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Abstract 

Background  Nonalcoholic steatohepatitis (NASH) is a progressive manifestation of nonalcoholic fatty liver dis-
ease (NAFLD) that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite the growing knowl-
edge of NASH and HCC, the association between the two conditions remains to be fully explored. Bioinformatics 
has emerged as a valuable approach for identifying disease-specific feature genes, enabling advancements in disease 
prediction, prevention, and personalized treatment strategies.

Materials and methods  In this study, we utilized CellChat, copy number karyotyping of aneuploid tumors 
(CopyKAT), consensus Non-negative Matrix factorization (cNMF), Gene set enrichment analysis (GSEA), Gene set varia-
tion analysis (GSVA), Monocle, spatial co-localization, single sample gene set enrichment analysis (ssGSEA), Slingshot, 
and the Scissor algorithm to analyze the cellular and immune landscape of NASH and HCC. Through the Scissor algo-
rithm, we identified three cell types correlating with disease phenotypic features and subsequently developed a novel 
clinical prediction model using univariate, LASSO, and multifactor Cox regression.

Results  Our results revealed that macrophages are a significant pathological factor in the development of NASH 
and HCC and that the macrophage migration inhibitory factor (MIF) signaling pathway plays a crucial role in cel-
lular crosstalk at the molecular level. We deduced three prognostic genes (YBX1, MED8, and KPNA2), demonstrating 
a strong diagnostic capability in both NASH and HCC.

Conclusion  These findings shed light on the pathological mechanisms shared between NASH and HCC, providing 
valuable insights for the development of novel clinical strategies.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) is the primary 
cause of chronic liver disease, and its prevalence is rap-
idly increasing worldwide [1]. The spectrum of NAFLD 
pathology ranges from benign hepatosteatosis to non-
alcoholic steatohepatitis (NASH), characterized by sig-
nificant steatosis, lobular inflammation, programmed 
cell death, and fibrosis, all of which increase the risk of 
progression to liver cirrhosis and hepatocellular car-
cinoma (HCC) [2, 3]. HCC is often associated with the 
advanced stage of NASH [4, 5]. The prevalence of NASH-
HCC is on the rise in Western nations, and HCC has now 
become the fourth leading cause of cancer-related death 
[6, 7].

Several studies have suggested a strong association 
between NASH and HCC [8–11]. Boslem and Zhang 
have demonstrated that liver inflammation and long-
term fibrosis might result in the development of HCC 
[12, 13]. Recent studies on HCC caused by NASH have 
shown that endoplasmic reticulum (ER) stress [12], along 
with metabolic and immune dysfunction, are impor-
tant factors in its advancement [14]. Research on NASH 
and HCC has advanced to the genetic molecular level 
[15]. Previous studies have been made in identifying the 
genetic components that contribute to NASH and HCC. 
Nevertheless, early detection of HCC may not occur in 
a timely manner to allow for successful clinical interven-
tion [16]. The present diagnostic methods for NASH and 
HCC remain limited. Although invasive liver biopsy has 
some drawbacks, it is still widely recognized as the most 
dependable method for detection and is considered the 
benchmark [17, 18]. During the past decade, the rapid 
advancement of bioinformatics technology has provided 
unprecedented opportunities for in-depth analysis and 
understanding of several diseases, including NASH and 
HCC [19].

In recent years, there has been growing interest in stud-
ying NASH and HCC at the single-cell level [20]. Obtain-
ing a thorough grasp of the cellular-level immunological 
features of NASH and HCC could lead to enhanced clini-
cal comprehension. This study employed a fusion of 
single-cell data obtained from individuals with NASH 
and HCC, as well as bulk RNA-seq data, to examine the 
immunological attributes of both NASH and HCC. The 
findings demonstrated that the macrophage migration 
inhibitory factor (MIF) signaling pathway had a sub-
stantial impact on intercellular communication at the 
single-cell level. Furthermore, macrophages played a vital 

role in the progression of NASH and HCC. The Scissors 
algorithm was employed to develop a clinical prediction 
model that detected positive cell types expressing three 
separate prognostic genes. The model demonstrated 
positive diagnostic results in both the NASH and HCC 
groups. In summary, our research provides new insights 
into the relationship between NASH and HCC and sup-
ports the development of an independent predictive 
model for these conditions.

Materials and methods
Data source
Mouse model data sources
We obtained bulk transcriptome data (GSE199105, 
including only samples from the CHOW and HFD 
groups) [21] and single-cell transcriptome data 
(GSE129516) [22] for NASH from the Gene Expres-
sion Omnibus (GEO) database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/). We acquired bulk transcriptome data 
(GSE50431, only the normal hepatocyte and HCC 
mice were selected) and single-cell transcriptome data 
(GSE142868, only control Miz1F/F mice were selected) 
[23] for HCC from the GEO database.

Human data sources
The datasets containing human single-cell transcriptome 
data can be accessed in GSE151530 [24]. Furthermore, 
we utilized expression data from The Cancer Genome 
Atlas (TCGA-LIHC) (https://​portal.​gdc.​cancer.​gov/) for 
HCC patients as the training dataset, and expression 
data from the International Cancer Genome Consortium 
(ICGC-LIRI-JP) (https://​dcc.​icgc.​org/) as the validation 
dataset. Furthermore, four spatial transcriptomic data-
sets are available in the Zenodo database (https://​zenodo.​
org/) [25]. The study cohort for NASH was derived 
from the GSE89632 dataset [26]. Figure  1 displays the 
flow-process diagram that demonstrates the methods 
employed in our investigation.

Sample extraction
The gene expression data obtained from the GEO, 
TCGA, and ICGC databases, originally in FPKM format, 
were transformed into TPM data. The TPM data under-
went a logarithmic transformation and was standardized 
using the normalizeBetweenArrays function from the 
limma R package (version 3.54.2) [27]. The gene expres-
sion data acquired from GSE50431 was displayed in a 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://zenodo.org/
https://zenodo.org/
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Fig. 1  Flowchart of this study
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format that was not FPKM and had been standardized 
beforehand. Consequently, the data was subjected to a 
log2 transformation and subsequently utilized in the sub-
sequent investigations following normalization using the 
normalizeBetweenArrays function.

Analyzed using the Seurat R package (version 4.3.0) 
[28], the single-cell transcriptome data from NASH 
mice (GSE129516), HCC mice (GSE142868), and HCC 
patients (GSE151530) were examined. The analysis 
pipeline consisted of several consecutive stages. First, a 
data filtering process was carried out, where genes were 
required to show expression in a minimum of three cells, 
and cells were required to express a varying number of 
genes ranging from 200 to 10,000. In addition, cells with 
a mitochondrial gene expression fraction over 20% were 
eliminated. Subsequently, the LogNormalize and Scale-
Data functions were utilized for normalization. The 
FindVariableFeatures tool was employed to detect genes 
exhibiting significant variability. The FindNeighbors and 
FindClusters routines were used to perform the ensu-
ing clustering analysis, utilizing these genes. The study 
explored different clustering resolutions, ranging from 
0.2 to 1.5, to determine the optimal number of cell clus-
ters. In order to mitigate the impact of batch effects in 
datasets containing many samples, the RunHarmony [29] 
function was employed for batch correction. In the end, 
the data underwent dimensionality reduction and visu-
alization using the RunTSNE and RunUMAP functions, 
allowing for the representation of the data in lower-
dimensional spaces.

Cell cycle analysis
The Tricycle [30] R Package version 1.8.0 was utilized 
to infer the cell cycle of single-cell sequencing and visu-
alized the results. The process began by converting the 
normalized single-cell data into a SingleCellExperiment 
object using the as.SingleCellExperiment function. The 
routines estimate_cycle_position and estimate_Schwabe_
stage were used thereafter to determine the cell’s posi-
tion and its stage, respectively, allowing for future 
visualization.

CellChat analysis
The investigation was conducted using the CellChat R 
package (version 1.6.3) [31]. At first, a CellChat data 
entity that can be recognized was created. The analysis 
utilized the CellChatDB.mouse and CellChatDB.human 
receptor interaction databases. The existing function-
alities of identifyOverExpressedGenes and identifyO-
verExpressedInteractions were utilized to discover genes 
that exhibited higher expression levels and their accom-
panying interactions. The communication probability 
was determined by utilizing the computeCommunProb, 

filterCommunication, and computeCommunProbPath-
way functions. The netAnalysis_contribution function 
was applied to calculate the contribution of each ligand-
receptor pair to the whole signaling pathway. The 
extractEnrichedLR function was utilized to retrieve all 
significant ligand-receptor pairing and their correspond-
ing signaling genes for a certain signaling pathway. The 
netVisual_bubble tool was used to graphically depict the 
significant ligand-receptor interactions among the cells 
of interest.

Consensus non‑negative matrix factorization (cNMF) 
analysis
The gene expression data of 32 HCC samples were ana-
lyzed. The consensus Non-negative Matrix Factorization 
[32] (cNMF) method was employed to identify potential 
expression programs within each tumor sample. This 
analysis revealed the presence of six unique programs per 
sample, resulting in a total of 192 intratumoral expression 
programs. After calculating the Pearson correlation coef-
ficients for these programs, they were categorized into 
corresponding meta-programs. By manually curating 
the data, we conducted enrichment analysis to the thirty 
genes with the highest variability from the cNMF results. 
This analysis was performed across sixty-four cancer case 
pathways, resulting in the identification of six common 
meta-programs.

Single sample gene set enrichment analysis (ssGSEA)
After annotating each cluster in the single-cell dataset, 
the Findallmaker function was employed to find genes 
that exhibit significant variability within immune cell 
subpopulations. Following that, a study of immune infil-
tration was performed using ssGSEA. This study involved 
a group of 375 tumor samples and 50 normal tissue sam-
ples obtained from the TCGA-LIHC dataset. The ssGSEA 
analysis was conducted using the R package GSVA [33].

Consensus clustering analysis
To enhance our comprehension of the immune milieu 
in HCC, it is crucial to perform a more detailed exami-
nation of the correlation between immunological scores 
and patient survival [34]. ConsensusClusterPlus [35] 
(version 1.64.0) was utilized to conduct consensus clus-
tering of TCGA-LIHC patients (conducted using the “hc” 
algorithm and “Pearson” distance). The cluster number k 
ranged from 2 to 10, and the optimal k was determined 
based on the cumulative distribution function (CDF) and 
area under the curve (AUC). Leading to their categoriza-
tion into distinct clusters based on their prior immune 
scores (derived from ssGSEA). Subsequently, survival 
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curves (Kaplan–Meier curves) were conducted between 
immune subtypes for differences.

Trajectory analysis
A Monocle object was created from the processed Seu-
rat object to do pseudotime analysis on a specific sub-
set of macrophages, obtained using the subset function. 
The estimatedSizeFactors were utilized to standardize 
the data. The DDRTree technique was utilized to do 
dimensionality reduction analysis. The orderCells func-
tion was employed to deduce the developmental tra-
jectory in the pseudotime analysis [36]. In the ensuing 
inquiry, the determination of cell differentiation poten-
tial is examined concurrently utilizing cytoTRACE, 
after the acquisition of Monocle findings [37]. Accord-
ing to the results of cytoTRACE, cell subsets that had 
reduced ability to differentiate (referred to as less.
diff ) were identified as the initial point of the trajec-
tory, while those with increased ability to differentiate 
(referred to as more.diff ) were considered as the end-
point of the differentiation trajectory. Moreover, the 
cell subsets that show increased differentiation provide  
confirmation and refinement to the trajectory direction 
described by Monocle. The Slingshot algorithm [38] 
was subsequently utilized to examine the differentia-
tion pathway of macrophages in human single-cell data. 
The getLineages function was used concurrently to 
demonstrate the direction of differentiation, in order to 
address the challenges posed by widely dispersed tra-
jectories of cell subpopulations.

Spatial transcriptome analysis
The evaluation of the cell signature gene set was per-
formed using the AddModuleScore function in the Seurat 
R package as part of the analysis. The enrichment score 
can be visually depicted on a spatial transcriptomic land-
scape. The data preprocessing step entailed employing 
the SCTransform function [39], followed by a subsequent 
principal component analysis (PCA). The ElbowPlot 
function was utilized to ascertain the most optimal num-
ber of principal components. Furthermore, the cell score 
data obtained from the four spatial transcriptomics data-
sets underwent a one-way analysis of variance (ANOVA) 
using GraphPad Prism 9 for statistical analysis. To evalu-
ate the spatial colocalization of ligand-receptor pairs, it 
was imperative to collect the spatial coordinates and 
associated expression levels for each ligand and recep-
tor at all examined locations. Subsequently, the sub-
set of spots that belong to the top quintile, comprising 
those with the highest levels of expression, was selected 
for further investigation. The assessment of the near-
est neighbor [40] was then conducted by evaluating the 

six nearest adjacent locations and implementing this 
procedure using the R package RANN. The procedure 
of normalizing data expression level was performed to 
guarantee that the data is standardized and can be com-
pared consistently throughout the entire dataset.

Scoring macrophages using subset‑specific signature 
genes
An evaluation was performed on each macrophage sub-
set utilizing the signature genes derived from specific 
macrophage subpopulations in order to determine their 
functional preferences. More precisely, genes that were 
characteristic of Clec4f+ Macrophage (Kupfer cells) and 
other macrophage subtypes were identified based on 
their absolute log2FC value being greater than 0.3 and 
their adjusted P-value being less than 0.05, when compar-
ing the transcriptome of Clec4f+ Macrophage to other 
macrophages. The signature gene score for each cell was 
calculated using the formula [41]:

(j represents the expression level of the gene, i repre-
sents the cell, and N represents the number of signature 
genes).

Clinical modeling
The identified Scissor Positive cell Correlated Genes 
(SPCG) genes were subjected to Univariate Cox regres-
sion, lasso regression, and multivariate Cox regression 
analysis to obtain independent predictive genes. The risk 
score for each patient was calculated using the following 
formula:

(SC represents the risk score, EXPi represents the 
expression level of each gene, and COEFi represents the 
regression coefficient for each gene).

Functional enrichment analysis
Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and gene-set enrichment analy-
sis (GSEA) were executed using the R package clus-
terProfiler [42] and ClusterGVis (GitHub-junjunlab/
ClusterGVis: One-step to Cluster and Visualize Gene 
Expression Matrix). The results from both the GO and 
KEGG enrichment investigations were ranked accord-
ing to their level of significance, and only the top 20 most 
significant results were retained. The c5.go.symbols.
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gmt gene set from the Molecular Signatures Database 
(MSigDB) (GSEA | MSigDB (gsea-msigdb.org)) was 
selected as the target in the GSEA. The visualization and 
analysis operations were performed utilizing the efficient 
online platform SangerBox [43].

RNA isolation and real‑time quantitative PCR (RT‑qPCR)
The expression of three genes (MED8, YBX1, and 
KPNA2) in tissue samples was verified using RT-qPCR. 
The liver’s RNA was extracted using Trizol reagent 
(Vazyme, Nanjing, China) following the manufacturer’s 
procedure, and then reverse transcribed using the HiS-
cript® II Q RT SuperMix for qPCR kit (Vazyme, Nanjing, 
China). The LightCycler®96 Real-Time PCR Detection 
System (Roche, Basel, Switzerland) and the ChamQ 
SYBR qPCR Master Mix (Vazyme, Nanjing, China) were 
used to conduct RT-qPCR. The primer sequences can be 
found in Additional file 1: Table S1. The 2−ΔΔCT method 
was employed to ascertain ploidy alterations at the gene 
level, with GAPDH serving as the normalization gene. 
The PCR reaction was conducted three times. The Ethics 
Committee of the Anhui University of Chinese Medicine 
(AHUCM-mouse-2023121) granted approval for experi-
ments conducted on animal samples.

Statistical analysis
The statistical analyses were performed using R software 
(version 4.2.2), Python (version 3.7), and GraphPad Prism 
9. Correlation analysis was performed using Spearman 
rank correlation or Pearson correlation. Various statisti-
cal approaches, including the Wilcoxon test, Student’s 
t-test, and one-way analysis of variance (ANOVA), were 
used to analyze differences across groups.

Results
Single‑cell landscape of NASH and HCC
We identified nine different cellular identities by exam-
ining 13,580 single-cell transcripts in the NASH dataset 
(GSE129516) as part of our ongoing work. Furthermore, 
we visually depicted the primary cell markers for each 
subgroup using bubble charts, as illustrated in Fig.  2A. 

Moreover, the HCC dataset yielded a total of 6363 sin-
gle-cell transcripts, which allowed for the discernment 
of eight unique cellular identities. The unique features of 
these specialized cells were illustrated using bubble maps, 
as shown in Fig.  2B Following cellular characterization, 
we conducted a comparative analysis of the cell cycle in 
single-cell datasets of both NASH (GSE129516) and HCC 
(GSE142868). The NASH dataset displayed a reduced 
ratio of cell types in active mitotic phases. By contrast, 
the HCC dataset showed a more diverse distribution of 
cells across different phases of the cell cycle, particularly 
among macrophages, T cells, and hepatocytes, suggest-
ing an elevated level of cell proliferation (Fig.  2C). In 
addition, our research showed that endothelial cells and 
macrophages were present in large quantities during all 
stages of the cell cycle in the HCC group, and this pattern 
was also observed in the NASH group. Significantly, the 
endothelial cells exhibited a pronounced predominance 
in the G2/M phase.

Subsequently, we performed a GO analysis on the 
genes that were differentially expressed (DEGs). We 
then examined the Hallmark pathway for each cell clus-
ter to enhance our comprehension of the biological 
processes linked to each cell cluster (Fig.  2D and Addi-
tional file 2: Fig. S1). The current study unveiled compa-
rable biological functions in both NASH and HCC. The 
cytosolic ribosome pathway showed substantial activ-
ity in T cells, suggesting a heightened level of cellular 
activity in both conditions. Concurrently, macrophages 
displayed a diverse array of immune-related biological 
processes, suggesting the intricate immunological milieu 
in the NASH-HCC. To summarize, the results obtained 
from this study highlight the substantial contribution of 
immune cells in the progression of NASH and HCC.

NASH and HCC, the MIF signaling pathway plays 
a role in hepatocyte‑macrophage interactions 
through intercellular signaling
The CellChat R package was utilized to conduct a 
thorough investigation of two separate single-cell data-
sets (GSE129516, GSE142868), leading to an improved 

Fig. 2  Overview of single-cell transcriptome in NASH and HCC. A Cluster annotation and cell type identification of the single-cell dataset 
in NASH (GSE129516) was generated using UMAP plot(left), and a bubble diagram illustrates the characteristics of each cell marker of NASH 
(right), the dot size indicates the fraction of expressing cells, and dots are colored based on average expression levels. B Cluster annotation 
and cell type identification of the single-cell dataset in HCC (GSE142868) was generated using UMAP plot(left), and a bubble diagram illustrates 
the characteristics of each cell marker of HCC (right), the dot size indicates the fraction of expressing cells, and dots are colored based on average 
expression levels. C The proportion of single cells across the cell cycle phases in the NASH (GSE129516, left) and HCC (GSE142868, right) dataset. 
D Heatmap showing expression signatures of the top 50 specifically expressed genes in each cell type of NASH (GSE129516, left) and HCC 
(GSE142868, right). The value for each gene is row-scaled Z score, representative GO terms are displayed on the right side of the heatmap. (B B cell, 
DC Dendritic cell, Endo Endothelial cell, Fib Fibroblast, Hep Hepatocyte, HSC Hepatic stellate cell, Macro Macrophage, Plasma Plasma cell, T T cell, Neu 
Neutrophil, NK Natural killer cell)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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understanding of the intercellular signaling pathways 
across different cell types. This method facilitated the 
analysis of intricate intercellular communication net-
works and allowed the assessment of specific ligand-
receptor interactions utilizing a collection of cellular 
communications. The analysis revealed robust inter-
cellular contact between hepatocytes and immune 
cells, particularly myeloid cells, in both NASH and 
HCC (Fig. 3A).

MIF has been found to have a role in various cru-
cial biological processes, including inflammatory and 
immunological responses, cell proliferation controlled 
by growth factors, cell cycle regulation, angiogen-
esis, and tumorigenesis. The inflammatory function 
of MIF is evidenced by its interaction with a recep-
tor complex composed of CD74, CD44, CXCR2, and 
CXCR4. Our analysis revealed a notable increase in 
the signal strength of the MIF-(CD74/CD44) ligand-
receptor pair, originating from hepatocytes and target-
ing macrophages in both NASH and HCC, as depicted 
in Fig.  3B. Consequently, we performed an extensive 
examination of various communication patterns within 
the MIF signaling pathway, with a specific emphasis 
on the interactions between macrophages and hepat-
ocytes. Consistent with our original findings, mac-
rophages predominantly received intercellular signals, 
while hepatocytes primarily emitted these signals. The 
discovered interaction pattern exhibited a high level 
of consistency in both of the analyzed disease states, 
as depicted in Fig. 3C. Furthermore, the MIF signaling 
pathway had been recognized as the principal means 
of communication, serving as both a key emitter and 
receiver of signals. The consistency of this pattern was 
confirmed in both single-cell datasets, as illustrated in 
Additional file  2: Fig. S2A–D. These data emphasize 
the significance of the MIF signaling pathway as the 
primary ligand-receptor pair that enables interactions 
between hepatocytes and macrophages, thus proving 

its substantial involvement in the progression of both 
NASH and HCC.

NASH and HCC macrophage subpopulations: 
differentiation, infiltration, and disease 
progression‑related consequences
To gain a more thorough comprehension of the involve-
ment of macrophages in the progression of NASH and 
HCC, we employed the subset function to separate par-
ticular subgroups of macrophages from two distinct 
single-cell datasets (GSE129516 and GSE142868). We 
applied a dimensionality reduction technique to visu-
ally portray the different subgroups of macrophages. 
Additionally, we used proven single-cell analytic tools to 
investigate macrophage markers that are already known 
(Additional file 2: Fig. S3A, B).

CytoTRACE analysis was employed to determine the 
differentiation capacity and establish the pseudotemporal 
trajectory of cellular progression. This analysis demon-
strated that Kupffer cells, namely Clec4f+ macrophage, 
had the highest degree of differentiation potential, as 
shown in Additional file 2: Fig. S3C, D.

Furthermore, under the framework of Monocle-based 
pseudotime evaluation, the Clec4f+ macrophage was 
conjectured as the final stage of differentiation. We 
observed that the Gpnmb+ macrophage, which had 
similarities with tumor-associated macrophages and 
was associated with poor prognostic implications [44], 
showed a remarkable ability to differentiate (Fig. 3D).

Under the context of HCC, we had discovered three 
clearly defined subsets of macrophage. These subsets 
consist of Cd86+ macrophages, which were character-
ized by their proinflammatory properties, S100a8+ mac-
rophages, which were associated with proinflammatory 
[45], and Clec4f+ macrophages, which were specifically 
recognized as Kupffer cells [46]. The study’s investiga-
tions on HCC shown that Clec4f+ macrophages had a 
higher degree of differentiation ability in comparison to 

(See figure on next page.)
Fig. 3  CellChat and Monocle analysis of macrophage subpopulations. A The circle diagram illustrates the signal crosstalk of all cells in the NASH 
dataset (GSE129516, left) and HCC dataset (GSE142868, right), with the thickness representing the signal strength. B All the significant 
ligand-receptor pairs that contribute to the signaling transmission from hepatocytes to other cell types. Dots represent the contribution of each 
receptor pair in signals emitted by hepatocytes toward various cells in the NASH dataset (GSE129516, left), and HCC dataset (GSE142868, 
right). Dot size indicates significance, while color shade represents the magnitude of contribution. Darker shades, particularly red, indicate 
a higher contribution, while lighter shades indicate a lower contribution. C Heatmap shows the relative importance of each cell group based 
on the computed four network centrality measures of the MIF signaling network in NASH (GSE129516, up) and HCC dataset (GSE142868, down). 
D cytoTRACE (left) and monocle2 (right) are combined to predict the differentiation potential and direction of macrophage subtypes in the NASH 
(GSE129516) dataset; more.diff means higher differentiation potential, and as the end point of monocle, the less.diff is considered the starting point 
of monocle. E cytoTRACE (left) and monocle2 (right) are combined to predict the differentiation potential and direction of macrophage subtypes 
in the HCC (GSE142868) dataset; more.diff means higher differentiation potential, and as the end point of monocle, the less.diff is considered 
the starting point of monocle. F Stratification of macrophage transcriptomes by scores generated from signature genes of four macrophage subsets 
in NASH dataset (GSE129516). G Stratification of macrophage transcriptomes by scores generated from signature genes of three macrophage 
subsets in the HCC dataset (GSE142868). (NormalMacro: classical macrophages.)
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Fig. 3  (See legend on previous page.)
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other cell types. Subsequently, we performed pseudo-
time analysis on the HCC macrophage subgroups using 
Monocle. The expression of Cd86+ macrophages and 
S100a8+ macrophages consistently declined as pseudo-
time progressed, but the abundance and proliferation of 
Clec4f+ macrophages increased during this developmen-
tal phase (Fig. 3E).

By directly stratifying macrophage subsets, it was 
observed that Gpnmb+ macrophages and Clec4f+ mac-
rophages exhibited a stronger preference for Kupffer 
cells in NASH. The results were also observed in HCC, 
as shown in Fig. 3F, G. It is worth mentioning that these 
specific types of cells were located at the end stage of dif-
ferentiation, as indicated by cytoTRACE and Monocel. 
This observed consistency provides support for the infer-
ence that the Kupffer cells of the liver may be populated 
by macrophages originating from other subtypes [47]. 
The discovered phenomenon displayed a notable degree 
of uniformity amongthe macrophage subpopulations in 
NASH and HCC.

The role of immune cells in the development of NASH 
and HCC is clearly evident [14, 44], emphasizing the 
need to determine the specific immune cell type involved 
in these disorders. For this study, we obtained compre-
hensive datasets including annotated single-cell data and 
bulk transcriptome data for both disease states. Gene sets 
were generated for each cell population, enabling a com-
prehensive analysis of cell infiltration using the ssGSEA 
algorithm. In addition, the results from CIBERSORTX 
were referenced. The NASH group highlighted the dif-
ferences between macrophages and hepatic stellate cells 
(HSCs) (Additional file  2: Fig. S4A). Additionally, the 
CIBERSORTX analysis showed that macrophages were 
specifically enriched in the disease group (Additional 
file  2: Fig. S4B). Conversely, significant differences in 
different types of immune cells were noticed within the 
HCC group. The study revealed a significant difference 
in macrophage infiltration between the HCC group and 
the normal group, with a much higher level reported in 
theHCC group (Additional file  2: Fig. S4C). The results 
obtained from the CIBERSORTX analysis showed a clear 
increase in the number of macrophages in the illness 
group (Additional file 2: Fig. S4D).

To further support our findings, we performed dif-
ferential gene analysis on the RNA-seq data (Additional 
file 2: Fig. S4E) and conducted GSEA using the single-cell 
Gene Matrix Transposed (GMT) file format that we had 
previously collected. Notably, there were clear differences 
found specifically in macrophages (Additional file 2: Fig. 
S4F) and HSCs (Additional file  2: Fig. S4G) within the 
NASH group. The macrophages displayed notable dis-
tinctions exclusively within the HCC group, as evidenced 
by unequivocal consensus (Additional file  2: Fig. S4H). 

The data consistently confirmed our first observations. 
The findings of this study provided compelling evidence 
to support the pivotal function of macrophages in pro-
moting the interaction between NASH and HCC, sug-
gesting their potential as a crucial link that connects the 
two disorders.

HCC patient cellular subpopulations, macrophage 
pathology, and intratumoral heterogeneity
In the preceding section, our study centered on exam-
ining the relationship between NASH and HCC in mice 
models. Following that, a comprehensive investigation 
was conducted by analyzing single-cell samples obtained 
from individuals with HCC (GSE151530). 32 specimens 
collected from individuals with HCC were subjected to 
a rigorous cell filtration process to assess their suitability 
for a thorough analysis. Through this method, 11 differ-
ent cell clusters were identified, as illustrated in Fig. 4A. 
Accurately characterizing cellular subpopulations asso-
ciated with illnesses requires the essential incorporation 
of T cell subsets and myeloid lineage cells. Concurrently, 
a comprehensive validation of cellular markers was 
conducted to guarantee accurate identification of cell 
types (Additional file  2: Fig. S5A, B). We employed the 
CopyKAT algorithm to predict the presence of malignant 
cell populations in these cohorts. Consistent with our 
predictions, a significant proportion of hepatocytes were 
identified as cancerous cells, which confirms the reliabil-
ity of our initial annotation (Fig. 4B).

In order to confirm the pathogenic significance of mac-
rophages in HCC, the single-cell data was combined with 
RNA-seq data from 375 patients in the TCGA dataset. 
The implementation of the Scissor algorithm facilitated 
the identification of pivotal pathogenic cell subgroups, 
resulting in the accurate inference of malignant hepato-
cytes, macrophages and NK T cells. (Fig. 4C).

Due to the large number of samples, it was determined 
that traditional functional analyses were not sufficient. 
As a result, the cNMF methodology was adopted to bet-
ter understand the intratumoral heterogeneity within 
HCC. The samples were found to have distinct expres-
sion programs, which were characterized by unique com-
binations of gene modules that showed high expression 
levels in specific tumor cases. For instance, in a repre-
sentatively sample of patients with HCC that accurately 
reflects the overall population, four well defined clusters 
of gene signatures were discovered (Fig.  4D). Among 
the 32 tumor specimens, a total of 62 expression pro-
grams were discovered (Additional file 1: Table S2). The 
highly expressed consistency of signatures from differ-
ent tumors reflects a common pattern of expression het-
erogeneity within tumors. Pearson correlation analysis 
was performed on these expression programs, and then 
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Fig. 4  Summary of single-cell sequencing data from HCC patients and subtypes of macrophages. A Of 32 samples with HCC single-celled 
sequencing data analysis, using the UMAP plot shows 11 cell clusters, colored by cell cluster. B Employing the CopyKAT algorithm to determine 
benign and malignant cells, most of the hepatocytes were inferred as malignant cells. C UMAP visualization of Scissor algorithm-identified 
Scissor-positive and Scissor-negative cells, Hepatocytes, Macrophages, and NK T cells are considered scissor-positive cells. D Heatmap shows 
differentially expressed genes (rows) identified by cNMF clustered by their expression across single cells (columns) from a representative patient. 
The gene clusters reveal intratumoral programs that are differentially expressed. The corresponding gene signatures are indicated (right). E 
Unbiased Clustering reveals six programs in HCC, Heatmap depicts pairwise correlations of 64 intratumoral programs derived from 32 tumor 
samples. F GSVA was used to compute the EMT pathway for spatial localization at the tumor-normal interface, with red representing the highest 
intensity of each SPOT expression and blue representing the lowest. G Using cytoTRACE to predict the differentiation potential and direction 
of macrophage subtypes; more.diff means higher differentiation potential, and as the end point of Slingshot, the less.diff is considered the starting 
point of Slingshot. H Using Slingshot to analyze macrophage subgroup trajectory of differentiation, relies on the results of cytoTRACE, S100A8+ 
Macro as the starting point, and the rest of the cell type as the destination. (cDC: conventional Dendritic cell)
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they were integrated into a single module. We manually 
identified six co-expression programs in our investiga-
tion, as shown in Fig.  4E and described in Additional 
file 1: Table S3. Program 1 (M1) was  distinguished by the 
presence existence of major histocompatibility complex 
(MHC) class II molecules, specifically CD74 and HLA-
DMA. The second program (M2) exhibited a unique 
pattern of PLAUR and FCER1G expression, indicating 
the elimination of immune complexes and the presence 
of inflammation in the surrounding environment. The 
third program (M3) was linked to the presence of TPM1 
and MYL9, and it exhibited an association with the inci-
dence of epithelial-mesenchymal transition (EMT). M4, 
distinguished by the presence of PECAM1 and THBD, 
was linked to the coagulatory function, a frequently 
reported issue in persons with HCC. The M5 gene cluster 
included CD34 and EFNB2, which functioned as indica-
tors of angiogenic activity. The sixth program exhibited 
a robust correlation with cell cycle processes, as seen by 
the expression of CHAF1B and CDC45.

Our study revealed a noteworthy augmentation in 
the enrichment of the EMT pathway at the peritumoral 
margin compared to the intratumoral region (Fig.  4F). 
This discovery was significant as it further reinforces the 
documented correlation between the EMT process and 
TAMs. Emphasizing the need for a focused examina-
tion of this issue. In addition, we performed a compara-
tive analysis to evaluate the capacity for differentiation 
of three more precisely characterized subsets of mac-
rophages, along with a percentage of dendritic cells. Our 
findings demonstrated a higher prevalence of TREM2+ 
macrophages (Fig. 4G, H), which was also associated with 
a worse prognosis [48].

HCC patient macrophage infiltration and MIF signaling 
spatial characterization
To accurately describe the spatial interaction between 
HCC cells and the associated macrophage populations, 
we utilized extensive single-cell datasets acquired from 
HCC samples (GSE151530). We were able to uncover 
distinct gene signatures that are specific to hepatocytes 
and macrophages. The gene signatures were matched 
with spatial transcriptome profiles using the AddMod-
uleScore program, enabling precise mapping of cellular 
distributions. The current methodology demonstrated a 
distinct pattern of macrophage infiltration in two HCC 
specimens, which was conspicuously absent in adjacent 
non-tumorous tissue samples (Fig.  5A). These findings 
aligned with the expected EMT events that were fre-
quently linked to the development of tumors. In addi-
tion, the results were corroborated by a variance analysis 
performed on the infiltration scores derived from spatial 
transcriptomic data (Fig. 5B).

Subsequent research was conducted utilizing Cell-
Chat to authenticate the involvement of MIF signaling in 
HCC. Consistent with previous observations, it is shown 
that hepatocytes predominantly exhibited MIF signaling, 
while macrophages demonstrated the highest degree of 
responsiveness (Additional file  2: Fig. S6A). Simultane-
ously, it was revealed that the signaling crosstalk between 
hepatocytes and macrophages involved the participa-
tion of important ligand-receptors, namely CD44–CD74 
(Additional file  2: Fig. S6B). Ultimately, our data offer 
additional proof that MIF signaling played a crucial role 
in intercellular communication (Additional file  2: Fig. 
S6C, D). The results aligned with the findings of our ear-
lier investigation.

Building upon our previous emphasis, we had con-
ducted additional research on the spatial dynamics of 
the MIF signaling pathway, specifically its interaction 
with the CD44–CD74 ligand receptor complex. The sub-
sequent examination demonstrated an increased spa-
tial co-localization between MIF-CD44 and MIF-CD74 
within the HCC tissues, with a particularly noticeable 
effect around the edges of the tumor. In sharp contrast, 
the interaction between the ligand-receptor interplay in 
the peritumoral areas was significantly weaker, show-
ing minimal evidence of colocalization (Fig.  5C–F). The 
aforementioned observations significantly enhance our 
comprehension of the immunological microenvironment 
in HCC.

HCC immunological subgroups and pathway enrichment
This study conducted immune infiltration assessments 
by analyzing RNA-sequencing data obtained from HCC 
patients in the TCGA database. A strong correlation was 
seen between the results of the ssGSEA and the Scissor 
algorithm, specifically in relation to the identification 
of macrophages (Fig.  6A). This discovery suggested the 
existence of consistent immunological fluctuations.

To enhance our comprehension of the diversity in 
immune response across patients with HCC, we per-
formed stratified clustering analysis on the immune infil-
tration profiles obtained from prior studies. Through this 
investigation, three distinct immunological subgroups 
had been identified, each demonstrating notable varia-
tions. The CLEC9A+ macrophage population was shown 
to be more abundant in the C1 immunological subgroup. 
On the other hand, it was demonstrated that all three 
identified macrophage subsets were found to be more 
prevalent within the C2 subtype (Fig. 6B). Survival analy-
ses applied to each immunological subtype yielded dis-
tinct predictive results, in line with our initial predictions 
(Fig. 6C).

The identification of characteristic genes in scissor-
positive cells was performed by extra analyses using the 
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FindAllMarkers function of the Seurat R package. The 
gene collection, consisting of 3560 genes (Additional 
file  1: Table  S4), underwent GO and KEGG enrich-
ment analysis. The analysis mainly focused on the top 20 
enrichments. The analysis of the KEGG enrichment indi-
cated a notable emphasis on pathways related to NAFLD, 
specifically within the Human Disease (HD) cluster. Fur-
thermore, the significance of the ribosome pathway was 
emphasized, suggesting a higher level of protein biosyn-
thesis and cellular activity (Fig. 6D). The GO enrichment 

analysis revealed that categories such as extracellular 
exosomes, organelles, and vesicles were highly prevalent. 
This emphasized the crucial significance of intercellu-
lar communication in the biological environment being 
studied (Fig. 6E).

Identification and validation of HCC prognostic genes
A preliminary analysis of patient data from the TCGA-
LIHC dataset was performed to improve prediction 
indicators for HCC. Patients with insufficient clinical 

Fig. 5  Spatial colocalization of macrophages, hepatocytes, as well as MIF, CD74, and CD44. A Mapping of the enrichment scores of macrophages 
and hepatocytes onto a single-cell spatial transcriptome map, reflecting their infiltration in both tumor and normal tissues, by using 
the Addmodulescore function. B One-way analysis of variance (ANOVA) was performed to test the infiltration scores of macrophages in the four 
spatial transcriptome atlases. Significance is denoted as follows: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. C–F Spatial colocalization of MIF 
with CD44 and CD74 in the Control1 group (C), Control2 group (D), Tumor1 group (E), and Tumor2 group (F). Exp means the relative expression 
of the ligand and the receptor; colocalization means the interaction strength
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information were eliminated, leading to a group of 370 
individuals. We utilized the Scissor-positive cell gene 
set for univariate Cox regression analysis. The approach 
enabled us to identify a specific group of 3,373 genes 

that displayed substantial associations with survival 
outcomes (Additional file 1: Table S5). By employing a 
lasso regression, we were able to identify 10 prognos-
tic genes from the provided array (Additional file  1: 
Table S6; Fig. 7A, B). Utilizing lasso regression results, 

Fig. 6  Immune differences in populations and functional enrichment. A Immune cell infiltration differential analysis based on ssGSEA algorithm. 
Significance is denoted as follows: ns nonsignificance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. B Identification of immune subtypes 
and expression signature modules in TCGA-LIHC performed by ConsensusClusterPlus, Consensus clustering matrix for k = 3. C Kaplan–Meier survival 
analysis based on immune subtypes in the TCGA-LIHC cohort. D, E KEGG (D) and GO (E) enrichment analysis display the top 20 most significant 
results
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the differential expression analysis revealed that the 
genes YBX1, MED8, and KPNA2 exhibited diagnostic 
significance in both NASH and HCC (Fig. 7C).

Expanding on this study, a multivariable Cox regres-
sion model was employed to incorporate factors such 
as pathological grading, sex, age, and stage, along with 
the expression of the three genes (YBX1, MED8, and 
KPNA2). This analysis confirmed that these genes served 
as prognostic markers, as indicated in Additional file  1: 
Table  S7. Risk scores in the TCGA cohort were gener-
ated using regression coefficients derived from patient 
risk equations that relied on gene expression levels. 
Afterward, the cohort was divided into high- and low-
risk groups using a method that involved selecting the 
median as the cutoff point. Subsequent univariate and 
multivariable Cox regression studies revealed that both 
stage and risk scores were determined to be independ-
ent prognostic variables. The studies considered variables 
including age, sex, pathological grade, and pathological 
stage (Additional file 2: Fig. S7A, B).

The prognostic value of YBX1, MED8, and KPNA2 in 
the HCC patient cohort was demonstrated by utilizing 
Kaplan‒Meier survival plots, resulting in encouraging 
outcomes (Fig.  7D). The diagnostic efficacy of the risk 
score was confirmed using Receiver Operating Charac-
teristic (ROC) investigations, resulting in Area Under 
the Curve (AUC) values of 0.755, 0.709, and 0.684 for 
predicting 1, 3, and 5  years, respectively (Fig.  7E). The 
pathological staging showed significant diagnostic effi-
cacy, although it did not surpass the previously indicated 
prognostic genes (Fig. 7F).

The prognostic module’s robustness was confirmed by 
validation using the ICGC-LIRI-JP liver cancer dataset. 
The module’s diagnostic capability was proven using the 
ROC curves for 1-, 3-, and 5-year survival. These curves 
displayed positive outcomes with AUCs of 0.725, 0.758, 
and 0.74, respectively (Fig.  7G, H). Furthermore, the 
diagnostic effectiveness of YBX1, MED8, and KPNA2 
in  the  NASH cohort was evaluated using ROC analy-
sis, revealing their exceptional performance with area 
under the curve (AUC) values of 0.839, 0.875, and 0.946, 

respectively (Fig.  7I). An analysis of the high-risk and 
low-risk groups showed a considerably higher mortal-
ity rate in the high-risk group (Fig. 7J, K). The heatmaps 
illustrating the expression levels of the three separate 
prognostic genes demonstrated higher expression in the 
high-risk group compared to the low-risk group (Fig. 7L).

Development and evaluation of the nomogram 
for predicting prognosis
We had created a comprehensive nomogram that inte-
grates essential clinical and pathological factors, includ-
ing age, sex, pathological grade, pathological stage, and 
prognostic risk score. This nomogram aimed to enhance 
the accuracy of our prognostic model for HCC (Fig. 7M). 
The nomogram depicted below functions as a tool to 
facilitate the evaluation of the likelihood of survival for 
patients with HCC within a span of 1 year, 3 years, and 
5 years. The investigation provided confirmation that the 
stage of disease and the composite risk score exerted sig-
nificant influence on survival outcomes. It is crucial to 
incorporate these parameters, together with three sig-
nificant prognostic genes, in order to improve the preci-
sion of survival forecasts in HCC. The calibration curves 
for survival at 1-year, 3-year, and 5-year intervals dem-
onstrated a strong alignment with the expected survival 
probability, suggesting a dependable prediction concord-
ance (Fig. 7N). Henceforth, the predictive tool was desig-
nated as the SPCG model.

Following the validation of the nomogram, a subse-
quent analysis was performed to categorize patient sur-
vival according to the severity of the sickness stage, using 
the SPCG model as a framework. The study findings indi-
cated that those categorized as high-risk in stages I–II 
or stages III–IV exhibited notably elevated death rates 
in contrast to those categorized as low-risk (Additional 
file 2: Fig. S7C). Validating data from supplementary clin-
ical parameters, such as age, sex, and pathological grade, 
verified the reliability and predictive importance of the 
model (Additional file 2: Fig. S7D–F).

This study not only validated the model but also 
focused on evaluating the individual prognostic 

(See figure on next page.)
Fig. 7  Construction and validation of clinical predictive models. A LASSO regression coefficient graph. B Partial likelihood deviation of the LASSO 
coefficient distribution. The two vertical dashed lines represent lambda.min and lambda.1 se. C Intersecting gene sets screened under 5 different 
results, retain KPNA2, YBX1, and MED8. Unicox represent Univariate cox regression. D Kaplan‒Meier survival analysis of the HCC patient (TCGA-LIHC) 
with risk scoring. E ROC analysis for predicting the 1/3/5-year survival rate of HCC (TCGA-LIHC). F ROC curve analysis for risk scores and other 
clinicopathological indicators. G Kaplan‒Meier survival analysis of HCC patients (ICGC-LIRI-JP) with risk scoring. H ROC analysis for predicting 
the 1/3/5-year survival rate of HCC (ICGC-LIRI-JP). I ROC curve of the NASH cohort. J, K TCGA patients were categorized into high-risk and low-risk 
groups, based on the median cutoff of the risk score (J), and the distribution of risk scores and patient survival between low and high risk (K). L 
Heatmap displaying the expression of prognostic genes of the SPCG model in the high- and low-risk groups. M Nomogram of risk groupings 
and clinical characteristics for predicting survival at 1, 3, and 5 years. N Calibration curves for testing the agreement between actual and predicted 
outcomes at 1, 3, and 5 years
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Fig. 7  (See legend on previous page.)
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significance of the three identified risk genes. By analyz-
ing a comprehensive immunohistochemical database, 
the Kaplan‒Meier survival plots clearly showed distinct 
survival patterns between high and low levels of gene 
expression. This reaffirmed that these genes could inde-
pendently serve as prognostic markers (Additional file 2: 
Fig. S7G).

Differences in HCC risk groups’ tumor mutation burden 
(TMB), immunological infiltration, and biological pathways
Within our dataset, the subgroup identified as the high-
risk group exhibited a significant TMB of 1196, indicat-
ing a substantial degree of genetic mutation. Conversely, 
the low-risk subgroup demonstrated a TMB of 604, 
indicating a comparatively lower level of mutations. The 
discrepancy in TMB scores across the groups did not 
achieve statistical significance (P = 0.093) (Fig.  8A). The 
Spearman’s rank correlation analysis demonstrated a 
positive association between the risk score and the TMB 
score in HCC patients (R = 0.15, P = 0.0049) (Fig.  8B). 
Analyzed by a waterfall plot, the mutational landscape 
revealed the frequency of mutations in the top 20 genes. 
The genes TP53, TTN, and CTNNB1 were shown to have 
the highest occurrence of mutations. In addition, the 
high-risk group showed a higher frequency of mutations 
in these genes compared to the low-risk group (Fig. 8C, 
D).

We comprehensively assessed the tumor immune 
microenvironment by utilizing various computer pro-
grams such as TIMER, Cibersort, Cibersort-ABS, 
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC 
to analyze immune cell infiltration. We employed the 
Kruskal–Wallis test to determine the immune cell types 
that showed significant differences in infiltration lev-
els among the groups. Significantly, the immune cells 
detected by Cibersort-ABS, TIMER, QUANTISEQ, and 
MCPCOUNTER showed a noticeable difference in infil-
tration, with a higher presence in the high-risk group. 
This suggested an immune-active tumor microenviron-
ment. (Fig. 8E).

This study utilized GSEA to elucidate the biologi-
cal functions that differentiate the high-risk and low-
risk groups. The analysis utilized C5: Ontology gene 
sets obtained from the Molecular Signatures Database 
(MsigDB). Within the high-risk group, the five pathways 

that showed the greatest enrichment scores were asso-
ciated with cellular division activities. These pathways, 
including the meiotic cell cycle, the meiotic cell cycle 
process, mitotic sister chromatid segregation, nuclear 
chromosomal segregation, and sister chromatid segrega-
tion, exhibited positive Normalized Enrichment Scores 
(NES). The observed enrichment highlights an increase 
in cellular proliferation and mitotic activity among indi-
viduals in the high-risk group, which is consistent with 
the finding from previous GO analyses (Fig. 8F). In con-
trast, the low-risk group showed notable negative NES 
in metabolic activities such as cellular amino acid break-
down, fatty acid oxidation, aromatase activity, oxidore-
ductase activity, and steroid hydroxylase activity. The 
pathways illustrated in Fig. 8G demonstrated a decrease 
in metabolic activity, indicating a distinct metabolic phe-
notype in the low-risk group. This phenotype was charac-
terized by decreased metabolism, secretory capacity, and 
differentiation.

The experiment of risk‑related genes
To ascertain the association between these three candi-
date genes and the advancement of NAFLD to NASH, 
we employed RT-qPCR to assess the expression of these 
genes in the liver of a mouse model with NAFLD gener-
ated by a high-fat diet (HFD). As demonstrated in Fig. 9, 
MED8 showed increased expression levels, while KPNA2 
and YBX1 showed dramatically decreased expression lev-
els in the liver of mice with NAFLD. Our bioinformatic 
findings indicated that these genes may function as novel 
biomarkers for early NASH diagnosis, which was consist-
ent with these distinctions.

Discussion
NAFLD is a chronic hepatic illness that has the poten-
tial to progress to NASH, a more severe stage that can 
ultimately result in the development of liver cirrhosis 
and cancer [49]. Based on projections, it is anticipated 
that approximately 10–20% of patients diagnosed with 
NAFLD may develop NASH. The delayed identification 
of NASH sometimes results in the belated discovery of 
HCC, which in turn leads to an adverse prognosis [50]. 
Therefore, the quick and accurate detection of NASH and 
HCC is crucial and has attracted growing attention. The 
utilization of sequencing technology has facilitated the 

Fig. 8  Biological characteristics between high-and low-risk groups. A Differences in TMB between high- and low-risk groups. B Correlation 
between TMB scores and risk scores. C, D Waterfall plot depicting gene mutations in the high- (C) and low-risk (D) groups. E Heatmaps 
displaying immune cell infiltration analysis results using TIMER, Cibersort, Cibersort-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC software 
for the high- and low-risk groups. F GSEA for the high- (F) and low-risk (G) groups, demonstrating the first 5 pathways, NES > 0, activated; NES < 0, 
inhibited

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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acquisition of single-cell transcriptome data, which has 
emerged as the primary approach for identifying mark-
ers associated with NASH and HCC [51]. Consequently, 
contemporary research has placed significant emphasis 
on examining the cellular landscape of NASH and HCC 
using single-cell analysis. This includes investigations 
conducted on animal models [22, 47, 52] and clinical 
studies involving patients [23, 53]. This study involved 
a thorough investigation of animal models and clinical 
samples to examine the relationship between NASH and 
HCC. In order to accomplish this, we employed single-
cell, bulk, and spatial transcriptome data acquired from 
samples of NASH and HCC. Our work had uncovered 
that macrophages play a crucial role in linking NASH and 
HCC. In addition, we had created an SPCG model and 
identified MED8, YBX1, and KPNA2 as specific prognos-
tic markers for HCC.

Recently, there has been a growing emphasis on inves-
tigating the tumor immune microenvironment in vari-
ous research [54, 55]. This heightened attention is due 
to the potential therapeutic benefits that can be derived 
from targeting this specific milieu. As a result, these 
approaches provide a broader selection of clinical ther-
apy options. The hepatic tumor microenvironment 
comprises a diverse array of cellular components, includ-
ing macrophages, HSCs, hepatocytes, T cells, B cells, 
neutrophils, and fibroblasts [56]. Our research involv-
ing enrichment analysis of NASH revealed a significant 
increase in damage-promoting pathways, particularly 
in macrophages. We detected the activation of multiple 
proinflammatory and anti-injury pathways in our investi-
gation. It should be noted that HSCs showed activation in 
NASH, and there was a significant increase in the EMT 
pathway (Additional file 2: Fig. S1A), which plays a cru-
cial role in liver injury and fibrosis [57]. The JAK/STAT3 
signaling pathway is essential for regulating cell prolifera-
tion and differentiation. The activation of this pathway 

has been demonstrated to have a role in the formation of 
a tumor inflammatory environment [58]. The results of 
our investigation indicated a notable upregulation in the 
IL-6-JAK-STAT3 signaling pathway in macrophages and 
neutrophils in the HCC group.

HSCs, functioning as intrahepatic cells, release 
cytokines that contribute to the progression of HCC by 
facilitating communication between immune cells [59]. 
HSCs boost the growth of Extracellular matrix (ECM) by 
producing tissue inhibitor of metal protease 1 (TIMP-1), 
leading to the creation of a tumor matrix that facilitates 
tumor cells in evading the immune system [59]. Con-
sistent with earlier studies [60], our research findings 
(Additional file 2: Fig. S4B, G) confirmed that HSCs have 
a greater abundance in NASH. Furthermore, the consist-
ent recognition of HSCs as a vital component in NASH 
has been discovered using several techniques [61, 62]. 
The occurrence of HCC is frequently concomitant with 
hepatic fibrosis, indicating a significant involvement of 
liver fibrosis in the development of HCC. HSCs are com-
monly acknowledged as the main source of cancer-asso-
ciated fibroblasts (CAFs) [63]. The activation of HSCs in 
NASH triggers the synthesis of ECM by fibroblasts, ulti-
mately leading to the development of liver fibrosis [64]. 
A recent study [65] demonstrated that CAFs can inhibit 
hepatocyte apoptosis by increasing the Bcl-2/BAX ratio 
through the SDF1/CXCR2/PI3K/AKT signaling pathway. 
The relationship between the FOXQ1/N-Myc down-
stream gene 1 (NDRG1) axis and the occurrence of HCC, 
as well as the existence of CAFs, has been demonstrated 
[66]. CAFs also have a role in promoting angiogenesis 
and EMT by releasing cytokines [67]. This discovery 
offers a rationale for the documented rise in HSCs in the 
NASH dataset during our study (Additional file  1: Fig. 
S4B, G).

The Scissor analysis revealed the presence of malignant 
hepatocytes, T cells, and macrophages as positive cells. 

Fig. 9  The mRNA expression levels of three prognostic genes in HFD-induced NAFLD mouse model livers and in normal mouse livers were 
determined by RT-qPCR. A KPNA2; B MED8; C YBX1. P value was calculated by Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001 compared 
with the control group
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T cells, when continuously exposed to the malignant 
environment, demonstrate a decrease in their original 
immunological and tumor regulatory capabilities [68]. 
This leads to a condition known as T cell exhaustion, 
which is linked to decreased patient survival rates [69]. 
Furthermore, the prognostic significance of bidirectional 
activation resulting from the interaction between T cells 
and B cells has been extensively seen in HCC patients 
[70]. When examining the pathogenesis of NASH and 
HCC, the abundance of macrophages was found to be 
significantly increased in several combination analyses. 
It may be shown that macrophages have a more promi-
nent involvement in comparison to T cells. TAMs have 
been identified as key contributors to the advancement 
of HCC by aiding its spread and encouraging EMT [71], 
related mechanisms include hypoxia-inducible factor 
1-alpha (HIF-1α)/IL-1β/TLR4 [72] and Janus kinase 2 
(JAK2)/STAT3/Snail [73] pathways. This aligns with our 
finding that the occurrence of EMT coincides with the 
spatial distribution of macrophages in the same area 
(refer to Figs. 4 and 5).

This study demonstrated that the MIF signaling path-
way functions as the primary ligand-receptor pair that 
facilitates the interactions between hepatocytes and mac-
rophages (as depicted in Figs.  3 and 5). This discovery 
confirmed the essential significance of the MIF signaling 
pathway in the progression of both NASH and HCC. The 
immunomodulatory cytokine MIF has a notable influ-
ence on both innate and adaptive immunity [74, 75]. MIF 
can also decrease fibrogenic HSC activation through the 
CD47/AMP-activated protein kinase (AMPK) signaling 
pathway [76]. Additionally, it exhibits a hepatoprotec-
tive action by partially suppressing steatosis [77, 78]. The 
potential of MIF as a biomarker has been recognized, as 
its elevated levels have been linked to unfavorable out-
comes in various types of cancer [79–81]. Furthermore, 
it has been suggested that MIF has the potential to serve 
as a diagnostic sign for colorectal cancer [82]. Within the 
context of HCC, MIF assumes a tumor-promoting role 
by enhancing proliferation and inhibiting apoptosis, a 
mechanism likely facilitated by the interaction between 
MIF and ERK1/2 [75]. The role of the MIF signaling path-
way varies in the development of NASH and HCC, high-
lighting the importance of accurately identifying it before 
NASH progresses to HCC.

In an attempt to establish a more precise prognostic 
model for HCC, we integrated a gene set derived from 
the Scissor algorithm. This approach was employed to 
overcome the limitations associated with single-cell 
models. Following a step-by-step screening process that 
involved univariate Cox, LASSO-Cox, and multivariate 
Cox regression analysis, three genes were selected for 
the development of the SPCG model. The accuracy of the 

model was evaluated by utilizing ICGC-LIRI-JP clinical 
cohorts, and the findings obtained from the difference 
tests were deemed satisfactory. Notably, the SPCG model 
established in this study showed exceptional predictive 
capabilities for patients diagnosed with either NASH or 
HCC. The mediator complex subunit 8 (MED8) has been 
shown to play a crucial role in transcription as a regulator 
of polymerase activity. The level of MED8 expression was 
observed to be elevated in HCC tissues. The suppression 
of MED8 led to a notable decrease in the proliferation 
and migration of HepG2 and Huh7 cells [83]. Further 
investigation has elucidated that MED8 plays a crucial 
role in determining a poor prognosis in HCC, principally 
by promoting cancer progression through the activation 
of TH2 cytokines [84]. YBX1, sometimes referred to as 
YB-1, is a versatile RNA-binding protein that possesses 
the evolutionarily conserved Cold-shock Domain (CSD) 
[85]. YBX1 participates in diverse biological processes 
and possesses the capacity to modulate a broad spec-
trum of genes that govern cell proliferation, cell viabil-
ity, resistance to drugs, and instability of chromatin [86]. 
Karyopherin α2 (KPNA2), a protein implicated in the 
conventional pathway of nuclear protein transportation, 
has been observed in many instances of cancer, including 
HCC [87, 88], Nevertheless, the exact molecular mecha-
nisms responsible for the function of KPNA2 are still 
not fully understood. Previous studies have shown that 
KPNA2 promotes the advancement of HCC by interfer-
ing with the cell cycle and increasing the expression of 
CCNB2 (cyclin B2)/CDK1 (cyclin-dependent kinase 1). 
On the other hand, inhibiting KPNA2 could potentially 
halt the progression of the cell cycle [89]. Recent research 
has revealed that the overexpression of Long non-coding 
RNA (LncRNA) HAGLROS selectively targets the miR-
26b-5p/KPNA2 signaling pathway, leading to the inac-
tivation of p53. This molecular mechanism ultimately 
contributes to the progression of HCC [90]. Further-
more, the signaling pathway consisting of KDM4A-AS1/
KPNA2/HIF-1α plays a significant role in the prolifera-
tion and metastasis of HCC [91]. The capacity to merge 
diverse information, aided by developments in algorithms 
for assessing single-cell and spatial transcriptomes, 
allows for the development of models that function at the 
level of individual cells. This technique offers substan-
tial insights that are extremely important for therapeutic 
intervention, early identification of NASH, and proactive 
detection of HCC occurrences.

Conclusion
To summarize, our study clarified the connection 
between NASH and HCC using a thorough analysis 
method that combined single-cell, bulk, and spatial tran-
scriptomics. An SPCG model was created to specifically 
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identify MED8, YBX1, and KPNA2 as individual prog-
nostic markers for HCC. The SPCG model has demon-
strated considerable promise in forecasting outcomes for 
patients with HCC, and its efficacy has been bolstered 
by rigorous validation. Furthermore, our research has 
revealed that macrophages are important disease-caus-
ing factors in NASH and HCC at the single-cell level. 
By making this discovery, we have been able to create a 
prognostic model for liver cancer and improve the preci-
sion of identifying NASH. The incorporation of various 
omics techniques has yielded a comprehensive compre-
hension of the cellular interactions and environment 
implicated in the progression of NASH and HCC. These 
findings have important consequences for the develop-
ment of enhanced diagnostic and prognostic techniques.
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