Z-mean score 
greater than 0 indicates the high-risk group, and less than 
0 indicates the low-risk group. Kaplan–Meier survival 
curves were plotted, and log-rank tests were performed 
to assess the statistical significance of the observed dif-
ferences in survival between the two risk groups. The 
predictive performance of the signature was evaluated 
using receiver operating characteristic (ROC) curves. 
The effectiveness of the prediction model was further 
validated in two independent GEO datasets through sur-
vival analysis and calculation of the area under the curve 
(AUC) in ROC analysis.

Tumor mutation burden
The tumor mutation burden (TMB) was calculated from 
the somatic mutation profile of the TCGA cohort by 
“Maftools” package. The landscape of the LRG risk gene 
was plotted by waterfall chart. Substantially, the correla-
tion between the mutation burden of the LRG risk gene 
and some top mutation genes was calculated and a spec-
trum of abnormal signaling pathways were highlighted.

Immune cell infiltration analysis
In this study, the infiltration levels of immune cells 
in tumor microenvironment were estimated by 7 
algorithms (“CIBERSORT”, “MCP counter”, “EPIC”, 
“ESTIMATE”, “TIMER”, “quanTIseq”, “IPS”) and was 
visualized by “ComplexHeatmap”. Specifically, we used 
the R package CIBERSORT [25] and single-sample 
gene set enrichment analysis (ssGSEA) algorithm [26] 
to determine the distribution of immune cell types and 
enrichment fraction of each immune cell between high- 
and low- risk groups. In addition, the expression levels 
of a few important immune checkpoint genes between 
two different risk groups were compared.
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Immunotherapy response prediction
The tumor immune dysfunction and exclusion (TIDE) 
algorithm [27] was initially employed to assess potential 
disparities in treatment responses between the high- and 
low-risk groups. A higher TIDE score was indicative of 
reduced efficacy, emphasizing a negative correlation 
between the TIDE score and treatment effectiveness. 
Subsequently, we utilized the SubMap tool [28] within 
the GenePattern software (http://​www.​broad.​mit.​edu/​
genep​attern/) to analyze the difference between these 
two risk groups. In addition, we collected immunother-
apy data from the GSE78220 dataset (melanoma) and the 
IMvigor210 dataset (urothelial carcinoma, UC). Within 
each dataset, we computed the LRG risk score to predict 
responses to immunotherapy.

Nomogram construction
For better clinical practice, we assessed their independ-
ent prognostic values by univariable and multivariate 
Cox regression analysis to determine whether LRG risk 
score was an independent prognosis factor for predict-
ing the survival of CRC patients. Besides, we compared 
the relationship between LRG risk and a series of clini-
cal characteristics. To further enhance the prognostic 
accuracy and predictive ability of our model, we created 
a nomogram that used the risk score, T stage and N stage 
as independent prognostic criteria to compute the prob-
ability of OS at 1-, 3-, and 5- years. The calibration curve 
and decision curve analysis (DCA) were also utilized to 
evaluate the prediction discrimination and accuracy of 
the nomogram. The predictive efficacy was compared 
among different clinical pathological factors and the LRG 
risk score by AUC.

Drug susceptibility prediction
We utilized the R package pRRophetic which incorpo-
rates a built-in ridge regression model to forecast drug 
response. Drug sensitivity data were achieved from the 
Cancer Therapeutics Response Portal (CTRP; https://​
porta​ls.​broad​insti​tute.​org/​ctrp) and Profiling Relative 
Inhibition Simultaneously in Mixtures (PRISM; https://​
depmap.​org/​portal/​prism) databases. The area under 
the dose–response curve (AUC) values, reflecting drug 
sensitivity, were utilized, where lower AUC values indi-
cate increased sensitivity to treatment response. To iden-
tify compounds with significantly lower estimated AUC 
values in the high-risk group (log2FC > 0.2 in CTRP 
and log2FC > 0.4 in PRISM), firstly, we conducted a dif-
ferential drug response analysis. Subsequently, Spear-
man correlation analysis was performed to assess the 
relationship between AUC values and LRG scores. Our 
focus was on compounds displaying a negative correla-
tion coefficient, specifically with Spearman’s r values 

below − 0.30 for both CTRP and PRISM [29]. (Additional 
file 2: Table S14). Further analysis involved exploring the 
relationships between central LRG genes and chemo-
therapeutic drugs. We utilized the Genomics of Drug 
Sensitivity in Cancer (GDSC) database (https://​www.​
cance​rrxge​ne.​org) to calculate half-maximal inhibition 
concentrations (IC50) for commonly used chemothera-
peutic drugs [30]. Finally, we conducted Pearson correla-
tion analysis to explore the correlations between LRGR 
core genes expression and drug sensitivity using datasets 
from Cancer Cell Line Encyclopedia (CCLE, https://​sites.​
broad​insti​tute.​org/​ccle/) (Additional file 2: Table S15) and 
select the top correlated gene-drug pairs based on p-val-
ues. Visualization was conducted by ggplot2 package.

Cell culture
Human CRC cell lines (HCT8, HCT15, HCT116, RKO, 
DLD1, SW480, SW620, SW1116) and human normal 
colon epithelial cell line NCM460 as well as murine CRC 
cell line MC38 were purchased from the American Type 
Culture Collection (ATCC). All cells were incubated at 
37 °C with 5% CO2 and cultured in Dulbecco’s Modified 
Eagle Medium DMEM (BasalMedia, Shanghai, China) 
supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin, routinely tested for mycoplasma 
contamination.

Immunofluorescence staining
On the preceding day, human- and murine-derived colo-
rectal cancer cell lines including MC38, RKO, HCT15, 
HCT116, SW620 and DLD1 were planted in 4-well con-
focal dishes, with each well receiving a density of 1 × 105 
cells. The subsequent day, post-seeding, the cells under-
went a rinse with phosphate-buffered saline (PBS), fol-
lowed by fixation in 4% paraformaldehyde at room 
temperature for 20 min. After fixation, permeabilization 
was carried out using permeabilization buffer (Beyotime 
Biotech, Shanghai, China) for 20  min, succeeded by a 
30-min blockage with immunostaining blocking buffer 
(Beyotime Biotech, Shanghai, China). Following this, the 
samples were subjected to an overnight incubation at 
4 °C with the primary antibody pan-kla (#PTM-1401RM, 
PTMBio, Hangzhou, China) at a 1:100 dilution in block-
ing buffer. Subsequent to thorough washing, the cells 
were treated with fluorescent-labeled secondary antibod-
ies for 1  h at room temperature. DAPI staining (Sigma, 
USA) was applied, and the observation was conducted 
using a confocal microscope (Olympus, Japan).

Clinical specimen collection
We collected three groups of tissue samples, compris-
ing 20 pairs of fresh frozen tissues stored in RNA later 
for RNA and protein extraction, obtained from patients 

http://www.broad.mit.edu/genepattern/
http://www.broad.mit.edu/genepattern/
https://portals.broadinstitute.org/ctrp
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism
https://depmap.org/portal/prism
https://www.cancerrxgene.org
https://www.cancerrxgene.org
https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
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between 2016 and 2017. Additionally, we obtained 10 
pairs of formalin-fixed and paraffin-embedded tissue 
samples form patients between 2010 and 2018, along 
with a series of 10 × 16 tissue microarrays (TMA) with 
clinical information from CRC patients who underwent 
surgery at Fudan University Shanghai Cancer Center 
between January 2008 and September 2009. All sam-
ples included cases of CRC and adjacent normal tissues 
sourced from Fudan University Shanghai Cancer Center 
(FUSCC) without prior preoperative therapy. All clinico-
pathological diagnoses were confirmed by at least two 
pathologists according to the guidelines of the American 
Joint Committee on Cancer (AJCC). This research was 
conducted in strict accordance with the approval of the 
FUSCC Ethics Committee and written informed consent 
was obtained from each participating patient. Four pairs 
of tissues from group 1 were utilized for protein extrac-
tion to explore the heightened lactylation levels in tumor 
tissues, while the remaining 16 pairs were employed for 
RNA extraction to validate the mRNA expression of key 
genes. Immunohistochemistry (IHC) staining of AP2M1, 
TERF2IP, LY6E, ARL4C, ARPC1B were performed on 
the 10 pair of tissues from cohort 2. IHC of pan-kla and 
multiple immunohistochemistry staining of lactylation 
related genes were performed on TMA.

Western blotting
Proteins were extracted from both cell lines and tissues 
using RIPA lysis buffer (Thermo Fisher Science, USA) 
in cold conditions. After centrifugation at 15000g for 
10 min, the protein samples were subjected to immuno-
blotting. Protein concentration was determined using 
a BCA protein assay kit (Thermo Fisher Science, USA). 
Subsequently, the protein samples were loaded onto 
PAGE gels (Epizyme Biomedical Technology, Shanghai, 
China) and transferred to 0.22  µm Immobilon PVDF 
membranes (Millipore Sigma, USA). After blocking 
with 5% milk, the membranes were incubated in pri-
mary antibodies at appropriate dilutions overnight at 
4  °C. Next, secondary antibodies (anti-Rabbit IgG) were 
applied at room temperature for approximately 1 h, and 
the immunoreactivity was visualized using an ECL sys-
tem (Share-bio, Shanghai, China). The dilution factor 
for primary antibodies against pan-kla (#PTM-1401RM, 
PTMBio, Hangzhou, China) was 1:1000, and for Histone 
H3 (#P30266, Abmart, Shanghai, China) was 1:2000. All 
secondary antibodies were used at a dilution of 1:5000.

RNA extraction and quantitative real‑time PCR (qRT‑PCR)
We isolated total RNA from CRC cell lines and patient 
samples using TRIzol reagent (Thermo Fisher Science, 
USA) with DNase treatment. Subsequently, reverse 

transcription was performed with ABScript II RT Mix 
(ABclonal, Wuhan, China) to synthesize cDNA which 
was subsequently stored at −  20  °C. Quantitative real-
time PCR was conducted using TB Green Premix Ex Taq 
II (TaKaRa, Japan) and cDNA in triplicate on the ROCHE 
LightCycler®480 system. Fold changes in expression 
were achieved using the internal reference gene β-actin. 
Detailed primer sequences can be found in Additional 
file 2: Table S16.

Immunohistochemical staining
In summary, paraffin-embedded tissue sections under-
went a 2-h heat treatment at 65 °C, followed by a 30-min 
deparaffinization process involving three xylene treat-
ments and subsequent 30-min rehydration using a graded 
ethanol series. Antigen retrieval was performed through 
a 20-min exposure to high heat and pressure in an EDTA 
buffer (pH 9.0). After blocking endogenous peroxidase 
activity and tissue blocking, sections were incubated with 
primary antibodies against AP2M1 (1:200, #ET1612-33, 
Proteintech, Wuhan, China), TERF2IP (1:50, #14595-
1-AP; Proteintech, Wuhan, China), ARPC1B (1:500; 
#28368-1-AP; Proteintech, Wuhan, China), LY6E (1:200; 
#ab300399; abcam, England), ARL4C (1:200; #10202-1-
AP; Proteintech, Wuhan, China) at room temperature for 
1 h. Subsequently, biotin-conjugated secondary reagents 
were applied for 45  min. The IHC procedure was com-
pleted with DAB (3,3′-diaminobenzidine) (Genetech, 
China) staining and hematoxylin counterstaining. The 
final IHC scores, considering both staining percent-
age and intensity, were independently calculated by two 
experienced pathologists.

Multiplex immunohistochemical staining
The deparaffinization, rehydration, and antigen retrieval 
process aligned with our previously described IHC pro-
tocol. Subsequently, we applied a pre-optimized antibody 
concentration and a predetermined staining sequence. 
Slides underwent incubation with both primary antibod-
ies (TERF2IP, ARL4C, ARPC1B, CD8) and horseradish 
peroxidase-conjugated secondary antibodies, followed 
by tyramine signal amplification (TSA). Following each 
round of TSA, we executed antibody stripping and anti-
gen retrieval procedures. Finally, DAPI (sigma, USA) was 
employed for nuclear staining.

Statistical analysis
For normally distributed variables in two comparative 
groups, we applied unpaired Student’s t-tests to deter-
mine statistical significance. In instances where variables 
were non-normally distributed, Mann–Whitney U tests 
were employed for assessing the statistical significance 
between the two groups. When comparing more than 
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two groups, we utilized parametric methods, specifically 
one-way ANOVA tests, and nonparametric methods, 
such as Kruskal–Wallis tests. To explore linear relation-
ships, Pearson’s or Spearman’s correlation analysis was 
conducted between pairs of variables. Kaplan–Meier sur-
vival analysis was performed to compare overall survival 
between high and low-risk groups, with the Log-rank 
test employed to assess differences in survival curves 
between the two groups. Furthermore, ROC curves were 
generated, and AUC values were calculated to evaluate 
the predictive performance of the risk score. All statisti-
cal analyses were carried out using R software (version 
4.2.2) and GraphPad Prism 9. The data are presented as 
means ± SD, and statistical significance was set at p < 0.05. 
These rigorous analytical approaches ensure a robust 
evaluation of the study findings.

Results
Global lactylation level was up‑regulated in CRC 
and associated with tumor progression
Previous researches indicated that CRC is notably char-
acterized by heightened glycolytic activity [31]. Conse-
quently, this metabolic trait leads to a significant increase 
in lactate production, a crucial substrate for histone lac-
tylation. Due to the absence of a lactylation profile to 
confirm the presence of global lactylation in CRC, while 
in other cancers, lactylation has been demonstrated to 
exist in a variety of proteins and is crucial for the occur-
rence and development of tumor [15, 32], we are here to 
explore the existence of lactylation in CRC and its clini-
cal significance (Fig. 1). Firstly, we conducted validation 
on our CRC samples, which revealed elevated global 
lactylation levels in cancerous tissues compared to adja-
cent normal tissues (Fig.  2A). This observation was fur-
ther corroborated in CRC cell lines when compared to 
the normal colon epithelial cell line NCM46 (Fig.  2B). 
Additionally, we utilized immunofluorescence to assess 
the comprehensive lactylation status in CRC cell lines. 
The results indicated that lysine lactylation was not con-
fined to the nucleus but was also present in the cyto-
plasm (Additional file  1: Fig. S1A–F). This observation 
further suggested that global lactylation extends beyond 
histone-related proteins and transcends the realm of 
transcriptional regulation, emphasizing its prevalence 
in diverse protein modifications. To assess the potential 
clinical significance of global lactylation, immunohisto-
chemistry staining was performed on a comprehensive 
tissue microarray, unveiling a substantial increase in 
global lactylation levels in CRC tissues compared to nor-
mal tissues (Fig. 2C) and the level of lactylation rises as 
the stage increases (Fig. 2D). Moreover, our investigation 
demonstrated that higher global lactylation levels were 
associated with a poor prognosis, both in early-stage 

(stages I–III) and late-stage patients (stage IV) (Fig.  2E, 
F). Through univariate and multivariate Cox regres-
sion analyses, lactylation levels consistently emerged as 
an independent prognostic factor for CRC (Fig. 2G, H). 
Statistically, the high lactylation group exhibited a higher 
rate of recurrence and distant metastasis, coupled with 
more advanced tumor stages (Fig.  2I-K). These findings 
underscore the potential significance of lactylation as a 
prognostic marker in CRC, shedding light on its asso-
ciation with disease progression and outcomes. Further 
exploration of the molecular mechanisms underlying lac-
tylation in CRC may unveil novel therapeutic avenues for 
this challenging malignancy.

Identifying lactylation‑related genes (LRGs) in CRC 
from single‑cell transcriptome
In order to identify genes mostly reflective of lactylation 
modification, we conducted deep analysis in single-cell 
sequencing data. After quality control, 46,286 high-qual-
ity cells were meticulously chosen for subsequent analy-
sis. The expression profiles of each sample are visually 
depicted in Additional file  1: Fig. S2A. Principal com-
ponent analysis (PCA) reduction plot indicated a lack 
of discernible differences in cell cycles, as illustrated 
in Additional file  1: Fig. S2C. The study encompassed 
10 samples, and it was evident that the cell distribu-
tion within each sample remained remarkably consist-
ent, suggesting the absence of significant batch effects 
among samples. Subsequently, dimensionality reduc-
tion techniques, specifically t-distributed stochastic 
neighbor embedding (t-SNE), successfully clustered all 
cells into 22 distinct groups, as shown in Fig.  3A. Bub-
ble plots were employed to visualize the characteristic 
marker genes of various cell types as demonstrated in 
Additional file  1: Fig. S2F. The distribution of 11 spe-
cific cell clusters was visualized by t-SNE (Fig.  3B) and 
UMAP (Additional file  1: Fig. S2G, H). Based on the 
median AUC scores, all cells were assigned an AUC 
score for LRGs and categorized into high-lactylation-
AUC and low-lactylation-AUC group (Fig.  3C). It was 
evident that cells with a higher number of lactylation-
related genes (LRGs) tended to be predominantly red-
colored immune cells, mainly NK, T cells, and B cells 
(Fig.  3D). Subsequently, we identified 879 differentially 
expressed genes (DEGs) between the high and low lac-
tylation groups (Additional file  2: Table  S5). Further-
more, a correlation analysis revealed the genes most 
strongly associated with lactylation activity (Fig. 3E) and 
we chose the top 100 highly lactylation-related genes, 
which we termed CORGs (Additional file  2: Table  S6). 
In conclusion, this single-cell study identified 918 lact-
ylation-related genes (LRGs) with the strongest links to 
lactylation activity by overlapping DEGs and CORGs. We 
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Fig. 1  Workflow of the study
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Fig. 2  Global lactylation level was up-regulated in CRC and associated with tumor progression. A Western blotting analysis of lactylation levels 
in adjacent normal tissues (N) and cancerous tissues (T). B Assessment of lactylation levels in the colon epithelial cell line NCM460 and various 
CRC cell lines (HCT8, HCT15, HCT116, DLD1, RKO, SW480, SW620, SW1116) through western blotting. Densitometric analysis was conducted 
to quantify and statistically compare lactylation levels normalized to histone H3. C, D Immunohistochemical staining visualization of lactylation 
levels in normal and cancerous tissues (C) and the specific lactylation levels in tumor tissues at various stages from stage 1 to stage 4 (D) in a Tissue 
Microarray (TMA) cohort. A total of 80 normal colon tissues and 80 CRC tumors were analyzed. Statistical analysis was performed using the Mann–
Whitney test. Scale bar: left panel, 200 μm; right panel, 50 μm. E Kaplan–Meier survival analysis assessing the relationship between lactylation level 
and OS of CRC patients, accompanied by a time-dependent ROC curve demonstrating the accuracy of the lactylation risk. F Kaplan–Meier survival 
analysis exploring the association between lactylation level and OS of CRC patients in early-stage (stages I–III) and late-stage (stage IV) patients. 
G, H Univariate and multivariate independent prognostic analysis conducted in the TMA cohort. I, J Distribution of recurrence (I), metastasis (J), 
and stage (K) in lactylation-high and lactylation-low patients. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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further investigated LRGs-associated molecular signa-
tures through Gene Set Variation Analysis (GSVA), Gene 
Ontology (GO) and Disease Ontology (DO) analysis at 
the single-cell level. The analysis indicated that lactyla-
tion played vital roles in pro-tumor pathways like “MYC,” 
“PI3K-AKT-mTOR,” “HYPOXIA” and was associated 
with immune-related pathways such as “INTERFERON_
GAMMA_RESPONSE”, “IL2_STAT5_SIGNALING” and 

“TGF_BETA_SIGNALING” (Fig. 3F-H, Additional file 2: 
Tables S8–S10).

Novel LRG signature unveils strong predictive power 
for CRC prognosis
Given the correlation between LRGs and pro-tumor 
pathways, we are intrigued by the possibility of their role 
in predicting CRC prognosis. Due to the limited sam-
ple size of scRNA-seq data, we opted to further analyze 

Fig. 3  Identifying Lactylation-related genes (LRGs) in CRC from single-cell transcriptome. A, B The t-SNE plot illustrates the comprehensive 
annotation of CRC samples into 11 distinct cell types within TME. Each color on the plot corresponds to a specific cell type, as indicated. C The 
AUCell score, representing lactylation abundance in individual cells, is visually depicted in a gradient color scheme. D AUCell groups reflecting 
lactylation activity in each cell are projected, with red denoting the high lactylation group and blue indicating the low lactylation group. E 
Correlation analysis between lactylation-AUCell score and genes and the top 100 associated genes is presented according to R. p-values are 
displayed using a gradient of blue. F Barplot of GSVA sorted by t value highlights pathways that are upregulated in the high lactylation group. G, H 
Dotplot visualization demonstrates Gene Ontology (GO) and Disease Ontology (DO) biological process terms enriched in the high lactylation group. 
The color of the plots is determined by the q-value, with a gradient from low to high q-values
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the TCGA cohort for the extraction of a LRG prognosis 
signature. Initially, a univariable Cox regression analy-
sis identified 67 candidate genes associated with CRC, 
as depicted in the heatmap (Fig.  4A). To refine our 
gene selection, LASSO analysis (Fig. 4B) was employed, 
resulting in the identification of 23 genes with non-zero 
LASSO regression coefficients, including RBM17, TER-
F2IP, AP2M1, NR1H2, MED10, HSPA1B, ARL4C, LY6E, 
ARPC1B, HSPB1, SLC2A3, RBM3, LGALS4, PTTG1, 
H2AFY, HMGN2, LEPROTL1, LITAF, ACTG1, RAB5C, 
METTL9, UBE2I, SFPQ. These genes formed the basis of 
a predictive model termed the LRG score (LRGS) model 
(Fig.  4C). The LRGS model was constructed using the 
assigned coefficients for each gene, revealing a distinctive 
pattern where the initial 11 genes were associated with 
higher risk, while the subsequent 12 genes were linked to 
lower risk. This comprehensive model integrates the pre-
dictive power of these individual genes to offer a refined 
tool for evaluating CRC prognosis. The risk-score model 
was calculated according to the following equation:

 The prognosis value of the LRG signature was assessed 
by categorizing patients into high- and low-risk groups 
based on the median risk score. Kaplan–Meier survival 
analysis demonstrated a substantial variation between 
two groups in overall survival (OS) among TCGA-
CRC patients and CRC patients from GSE39582 and 
GSE17536 where high-risk was equal to worse survival. 
Furthermore, ROC analysis was performed to evaluate 
the discriminative power of this signature. The 1-, 2-, 3-, 
4-, and 5-year AUC values demonstrated strong predic-
tive capabilities for the TCGA training set, GSE39582 
test set, and GSE17536 test set (Fig.  4D–F). In all, this 
LRGS model stands out as a robust and promising tool 
for predicting CRC prognosis.

Validation of the expression patterns of central genes 
in the LRGS
To further conform the distribution of these lactylation 
genes constituted LRGS in the tumor microenvironment 

risk score = (0.095837)×HSPA1B+ (0.040909)×HSPB1

+ (0.04091)× ARPC1B + (0.010171)× SLC2A3

+ (0.062486)× LY6E+ (0.069568)× ARL4C

+ (0.420943)× AP2M1+ (0.832421)× TERF2IP

+ (0.186926)×MED10 + (0.920787)× RBM17

+ (0.226745)×NR1H2− (0.04857)× LGALS4

− (0.27447)× ACTG1− (0.1725)× LEPROTL1

− (0.1566)×HMGN2− (1.0237)× SFPQ− (0.03022)

× RBM3− (0.61333)×UBE2I − (0.06724)×H2AFY

− (0.38982)× RAB5C− (0.19226)× LITAF

− (0.57297)×METTL9− (0.0604)× PTTG1

(TME), we reanalyzed scRNA-seq data. The results 
showed that HSPB1, ACTG1, SFPQ, RBM3, LY6E, 
AP2M1, RAB5C, MED10, RBM17, METTL9, LGALS4 
were predominantly expressed in epithelial cells and 
endothelial cells, while LEPROTL1, TERF2IP were pre-
vailed in T and NK cells, ARL4C, ARPC1B, SLC2A3, 
H2AFY, LITAF was prominent in monocyte macrophages 
(Fig. 5A). Besides, NR1H2, PTTG1 were detected at low 
level in all cell clusters. KEGG enrichment analysis of 23 
LRGs from single cell level also indicated that LRGs were 
associated with phagosome, antigen processing and pres-
entation and so on (Fig. 5B, Additional file 2: Table S12). 
Subsequently, we turned to the bulk RNA transcrip-
tome for further analysis. LEPROTL1, SLC2A3, LY6E, 
ARL4C, AP2M1, RAB5C, LITAF were positively related 
with immune score while LGALS4, SFPQ, RBM3, UBE2I, 
H2AFY, RBM17, PTTG1 were otherwise from estimate 
analysis, SLC2A3, LY6E were on the whole negatively 
associated with immune cell infiltration as we can see 
from the CIBERSORT analysis, while LITAF, ARL4C, 
SLC2A3 and LEPROTL1 were significantly correlated 
with almost all immune cells (Additional file 1: Fig. S3A–
E). Subsequently, we conducted a comprehensive assess-
ment of the expression levels of signature genes within 
various cell lines. Notably, the RNA expression levels of 
RBM17, TERF2IP, AP2M1, NR1H2, MED10, HSPA1B, 
ARL4C, LY6E, ARPC1B, HSPB1 were significantly ele-
vated in CRC cell lines, such as HCT116, HCT15, HCT8, 
SW620, SW480, SW1116, RKO, and DLD1, in compari-
son to a normal cell line NCM460 (Fig.  5C). Addition-
ally, to reinforce the significance of these gene expression 
alterations in CRC, we further scrutinized their levels 
in clinical tissues (Fig.  5D). Furthermore, our investiga-
tion extended to the protein expression levels of some 
select core risk genes, including AP2M1, LY6E, ARL4C, 
ARPC1B and TERF2IP by immunohistochemical analysis 
of CRC tissues alongside adjacent normal tissues which 
was in accordance with RNA level (Fig. 5E–I, Additional 
file 1: Fig. S3F). This additional layer of evidence under-
scores the relevance of these genes in CRC.

Prediction of biological mechanisms associated with LRG 
signature
To explore the molecular implications of transcriptomic 
and genetic variances between high- and low-risk groups 
and gain insights into the biological processes linked to 
the poor survival in high-risk group, we delved into the 
genomic heterogeneity of the LRGS model within the 
TCGA cohort. Our examination of the mutation land-
scape of LRGs and the correlation analysis with frequently 
mutated genes like APC, TP53, TTN, and KRAS (Fig. 6A, 
B) revealed that LRGs did not carry a substantial muta-
tion burden but were strongly associated with pro-tumor 
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Fig. 4  Novel LRG signature unveils strong predictive power for CRC prognosis. A Volcano plot illustrating prognostic-associated LRGs identified 
through univariate Cox proportional hazards analysis. B LASSO regression analysis included 23 prognostic LRGs to identify the most critical 
model genes. C Coefficients for model genes determined by multiple Cox proportional hazard ratios. Red indicates risk genes, and blue 
indicates protective genes. D Kaplan–Meier curves of Overall Survival (OS) based on the LRG risk signature in the TCGA dataset, accompanied 
by a time-dependent ROC curve demonstrating the survival accuracy of the model. E, F Kaplan–Meier curves of OS based on the LRG risk signature 
in the GEO datasets (GSE39582 and GSE17536), with a time-dependent ROC curve illustrating the survival accuracy of the model
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pathways, such as “RTK-RAS,” “WNT,” “Hippo,” “PI3K,” 
“MYC,” and immune-related pathways like “TGF-β” 
(Fig.  6C). Subsequently, functional enrichment analy-
sis was conducted to uncover processes contributing to 

the poor prognosis of high-risk patients. In the GSEA 
analysis based on the GO gene set, the high-risk group 
showed enrichment in “ANGIOGENESIS,” “APICAL 
JUNCTION,” “COAGULATION,” and “EPITHELIAL 

Fig. 5  (See legend on previous page.)
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(See figure on next page.)
Fig. 5  Validation of the expression patterns of central genes in the LRGS. A The t-SNE plot demonstrates the expression patterns of essential genes 
within the LRGS across distinct cell types based on single-cell RNAseq. B Functional enrichment analysis (GO analysis) highlighting the biological 
processes associated with the central genes of the LRGS in single-cell transcriptomic data. C Comparative qPCR analysis illustrating the expression 
disparities of LRGS risk genes, including AP2M1, LY6E, RBM17, HSPA1B, ARPC1B, ARL4C, NR1H2, TERF2IP, MED10, and HSPB1, between normal colon 
epithelial cell NCM460 (N) and various CRC cell lines including HCT8, HCT15, HCT116, RKO, DLD1, SW480, SW620 (T). D Comparative qPCR analysis 
showcasing the differential expression of LRGS risk genes in adjacent normal tissues (N) and cancerous tissues (T). N = 20 samples for each group 
and data are representative of three independent experiments. Error bars indicate mean ± SEM. E–I Representative IHC images of protein expression 
for AP2M1 (E), LY6E (F), ARL4C (G), ARPC1B (H), and TERF2IP (I) in normal and cancerous tissues. Scale bar: left panel, 200 μm; right panel, 50 μm. 
Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Fig. 6  Prediction of biological mechanisms associated with LRGs risk. A Oncoprint visualization of the mutation atlas of these essential LRGs 
across CRC samples from TCGA cohort. B Co-mutation status between these essential LRGs and some commonly mutated genes. C The mutation 
frequencies of ten prevalent oncogenic pathways in high-risk group. D Identification of GO terms enriched in the high-risk group through GSEA 
analysis in TCGA. E Ridge plot showing the GO terms enriched in the low-risk group. F Assessment of variations in hallmark pathway activities 
between high- and low-risk groups based on GSVA scores. G Evaluation of the correlation between the LRG risk score and the activities of hallmark 
pathway. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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MESENCHYMAL TRANSITION” (Fig. 6D). In contrast, 
the low-risk group exhibited enrichment in pathways 
like “E2F TARGETS,” “MYC TARGETS,” “OXIDATIVE 
PHOSPHORYLATION,” “G2M CHECKPOINT,” and 
“MTORC1 SIGNALING” (Fig.  6E). The GSVA analysis 
revealed differential expression in 122 pathways based on 
the risk score. Notably, the high-risk group was positively 
correlated with pathways such as “NOTCH SIGNALING 
PATHWAY,” “WNT SIGNALING PATHWAY,” “ECM 
RECEPTOR INTERACTION,” “FOCAL ADHESION,” 
and “ETHER LIPID METABOLISM,” all contributing to 
tumor growth (Fig.  6F, Additional file  2: Table  S13). In 
addition, we conducted a correlation analysis between 
hallmark pathway activities and LRG risk score, revealing 
distinct characteristics between the high-risk and low-
risk groups which further validated that high risk was 
associated with epithelial mesenchymal transition, angio-
genesis, hypoxia, notch signaling and played vital role in 
immune signaling such as IL2-STAT5 signaling, TGFβ 
signaling, IL6 Jak stat signaling, IFNγ signaling and so on 
(Fig. 6G).

The LRG score reshape the immune cell infiltration 
landscape
Recent research has underscored the pivotal role of 
the inflammatory microenvironment in CRC develop-
ment, particularly the activation status and interactions 
of immune and stromal cells with tumor cells [33, 34]. 
It’s reported that the lactylation level is closely related 
to immune signaling and contributes to the remode-
ling of the tumor environment [35]. Here, our compre-
hensive analysis, employing seven distinct algorithms, 
consistently demonstrates heightened T cell infiltra-
tion in low-risk tumors (Fig. 7A). Further, an evaluation 
of 22 immune cell landscapes through CIBERSORTx 
reveals significant differences in T cell subtypes, with 
CD4 memory cells showing lower infiltration and Treg 
and macrophages exhibiting higher infiltration in the 
high LRG score group (Fig.  7B). Additionally, dendritic 
cells, crucial antigen-presenting cells, are prevalent in 
the low-risk group. Single-sample Gene Set Enrichment 
Analysis (ssGSEA) reaffirms these findings, emphasizing 
the robust anti-tumor immune response in the low-risk 
group (Fig. 7C). Exploring the relationship between risk 
score and immunotherapy biomarkers, we observe ele-
vated expression of Immune Checkpoint Genes (ICGs) 
like PD-1 and PDCD1 in the high-risk group, suggesting 
potential therapeutic targets (Fig. 7D). Validation through 
multiple Immunohistochemistry (mIHC) confirms the 
prominence of ARL4C, ARPC1B, and TERF2IP in tumor 
tissue, and their expression were negatively associated 
with CD8 T cell presence (Fig.  7E, F). This comprehen-
sive analysis highlights the intricate interplay between 

lactylation level and immune cell infiltration, reinforces 
the relationship between cancer and TME, thus provid-
ing potential for immunotherapy insights in CRC.

Predictive value of LRG signature for immunotherapy
Expanding on the pivotal role of immune infiltration in 
disease progression and response to immunotherapies, 
alongside the influence of lactylation in reshaping TME, 
we investigated the predictive capacity of our prognostic 
model for CRC patients undergoing ICI treatment. Uti-
lizing the TIDE score, we observed a significant increase 
in the Exclusion score, Dysfunction score, and overall 
TIDE score in the high-risk group (Fig. 8A, B). This sug-
gests a heightened potential for immune escape among 
high-risk patients, possibly leading to reduced effective-
ness of ICI therapy. Subclass Mapping (Submap) results 
further indicated that the low-risk group might be more 
sensitive to PD-1 therapy (Bonferroni-corrected p < 0.05) 
(Fig. 8C). Furthermore, we validate the efficiency across 
multiple immunotherapy datasets, the IMvigor data-
set demonstrated better survival outcomes (Fig.  8D) 
and improved responses to anti-PD-L1 immunother-
apy (Fig. 8E) in the low-risk group. This trend persisted 
across different stages, with low-risk patients exhibiting 
better prognosis in both stage I or II (Fig. 8F) and stage 
III or IV (Fig.  8G). Consistent results were obtained in 
the GSE78220 dataset, further confirming the low-risk 
group’s favorable response to immunotherapy (Fig. 8H, I). 
This comprehensive analysis underscores the potential of 
our prognostic model in predicting immunotherapy out-
comes for CRC patients.

A nomogram integrating LRG Score and clinical 
parameters for precision prediction
In the pursuit of other clinical applicability for the LRG 
score, we conducted independent and multiple prog-
nostic analyses to identify potential factors influencing 
the prognosis of CRC and confirmed that LRGR was an 
independent risk factor of CRC (Fig. 9A, B). Visualizing 
the correlations between model genes and various clini-
cal characteristics, we observed a higher prevalence of 
unfavorable T stage, N stage, M stage, and clinical stage 
values in the high-risk group, while no significant asso-
ciation was found with age and gender (Fig. 9C–F, Addi-
tional file 1: Fig. S4). Using the TCGA-CRC dataset, we 
meticulously developed a predictive nomogram which 
combines the risk score with crucial clinicopathologi-
cal parameters such as T stage and N stage to predict 1-, 
3-, and 5-year OS rates (Fig. 9G). Due to the scarcity of 
samples with M stage information, we excluded M stage 
from the nomogram. Calibration curves confirmed the 
accuracy of the nomogram aligned with actual outcomes 
in 1-, 2-, and 3-year predictions (Fig. 9H). Decision Curve 
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Analysis (DCA) demonstrated the nomogram’s superior-
ity over using LRGS alone in terms of clinical benefits for 
patients (Fig. 9I). Time-dependent AUC further substan-
tiated the nomogram’s superior predictive performance 

compared to the risk score and other conventional clini-
cal measures (Fig. 9J).

Fig. 7  The LRG score reshape the immune cell infiltration landscape. A Seven algorithms assess differences in immune infiltration status 
between different risk groups. B, C (B-CIBERSORT; C-ssGSEA) Boxplot illustrating the relative abundance of infiltrating immune cell types in patients 
belonging to high and low-risk groups. D Boxplot of relative expression levels at 27 immune checkpoints profiles between the high and low risk 
patients. E Correlation analysis between TME-infltrated cells and LRGR. F Representative images of mIHC showed the relationship between TERF2IP, 
ARL4C, ARPC1B and CD8. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Seeking potential therapeutic agents for the high LRGS 
group
To identify potential therapeutic options for CRC 
patients with high LRGS, our study employed a com-
prehensive analysis of chemical and targeted drugs. 
Utilizing sensitivity data from the Cancer Therapeu-
tics Response Portal (CTRP) and Profiling Relative 
Inhibition Simultaneously in Mixtures (PRISM) data-
sets, we identified promising agents specifically for the 
high LRGS group. From the CTRP dataset, GANT-61, 
NSC23766, and PRIMA-1 emerged as potential candi-
dates (Fig.  10B), while the PRISM dataset highlighted 
romidepsin, lorlatinib, tedizolid-phosphate, and others 
(Fig.  10C). The AUC values for these agents were sig-
nificantly lower in the high LRGS group, indicating bet-
ter sensitivity, with detailed drug functions provided in 

the Additional file 2: Table S14. Furthermore, we evalu-
ated the half-maximal inhibitory concentration (IC50) 
for four chemotherapeutic drugs in two risk groups. 
In the low-risk group, IC50 values for cisplatin, gem-
citabine, and paclitaxel were significantly lower than 
those in the high-risk group, suggesting potential ben-
efits for low-risk patients. Conversely, gefitinib showed 
lower IC50 in the high-risk group, making it a more 
suitable option for this group (Fig. 10D-G). Nine LRGS-
associated genes, including ARPC1B, TERF2IP, ARL4C, 
UBE2I, LGALS4, SFPQ, HMGN2, LEPROTL1, and 
H2AFY, were linked to the sensitivity of specific chem-
otherapeutic drugs (p < 0.05) (Fig.  10H). These genes 
encompass three risk genes in LRGS, namely ARPC1B, 
TERF2IP, and ARL4C and six protective genes, includ-
ing UBE2I, LGALS4, SFPQ, HMGN2, LEPROTL1, and 

Fig. 8  Predictive value of LRG signature for immunotherapy. A Boxplot of TIDE score between the high- and low-risk group. A higher score 
indicates enhanced probability of immune invasion. B Scatter plot of ESTIMATE indicates a positive relationship between risk score and TIDE score. 
C Heatmap of Submap analysis of the two groups (Bonferroni-corrected p < 0.05). For Submap analysis, a smaller p-value implied a more similarity 
of paired expression profile. D–G survival curve (D) and immunotherapy response (E) between high risk and low risk group in IMvigor210 cohort 
and survival curve of patients at stage I/II (F) and III/IV (G). H, I. survival curve (H) and immunotherapy response (I) between high risk and low risk 
group in GSE78220 cohort. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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H2AFY. ARPC1B and UBE2I exhibited broad asso-
ciations with various drugs. For instance, increased 
expression of ARPC1B was linked to enhanced sensitiv-
ity to Dabrafenib, Vemurafenib, Encorafenib, ABT-199, 
and Selumetinib in CRC patients. Similarly, elevated 
UBE2I expression was related to increased sensitivity 
to Nelarabine, Hydroxyurea, Asparaginase, Cladrib-
ine, and Cytarabine. Among the risk genes, TERF2IP 
ranked second in terms of associations with Nelarabine, 

Lomustine, Ifosfamide, and Dasatinib. These find-
ings suggest intricate interactions between LRGs and 
drug sensitivities in cancer therapy (Additional file  2: 
Table  S15) and thereby provide more directions for 
clinical usage in the near future.

Fig. 9  A nomogram integrating LRG Score and clinical parameters for precision prediction. A Univariate independent prognostic analysis 
in the TCGA cohort. B Multivariate independent prognostic analysis in the TCGA cohort. C–F Barplot shows the relationship between different 
clinical factors and LRG riskscore. G Nomogram was constructed by combining clinical features (T stage, N stage) with risk score. H The calibration 
plots test consistency between the actual OS rates and the predicted survival rates, with the 45°line representing the best prediction. I Decision 
curve analysis (DCA) showed that nomograms had a significantly higher clinical benefit for patients than other clinical features. J AUC curves were 
used to evaluate the predictive performance of different clinical characteristics, nomogram scores and risk scores. Statistical significance: *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001

Fig. 10  Seeking potential therapeutic agents for the high LRGS group. A Schematic outlining the strategy to develop potential therapeutic agents 
with higher drug sensitivity in the high risk group. B The results of Spearman’s correlation analysis and differential drug response analysis of three 
CTRP-derived compounds. C The results of Spearman’s correlation analysis and differential drug response analysis of ten PRISM-derived compounds. 
Lower AUC values imply greater sensitivity. D-G. The differences of sensitivity of patients to cisplatin (D), Gemcitabine (E), paclitaxel (F) and Gefitnib 
(G). Lower IC50 is equal to better sensitivity. H Scatter plot illustrating spearman’s correlations and significance between the 23 model genes 
and chemotherapeutic drugs using data from the CCLE. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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Discussion
Lactate, once considered a metabolic waste product, has 
emerged as a key player in tumor metabolic reprogram-
ming, intricately shaping TME and directly influencing 
immune cells. A growing body of research is now dedi-
cated to unraveling the intricate interplay between lactate 
and diverse immune cells in the tumor microenviron-
ment, with the aim of improving the efficacy of existing 
anti-tumor immune therapies [36]. Prospective studies 
on lactylation and in-depth immune metabolism hold 
the promise of unveiling new drugs that can selectively 
regulate immune cell activity with minimized side effects. 
Despite significant research on the importance of lacty-
lation in cancer prognosis and treatment across various 
tumor types such as lung cancer and hepatocellular car-
cinoma [22] and gastric cancer [37], research on lactyla-
tion modifications in CRC is limited, and no lactylation 
profile or global lysine lactylation identification has been 
established.

In our study, we innovatively demonstrated a markedly 
elevated level of lactylation in paired tumor tissues com-
pared to normal tissues, as well as in CRC cell lines com-
pared to normal epithelial cell NCM460. This discovery 
prompted a focused investigation into lactylation modifi-
cation, subsequently confirming its association with CRC 
progression and establishing it as an independent prog-
nostic factor in CRC. Therefore, a comprehensive under-
standing of how lactylation functions in cancer initiation 
and progression is imperative for its potential application 
in diagnosis and prognosis. Utilizing published single-cell 
RNA sequencing (scRNA-seq) data, we identified 918 
genes pivotal in regulating lactylation levels, with T cells 
and NK cells exhibiting a high association with lactylation 
activity. Combining this with bulk RNA-seq data con-
taining 586 CRC patients with prognosis information, we 
developed a prognosis model comprising 23 core genes. 
This model was rigorously validated using data from 
756 patients through survival plots and ROC curves. 
Moreover, we observed that the risk score significantly 
correlated with the TNM staging system, prompting the 
construction of a predictive nomogram encompassing 
the risk score and clinicopathological parameters (T stage 
and N stage). This nomogram outperformed other clini-
cal parameters, showcasing its potential clinical utility. 
Despite the low levels of gene alterations, the identified 
pattern associated with pro-tumor and immunoregu-
latory pathways suggests the influence of metabolites. 
Our study proposes targeting pathways like PI3K-AKT-
mTOR, HYPOXIA, and MYC, providing intriguing 
opportunities for therapeutic intervention. Building upon 
previous findings that lactate in the TME exerts a sub-
stantial inhibitory influence on immune cells, particularly 
anti-tumor T cells, we observed a similar phenomenon in 

the high-risk group, negatively impacting CRC prognosis. 
This was attributed, in part, to the infiltration of immu-
nosuppressive T cells like Tregs and a reduction in acti-
vated CD8 T cells. Gene interventions modifying glucose 
metabolism to enhance the TME could serve as valuable 
adjuncts, especially in conjunction with prevalent immu-
notherapies like immune checkpoint inhibitors (ICIs). A 
deeper understanding of gene localization and control 
mechanisms influencing immune cell function within 
the tumor microenvironment will guide the selection 
of optimal immunotherapies. Furthermore, our selec-
tion of vital genes for expression analysis between tumor 
and normal tissues, along with their interaction with the 
tumor environment, provides valuable targets for future 
lactylation research in CRC. We extended our analysis to 
assess the response to immunotherapy between the two 
risk groups, aligning with our earlier findings that the 
high-risk group exhibits a low response to immunother-
apy. Validation of this conclusion in an immunotherapy 
cohort suggests potential applications for patient selec-
tion and transforming the cold tumor microenviron-
ment into a responsive one. Additionally, we conducted 
an analysis of various chemical and targeted drugs, pre-
senting promising results despite the absence of relevant 
in  vivo or in  vitro experimental validation. This opens 
new avenues for future investigations in CRC treatment.

Novelty in lactylation research
This study delves into the emerging realm of lactyla-
tion within the landscape of CRC. By integrating diverse 
omics data types, including transcriptomic, genomic, 
and immunotherapy response data, our multi-dimen-
sional approach enriches the analysis, providing a com-
prehensive perspective on lactylation in the context of 
colorectal cancer. This integrated methodology offers 
a more nuanced understanding of the molecular land-
scape, shedding light on the intricate world of post-trans-
lational modifications in cancer biology. A distinctive 
contribution of this research lies in the identification of 
lactylation-related genes and their intricate association 
with cancer. This novel insight significantly advances our 
comprehension of the molecular mechanisms underly-
ing lactylation in colorectal cancer. The catalog of lac-
tylation-related genes emerges as a valuable resource, 
empowering researchers and clinicians alike to delve 
into the molecular intricacies and potential therapeu-
tic targets associated with lactylation. Furthermore, the 
prognostic value of these genes in predicting the survival 
outcomes of CRC patients introduces clinical implica-
tions, facilitating risk stratification and the formulation of 
personalized treatment strategies. The exploration of lac-
tylation-related genes in the context of immunotherapy 
response is a notable aspect of this study. The insights 
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gained could potentially influence patient selection in 
immunotherapy trials, guiding the development of tar-
geted therapeutic strategies. This facet of the research 
carries promising implications for advancing precision 
medicine in colorectal cancer treatment. Moreover, the 
identification of drugs related to lactylation opens ave-
nues for further experimental studies and clinical trials. 
This information serves as a compass, guiding research-
ers in evaluating the efficacy of these agents within the 
intricate landscape of colorectal cancer treatment. In 
essence, this study not only expands our knowledge 
of lactylation in CRC but also lays the groundwork for 
future advancements in both basic research and clinical 
applications.

Limitations
While our lactylation-related signature underwent 
validation through multiple methods, certain limita-
tions persist. Given the nascent state of research in 
protein lactylation, the precise impact on protein func-
tion within tumor cells remains elusive. The absence of 
dedicated lactylation antibodies and suitable antibod-
ies for all model genes specialized fot IHC and mIHC 
poses a practical challenge for experimental validation 
of all signature genes. That’s the reason why we didn’t 
perform IHC and mIHC on all model genes. However, 
we anticipate that these challenges will diminish as our 
comprehension of lactylation advances. Future investi-
gations should prioritize lactylation proteomic studies 
to broaden the spectrum of lactylation-related genes. 
Integrating protein expression data with corresponding 
lactylation modification data will enhance our insights. 
Moreover, the development of specific lactylation modi-
fication protein antibodies is recommended to explore 
functional effects on proteins and elucidate underlying 
mechanisms. Regrettably, we lacked an immunotherapy 
cohort or other public CRC datasets with immunother-
apy prognosis to validate our conclusions, a gap that can 
be addressed with the growing prevalence of immuno-
therapy in CRC.

Conclusion
In summary, our study unveils, for the first time, the sig-
nificant impact of global lactylation on the clinical prog-
nosis of CRC and identifies a distinct set of genes highly 
indicative of lactylation activity at the single-cell level. 
This groundbreaking discovery not only introduces a 
novel prognostic indicator for identifying CRC patients 
with poor outcomes but also present potential thera-
peutic targets and provide insights into the molecular 
mechanism in CRC patient. Employing this multi-dimen-
sional approach, our research significantly broadens the 

spectrum of options available, offering unprecedented 
insights to maximize the efficacy of CRC therapy.
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