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Abstract 

Background  Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) 
neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been largely considered one of main 
factors to the PD pathology. MicroRNA-218-5p (miR-218-5p) is a microRNA that plays a role in neurodevelopment 
and function, while its potential function in PD and neuroinflammation remains unclear.

Methods  We explore the involvement of miR-218-5p in the PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced mouse model. The miR-218-5p agomir used for overexpression was delivered into the substantia 
nigra (SN) by bilateral stereotaxic infusions. The loss of dopaminergic (DA) neurons and microglial inflammation 
in the SN was determined using Western blotting and immunofluorescence. Motor function was assessed using 
the rotarod test. RNA sequencing (RNA-seq) was performed to explore the pathways regulated by miR-218-5p. The 
target genes of miR-218-5p were predicted using TargetScan and confirmed using dual luciferase reporter assays. The 
effects of miR-218-5p on microglial inflammation and related pathways were verified in murine microglia-like BV2 
cells. To stimulate BV2 cells, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+) and the conditioned 
media (CM) were collected.

Results  MiR-218-5p expression was reduced in both the SN of MPTP-induced mice and MPP+-treated BV2 cells. 
MiR-218-5p overexpression significantly alleviated MPTP-induced microglial inflammation, loss of DA neurons, 
and motor dysfunction. RNA sequence and gene set enrichment analysis showed that type I interferon (IFN-I) path-
ways were upregulated in MPTP-induced mice, while this upregulation was reversed by miR-218-5p overexpression. 
A luciferase reporter assay verified that Ddx41 was a target gene of miR-218-5p. In vitro, miR-218-5p overexpression 
or Ddx41 knockdown inhibited the IFN-I response and expression of inflammatory cytokines in BV2 cells stimulated 
with MPP+-CM.
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Conclusions  MiR-218-5p suppresses microglia-mediated neuroinflammation and preserves DA neurons via Ddx41/
IFN-I. Hence, miR-218-5p-Ddx41 is a promising therapeutic target for PD.

Keywords  Parkinson’s disease, Microglia, Neuroinflammation, miR-218-5p, Interferon, DEAD-box helicase 41

Background
Parkinson’s disease (PD) is a major neurodegenera-
tive disease with motor and non-motor symptoms [1, 
2], and no cure or effective therapy has been found 
to delay the disease course. The main pathological 
feature of PD is the progressive loss of dopaminergic 
(DA) neurons in the substantia nigra (SN) [3]. Multi-
ple etiologies contribute to the PD pathology, includ-
ing genetic factors, aging, neurotoxins, insecticides, 
traumatic brain injury [4], most of which are closely 
related to the neuroinflammation. As vital innate 
immune cells of the central nervous system (CNS), 
microglia are essential participants in neuroinflamma-
tion [5]. Imaging, histological and molecular evidence 
has highlighted microglia-mediated neuroinflamma-
tion in PD [6–8]. The degree of microglial activation 
in PD correlates with dopaminergic degeneration and 
motor impairment [8], suggesting that the neuroin-
flammation of resident microglia contributes to the 
progressive pathogenesis of the disease.

MicroRNAs (miRNAs) are short non-coding RNAs 
that regulate the transcription and translation pro-
cess of genes by base-pairing with 3′-untranslated 
regions (3′UTR) of target genes [9]. Recent evidence 
has indicated that aberrant miRNA expression drives 
the development of neuroinflammation in PD [10–13]. 
MiR-218-5p is an important regulator of neuronal 
function, whose reduction has been linked to amyo-
trophic lateral sclerosis [14], cognitive impairment [15] 
and depression [16]. In PD, miR-218-5p is downregu-
lated in the brain of 6-hydroxydopamine (6-OHDA)-
treated rats [17] and patients with PD [18], and its 
overexpression attenuates survival of dopaminergic 
neurons by regulating apoptosis and oxidative stress 
[17]. However, it remains unclear whether miR-218-5p 
inhibits microglia-mediated neuroinflammation.

Here, we demonstrate that miR-218-5p attenuates 
microglia-mediated neuroinflammation and pre-
serves DA neurons via Ddx41/type I interferon (IFN-
I) in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced mouse model. Our results provide a 
potential therapeutic target for PD, and have impor-
tant implications for the interpretation of the molecu-
lar mechanisms underlying the development of PD and 
neuroinflammation.

Methods
Animals
Eight-week-old male C57BL/6J mice (weighing 19–23 g) 
were obtained from Gempharmatech (Nanjing, China). 
Mice were maintained under standard conditions 
(23 ± 2  °C) on a 12-h light/dark cycle, with ad  libitum 
access to food and water in a specific pathogen-free class 
facility. All animal experiments were approved by the 
Tongji Hospital Animal Ethics Committee.

MPTP treatment
A mouse model of PD was generated using MPTP. Ten 
mice were randomly assigned to either the control or 
MPTP group. Mice in the MPTP group were injected 
intraperitoneally with MPTP·HCl (20  mg/kg free base; 
M0896, Sigma-Aldrich, St. Louis, MO, USA) in phos-
phate buffer (PBS) at 2-h intervals for a total of four doses 
in a single day, while the control group received a similar 
volume of PBS injected intraperitoneally.

Stereotaxic injections
We microinjected either miR-218-5p agomir (miR-218) 
or control agomir (NC) (Ribobio, Guangzhou, China) 
into the SN using a stereotaxic apparatus to overexpress 
miR-218-5p. MiRNA agomir is a chemically modified 
miRNA mimic that has higher stability and activity than 
conventional miRNA mimics and can effectively simu-
late the function of endogenous miRNAs. It can be deliv-
ered by either systemic or local injection and can exert 
a lasting effect for up to 6 weeks. Previous studies have 
demonstrated that miRNA agomirs can effectively regu-
late gene expression in various tissues such as the brain 
[19–21]. In this experiment, forty-eight mice were ran-
domly assigned to four groups: NC Control, NC MPTP, 
miR-218 Control and miR-218 MPTP. Mice were anes-
thetized with isoflurane (1.5–3% in oxygen) via inhala-
tion and placed in a stereotaxic frame. Then, 0.5  nmol 
of either miR-218-5p agomir or NC agomir in 2.5 μL of 
PBS was infused over 10 min into each side of SN at the 
following coordinates: anteroposterior, − 3.0  mm; medi-
olateral, ± 1.2  mm; dorsoventral, − 4.7  mm. After each 
infusion, the needle was left in place for 10  min before 
being slowly withdrawn. The mice were maintained in a 
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warm environment until they recovered from anesthe-
sia. Mice in the NC Control and miR-218 Control groups 
were injected with PBS, whereas mice in the NC MPTP 
and miR-218 MPTP groups were injected with MPTP as 
described above, 48 h after stereotaxic injection.

Rotarod test
Motor function was assessed using the rotarod tread-
mill (IITC, Woodland Hills, CA, USA). Before the for-
mal test, mice underwent three days of training on the 
rotarod treadmill at a constant speed of 5 rpm for 10 min 
each day. Thirteen days after the MPTP injection, mice 
were subjected to the formal test, in which the rod was 
programmed to accelerate uniformly from 5 to 40  rpm 
within 5 min. The test was repeated three times for each 
mouse, and the average latency to fall off the rod was 
recorded as a measure of motor function. Mice that did 
not fall off the rod after 5 min were recorded as 300 s.

Preparation of brain samples
Mice were sacrificed under deep anesthesia induced by 
isoflurane anesthesia. For immunofluorescence, mice 
were perfused transcardially with 30  mL of precooled 
PBS, followed by 20–30  mL of precooled 4% paraform-
aldehyde (PFA). After perfusion, intact brains were har-
vested, post-fixed in 4% PFA at 4 °C overnight, and then 
dehydrated in PBS containing 30% sucrose for 3  days. 
Brains were embedded in optimal cutting temperature 
material, followed by cutting into 20-µm thick coronal 
sections with a freezing slicer (Thermo Fisher Scientific, 
Waltham, MA, USA). For SN tissue, mice were perfused 
with 30  mL of precooled PBS, then brains were quickly 
taken out and continuously sliced at 1  mm thickness in 
the midbrain coronal plane using a pre-cooled mouse 
brain matrice (RWD Life Science, Shenzhen, China). SN 
tissue was segmented under a low magnification micro-
scope according to a mouse brain atlas (The Mouse Brain 
in Stereotaxic Coordinates, third edition), snap-frozen in 
liquid nitrogen-cooled isopentane, and stored at − 80 °C.

Immunofluorescence analysis
The SN slides were fixed with 4% PFA for 10  min and 
washed three times with PBS for 5  min each time. The 
tissue area was outlined using a hydrophobic PAP pen. 
The slices were then blocked with a blocking solution 
(Beyotime, Shanghai, China) and incubated with pri-
mary antibodies overnight at 4  °C. Subsequently, the 
slices were incubated with secondary antibodies at room 
temperature in the dark for 1 h. After being washed with 
PBS, the slices were mounted with The Antifade Mount-
ing Medium with DAPI (Beyotime) and covered with 
coverslips. The primary antibodies used for immunofluo-
rescence were as follows: anti-tyrosine hydroxylase (TH; 

rabbit, 1:500; ab137869, Abcam, Cambridge, UK), anti-
IBA1 (rabbit, 1:500; 019-19741, Fujifilm Wako Chemi-
cal, Osaka, Japan), anti-CD68 (rat, 1:500; MCA341B, 
Bio-Rad, Hercules, CA) and anti-IRF7 (mouse, 1:200; 
sc-74471, Santa Cruz Biotechnology, Dallas, TX, USA). 
The secondary antibodies were labeled with Alexa Fluor 
488 or 594 (1:400, Yeasen Biotechnology, Shanghai, 
China). Confocal microscopy (FV1200; Olympus, Tokyo, 
Japan) was used to acquire images. To quantify TH+ neu-
rons in the SNc, we employed a stereological approach, 
as previously described [22]. Slices from another 8 sec-
tions (140-μm interval) per mouse were collected, and 10 
z-stacks (2  μm per stack) confocal images at 10 × mag-
nification were acquired for neuron counting using Fiji 
2.9.0 (ImageJ; National Institutes of Health, Bethesda, 
MD, USA). To quantify IBA1+ cells and volumes of 
CD68+IBA1+ puncta, images were obtained at 60 × mag-
nification with 10 z-stacks (2-μm per stack). We ran-
domly selected three fields and analyzed three sections 
per mouse. We performed 3D reconstruction of IBA1+ 
cells and CD68+ puncta using the Surface module in 
Imaris 9.0.3 (Oxford Instrument, Belfast, UK). The vol-
ume of IBA1+ cells and CD68+ puncta was calculated and 
averaged from 10 to 15 IBA1+ cells randomly selected 
from each mouse. To quantify the average fluorescent 
intensity of IRF7 + IBA1 + cells, images were captured at 
60 × magnification with 6 z-stacks, and three fields were 
taken at random in each section, and three sections per 
mouse were analyzed. Microglia were selected by setting 
a fixed threshold in the IBA1 channel in Fiji, and then the 
average fluorescent intensity of IRF7 in microglia was 
calculated.

RNA sequencing and bioinformatics analysis
RNA sequencing (RNA-seq) was performed on SN tis-
sues from mice in the NC control group, NC MPTP 
group, miR-218 control group, and miR-218 MPTP 
group (three each). RNA extraction, library construc-
tion, sequencing and bioinformatics analysis were 
performed by Suzhou PANOMIX Biomedical Tech 
Co. (Suzhou, China). The specific process involved 
the following steps: firstly, polyA-tailed mRNA was 
enriched from total RNA using oligo (dT) magnetic 
beads, and the RNA was then ion-fragmented to pro-
duce fragments of around 300  bp. Reverse transcrip-
tion was performed using RNA as a template, 6-mer 
random primers and reverse transcriptase to synthe-
size first-strand cDNA, which was subsequently used 
to synthesize the second-strand cDNA. After library 
construction, PCR amplification was used to enrich the 
library fragments, which were then selected based on 
size to obtain a final library size of 450  bp. The qual-
ity of the library was assessed using the Agilent 2100 
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Bioanalyzer (Santa Clara, CA, USA), and the total 
and effective concentrations of the library were deter-
mined. The libraries with different index sequences 
were mixed in proportion to one another based on the 
effective concentration of the library and the required 
data amount. The mixed library was diluted to 2  nM 
and converted to single-stranded DNA using alkaline 
denaturation. Next-generation sequencing (NGS) was 
performed on the Illumina sequencing platform (San 
Diego, CA, USA) using paired-end (PE) sequencing. 
The libraries were sequenced to a depth of ~ 6 Gbps per 
sample. The resulting images were converted into raw 
data in FASTQ format using the sequencing platform’s 
proprietary software. The sequencing data was filtered 
according to two criteria: (1) removal of 3′ adapter 
sequences using Cutadapt, and (2) removal of reads 
with an average quality score below Q20. The resulting 
high-quality sequences were mapped to the reference 
genome (Mus musculus.GRCm38.dna.primary_assem-
bly.fa). HTSeq was used to count the number of reads 
mapped to each gene, which was used as the gene’s raw 
expression level. The expression levels were then nor-
malized using Fragments Per Kilo bases per Million 
fragments (FPKM).

We performed principal component analysis (PCA) 
using the DESeq package in R on each sample based on 
gene expression levels. The gene expression analysis 
was conducted using the DESeq package in R, and dif-
ferentially expressed genes were screened with criteria 
of |log2FoldChange|> 0.585 and p-value < 0.05. Gene set 
enrichment analysis (GSEA) was conducted using a local 
GSEA tool (http://​www.​broad​insti​tute.​org/​gsea/​index.​
jsp) and the Gene Ontology (GO) data set of mice. The 
normalized enrichment score (NES) and false discovery 
rate (FDR) q-value were calculated using permutation 
tests to quantify enrichment levels and statistical signifi-
cance. Pathways with significant enrichment were defined 
as those meeting the following criteria: |NES|> 1, the 
nominal (NOM) p-value < 0.05, and FDR q-value < 0.25.

Cell culture and treatment
Murine microglia-like BV2 cells, SH-SY5Y cells and 
human embryonic kidney (HEK) 293 T cells were main-
tained in high-glucose Dulbecco’s modified Eagle’s 
medium (DMEM; Gibco, Thermo Fisher Scientific) con-
taining 10% fetal bovine serum (FBS; Biological Indus-
tries, Beit-Haemek, Israel) in a carbon dioxide incubator 
at 37  °C. The cells were subcultured every three days. 
For 1-methyl-4-phenylpyridinium (MPP+; D048, Sigma-
Aldrich) treatment, SH-SY5Y cells were treated with 
1 mM MPP+ or PBS of equal volume for 24 h. The con-
ditioned media from the SH-SY5Y cells treated with 

MPP+ (MPP+-CM) or PBS (PBS-CM) were collected and 
applied to BV2 cells for 24 h.

Cell transfection
BV2 cells were digested and plated into 6-well plates in 
a high-glucose DMEM medium containing 10% FBS one 
day before transfection. Transfection was performed 
when the cells reached ~ 80% confluence. BV2 cells 
were transfected with miR-218-5p mimic/NC mimic or 
Ddx41-siRNA/control siRNA (Ribobio) for 6–8  h with 
LipofectMax transfection reagent (ABP Biosciences, 
Beltsville, MD, USA), and then treated with MPP+-CM 
or PBS-CM for 24 h.

Western blot (WB) analysis
Samples from SN tissue and BV2 cells were lysed using 
RIPA lysis buffer (Beyotime) containing a protease inhib-
itor cocktail and phenylmethylsulfonyl fluoride. Protein 
concentrations were determined using a bicinchoninic 
acid kit (Beyotime). Protein content (20  μg) was loaded 
onto sodium dodecyl sulfate–polyacrylamide gel for 
gel electrophoresis and transferred to nitrocellulose 
membranes, which were subsequently blocked with 5% 
non-fat skim milk and incubated with the primary anti-
bodies at 4 °C overnight. The primary antibody used for 
WB were as follows: anti-TH (rabbit, 1:1000; ab137869, 
Abcam), anti-DDX41 (rabbit, 1:1000; 27,500–1-AP, Pro-
teintech, Rosemont, IL, USA), anti-IL-1β (rabbit, 1:1000; 
#12703, Cell Signaling Technology, Danvers, MA, USA), 
anti-GAPDH (mouse, 1:10,000; 60,004-1-Ig, Proteintech) 
and anti-β-actin (mouse, 1:10,000; 66,009-1-Ig, Protein-
tech). Secondary antibody reactions were performed 
using goat anti-mouse or goat anti-rabbit IgG-horse-
radish peroxidase antibodies (1:5000; Proteintech) for 
1 h at room temperature. WB protein bands was visual-
ized by enhanced chemiluminescence. Images were col-
lected using the BLT GelView 6000 Pro imaging system 
(Guangzhou Biolight Biotechnology, Guangzhou, China). 
To quantify WB protein bands, equally sized region of 
interest was drawn around each band in Fiji to measure 
raw integrated density. Each integrated density was nor-
malized to each sample’s control (GAPDH or β-actin).

Quantitative real‑time PCR (qPCR) analysis
Total RNA was extracted from the SN tissue of mice and 
cells using RNAiso Plus reagent (Takara, Kusatsu, Japan). 
RNA reverse transcription and qPCR amplification were 
performed using PrimeScript RT Reagent Kits (RR036A 
and RR037A; Takara) and ChamQ Universal SYBR qPCR 
Master Mix (Vazyme, Nanjing, China), respectively. The 
primers for miR-218-5p and U6 were obtained from the 
Bulge-Loop miRNA qPCR Primer Set (Ribobio). The 
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primers for mRNA provided by Tsingke Biotechnology 
(Beijing, China) are listed in Additional file  1: Table  S1. 
qPCR amplifications were performed using CFX Connect 
Detection System (Bio-Rad) as follows: 3  min at 95  °C, 
10 s at 95 °C for 40 cycles, 30 s at 55 °C. qPCR was per-
formed using the 2 −ΔΔCt method with Actb (for mRNA) 
or U6 (for miR-218-5p) as controls.

Dual luciferase reporter analysis
HEK 293 T cells were seeded one day before transfection. 
miR-218-5p mimic or NC mimic were co-transfected 
with pmirGLO vectors, including wild-type (WT) or 
mutated (MUT) 3′UTR of Ddx41. Luciferase activity was 
measured 48 h after transfection, according to the manu-
facturer’s protocol (GeneCopoeia, Rockville, MD).

Statistical analysis
GraphPad Prism (v8.0.2; GraphPad Software, San Diego, 
CA) was applied for the statistical analysis. Two-group 
comparisons were performed using a two-tailed unpaired 
Student’s t-test. For multi-group comparisons, two-way 
analysis of variance (ANOVA) and Tukey’s multiple com-
parison test were used. Statistical significance was estab-
lished at p < 0.05.

Results
miR‑218‑5p overexpression attenuates PD‑associated 
phenotypes in MPTP‑induced mice
To evaluate the effect of miR-218-5p on the loss of DA 
neurons in MPTP-induced mice, we first examined 
miR-218-5p levels in the SN using qPCR. We found that 
miR-218-5p expression was downregulated 14 days post 
MPTP administration (Fig.  1a). Next, mice were stere-
otaxically infused with miR-218-5p agomir (or NC ago-
mir) into the SN and then injected intraperitoneally with 
MPTP 3  days after stereotaxic injection (Fig.  1b). miR-
218-5p agomir treatment significantly increased miR-
218-5p expression after 17  days (Fig.  1c). The number 
of TH+ DA neurons and TH expression were reduced 
in MPTP- and NC agomir-treated mice, as determined 
by immunofluorescence and WB analyses. However, 
miR-218-5p agomir treatment alleviated the reduction 
in TH+ neurons and TH expression (Fig. 1d–g). Moreo-
ver, miR-218-5p overexpression significantly attenuated 
the MPTP-induced behavioral deficits in the rotarod test 
13 days post MPTP injection (Fig. 1h). These data indi-
cate that miR-218-5p overexpression alleviates the loss of 
DA neurons and motor deficits in MPTP-induced mice.

miR‑218‑5p overexpression inhibits microglia‑mediated 
neuroinflammation in the SN of MPTP‑induced mice
To explore whether miR-218-5p overexpression affects 
microglial phenotypes in MPTP-induced mice, double 

immunofluorescence staining with anti-IBA1 (a marker 
for microglia) and anti-CD68 (a marker for phagocytosis) 
was performed to identify microglial inflammation in the 
SN (Fig.  2a). The number and volume of IBA1+ micro-
glia, as well as CD68 puncta in IBA1+ microglia were 
significantly increased in the SN of MPTP-induced mice, 
whereas these effects were attenuated in mice with miR-
218-5p overexpression (Fig.  2a, b). Additionally, MPTP 
administration increased the level of pro-inflammatory 
cytokine IL-1β, whereas overexpression of miR-218-5p 
inhibited it (Fig.  5b, c). This suggests that miR-218-5p 
overexpression inhibits MPTP-induced microglia-medi-
ated neuroinflammation.

miR‑218‑5p overexpression inhibits the IFN‑I response 
in microglia of the SN of MPTP‑induced mice
To determine the mechanism by which miR-218-5p 
affects microglial inflammation, we performed RNA-
seq on the SN tissue of mice. Volcano plots of DEG 
analysis showed that 59 genes were upregulated and 33 
genes were downregulated in the SN of MPTP-induced 
mice (Fig.  3a). However, miR-218-5p overexpression 
upregulated 119 genes and downregulated 51 genes in 
MPTP-induced mice (Fig.  3b). Notably, the expression 
of several IFN-I-related genes (Irf7, Ddx60, Nlrc5) was 
upregulated in MPTP-treated mice (Fig.  3a, c), while 
miR-218-5p overexpression downregulated the expres-
sion of these genes (Irf7, Ddx60, Nlrc5) (Fig.  3b, c). We 
verified the expression of Irf7, Ddx60, and Nlrc5 by qPCR 
(Fig.  3d). Moreover, miR-218-5p overexpression led to 
decreased expression of several genes associated with 
IFN-I and inflammatory responses in the baseline (Addi-
tional file 1: Fig. S1). The top differential GO terms with 
p-value in GSEA are shown in Fig. 4a, b. We found that 
MPTP treatment upregulated several IFN-I response-
related terms, including “cellular response to interferon-
beta”, “response to interferon-beta, and “regulation of 
type I interferon-mediated signaling pathway” (Fig.  4a, 
c; Additional file 1: Fig. S2). Yet, miR-218 overexpression 
downregulated IFN-I terms including “cellular response 
to interferon-beta” and “response to interferon-beta” 
(Fig.  4b, c; Additional file  1: Fig. S2). Our data suggest 
that the IFN-I response is upregulated in the MPTP 
mouse model of PD, which may be due to the downregu-
lation of miR-218-5p.

To investigate if miR-218-5p inhibits IFN-I response 
in microglia, we performed double immunofluores-
cence staining with anti-IBA1 and anti-IRF7 antibodies 
in the SN (Fig. 2c). The IRF7 protein was predominantly 
distributed in IBA1+ microglia (Fig.  2c), and the fluo-
rescent intensity of IRF7 in microglia was elevated in 
MPTP-induced mice, while miR-218-5p overexpression 
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suppressed its expression (Fig.  2d). This suggests that 
miR-218-5p regulates the IFN-I response of microglia 

and may modulate neuroinflammation through this 
pathway.

Fig. 1  miR-218-5p overexpression alleviates the loss of dopaminergic neurons and motor deficits in MPTP-induced mice. A miR-218-5p expression 
in the SN of Control and MPTP mice 14 days post MPTP administration is shown by qPCR analysis. N = 5 per group. B A schematic diagram 
of constructing a miR-218-5p-overexpressing-MPTP mice model. C Effective miR-218-5p overexpression in the SN of mice 17 days post miR-218-5p 
agomir injection was verified by qPCR analysis. miR-218, mice injected with miR-218-5p agomir. NC, mice injected with NC agomir. N = 8–9 
per group. D, E Representative confocal images staining of TH in the SN (D) and quantification of TH+ cells (E) of NC Control, NC MPTP, miR-218 
Control and miR-218 MPTP mice. Scale bar, 250 μm. N = 3–4 per group. F, G TH expression in the SN by western blot (F) and quantitative analysis (G) 
of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. N = 3 per group. H Quantification of latency to fall in the accelerating Rotarod 
test of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice 13 days post MPTP administration. N = 6–8 per group. Data are shown 
as the mean ± SEM. Significance in A, C was tested by two-tailed unpaired Student’s t-test. Significance in E–H was tested by two-way ANOVA. 
*p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 2  miR-218-5p overexpression inhibits microglial inflammatory and IFN-I responses in the SN in MPTP-induced mice. A Representative confocal 
images and 3D reconstructed images staining of IBA1 (red) and CD68 (green) in the SN of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP 
mice. Scale bar, 25 μm. B Quantification of IBA1+ cells, IBA1+ cell volume and the ratio of CD68+IBA1+ puncta volume to IBA1+ cell volume in the SN 
of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. N = 4 per group. C Representative confocal images staining of IBA1 (red) and IRF7 
(green) in the SN of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. Scale bar, 25 μm. D Quantification of the average intensity 
of IRF7 protein in IBA1+ cells in the SN of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. Data are shown as the mean ± SEM. 
Significance was tested by two-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001
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miR‑218‑5p targets Ddx41, an IFN‑I‑related gene
We next investigated the possible mechanisms of miR-
218-5p regulating IFN-I response. TargetScan 7.2 was 
used to predict target genes of miR-218-5p. We found 
that the 3′UTR of the IFN-I-related gene Ddx41 
(encoding DEAD-box helicase 41 [DDX41]) is com-
plementary to miR-218-5p (Fig.  5a). DDX41 is a DNA 

sensor that recognizes viral DNA [23] and cytosolic 
DNA [24] in the cytoplasm, and subsequently induces 
IFN-I responses by interacting with STING [25, 26]. 
DDX41 protein levels were increased in the SN of 
MPTP-injected mice, as analyzed by WB analysis, while 
DDX41 expression was reduced following miR-218-5p 
overexpression (Fig.  5b, c). Dual luciferase reporter 
assays confirmed that miR-218-5p targets Ddx41 

Fig. 3  miR-218-5p overexpression inhibits the expression of IFN-I response related genes in the SN of MPTP-induced mice. A, B Volcano plots 
showing the DEGs in NC MPTP mice versus NC Control mice (A) and the DEGs in miR-218 MPTP mice versus NC MPTP mice (B). N = 3 per group. 
Data are shown as |Log2 (fold change)|≥ 0.585, p-value < 0.05. C Pheatmaps showing the top DEGs in NC MPTP mice versus NC Control mice 
and the top DEGs in miR-218 MPTP mice versus miR-218 Control mice. D qPCR analysis showing mRNA expression of several IFN-I related 
genes (Irf7, Nlrc5, Ddx60) in the SN of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. N = 5–6 per group. Data are shown 
as the mean ± SEM. Significance was tested by two-way ANOVA. *p < 0.05, **p < 0.01
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3′UTR (Fig. 5d). These results suggest that miR-218-5p 
targets Ddx41.

miR‑218‑5p overexpression suppresses IFN‑I 
and inflammatory responses in BV2 cells treated 
with MPP+ conditioned media
To elucidate whether miR-218-5p regulates the micro-
glial IFN-I response and affects microglia-mediated 
inflammation, we established SH-SY5Y-BV2 condi-
tioned culture systems (Fig. 6a), due to the fact that pre-
vious studies have suggested that the inflammation of 
microglia caused by MPTP is secondary to the MPP+ 
induced neurotoxicity [27]. We treated BV2 cells with 
MPP+ conditioned media (MPP+-CM) from SH-SY5Y 
cells, and found that miR-218-5p expression was down-
regulated in BV2 cells treated with MPP+-CM (Fig. 6b). 
Furthermore, the expression of IFN-I response related 
genes Ifnb1 and Irf7 (Fig.  6d, e) and the protein level 

of DDX41 (Fig.  6i, j) were upregulated in BV2 cells 
after MPP+-CM stimulation. In contrast, miR-218-5p 
overexpression (Fig.  6b) downregulated Ifnb1 and 
Irf7 expression (Fig. 6d, e) and DDX41 level (Fig. 6i, j) 
induced by MPP+-CM. Consistent with this, MPP+-CM 
stimulation upregulated the expression of pro-inflam-
matory cytokines Il1b, Il6 and Tnf, whereas miR-218-5p 
overexpression attenuated their expression (Fig. 6f–h).

Ddx41 knockdown suppresses IFN‑I and inflammatory 
responses in BV2 cells treated with MPP+ conditioned 
media
Next, we investigated whether miR-218-5p regulates 
microglial IFN-I response and inflammation by inhibiting 
the expression of Ddx41. BV2 cells were transfected with 
Ddx41 siRNA (si-Ddx41) to knock down Ddx41. The 
expression of Ifnb1 and Irf7 and the level of DDX41 were 
increased in BV2 cells after MPP+-CM stimulation, while 
Ddx41 knockdown suppressed their expression (Fig. 7a, 

Fig. 4  Top GO enrichment terms in GSEA of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. A Top GO enrichment terms are 
shown in GSEA of NC MPTP mice versus NC Control mice. B Top GO enrichment terms are shown in GSEA of miR-218 MPTP mice versus NC MPTP 
mice. C Several IFN-I responses terms are shown in GSEA of NC MPTP mice versus NC Control mice and miR-218 MPTP mice versus NC MPTP mice. 
|NES|> 1, NOM p-value < 0.05, and FDR q-value < 0.25 are considered to be of interest



Page 10 of 14Wang et al. Journal of Translational Medicine           (2024) 22:63 

b, f, g). In addition, the expression of Il6, Il1b and Tnf was 
elevated in BV2 cells induced by MPP+-CM, while Ddx41 
knockdown prevented the elevation of these pro-inflam-
matory cytokines (Fig. 7c–g).

Discussion
In the present study, we demonstrated that miR-218-5p 
was significantly downregulated in the SN of MPTP-
induced mouse model of PD. Intriguingly, miR-218-5p 
overexpression inhibited microglial inflammation and 
loss of DA neurons in the SN, and alleviated motor defi-
cits in the mouse model. Mechanistically, miR-218-5p 
inhibited microglia IFN-I responses and inflammation by 
targeting Ddx41. Hence, miR-218-5p-Ddx41 is a promis-
ing therapeutic target for PD.

MiRNAs play important roles in the pathogenesis of 
PD [28–30]. Previous studies have suggested that miR-
218-5p is involved in the development of PD. Our find-
ings agree with previous studies that show miR-218-5p 
is reduced in 6-OHDA-induced rat models [17] and 
patients [18], and protects DA neurons from 6-OHDA-
induced damage [17]. However, another study showed 
that miR-218-5p is upregulated in the midbrain of 
patients with advanced PD [31], suggesting that the 
expression of miR-218-5p in different stages or brain 
regions of PD requires further study. Our findings that 
miR-218-5p was decreased in MPTP-injected mice, and 
miR-218-5p overexpression mitigated the loss of DA 

neurons in these mice, support that miR-218-5p protects 
against neurodegeneration in PD.

MiR-218-5p was implicated in neuronal differentiation 
[32–34] and tumor suppression [35–37]. Recent research 
work has revealed that miR-218-5p can also regulate 
inflammatory processes. In the periphery, bronchial 
epithelial miR-218-5p inhibits airway inflammation in 
asthma [38] and chronic obstructive pulmonary disease 
[39]. MiR-218-5p also targets IKK-β to regulate NK-κB-
mediated inflammation in diabetic nephropathy [40]. 
In the CNS, miR-218-5p inhibits neuroinflammation in 
diabetic encephalopathy via targeting TLR4. Moreover, 
the level of miR-218-5p is negatively correlated with the 
levels of pro-inflammatory cytokines such as TNF-α, 
IL-1β and IFN-γ in the prefrontal cortex of patients with 
PD [18]. In line with these reports of the protective role 
of miR-218-5p in inflammation, we demonstrated that 
the overexpression of miR-218-5p can reduce the lev-
els of pro-inflammatory cytokines (IL-1β and IL-6) in 
MPP+-treated BV2 cells and alleviate MPTP-induced 
neuroinflammation in microglia in  vivo. It is reported 
that microglia-mediated neuroinflammation is an early 
event in PD and contributes to neuron degeneration [41], 
suggesting that neuroprotective effects of miR-218-5p 
may be achieved by inhibiting microglial inflammation.

To further explore how miR-218-5p suppresses neu-
roinflammation in microglia, we conducted RNA-seq 
analysis. We found that while the IFN-I response-related 
pathways were activated in mice treated with MPTP, 

Fig. 5  Ddx41 is a target gene of miR-218-5p. A The binding sites of mmu-miR-218-5p with Ddx41 3′UTR. B, C DDX41 expression in the SN 
by western blot (B) and quantitative analysis (C) of NC Control, NC MPTP, miR-218 Control and miR-218 MPTP mice. N = 3 per group. D PmirGLO 
vectors including wildtype (WT) or mutated (MUT) 3′UTR of Ddx41 were co-transfected with miR-218-5p mimic or mimic NC in HEK293T cells. 
Luciferase activity was measured. N = 4 per group. Data are shown as the mean ± SEM. Significance was tested by two-way ANOVA. *p < 0.05, 
**p < 0.01, ***p < 0.001
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miR-218-5p overexpression was able to inhibit these 
pathways. IFNs were initially discovered as antiviral sub-
stances [42] and are classified into three types. IFN-I 
includes IFN-α (encoded by more than ten genes), IFN-β 
(encoded by a single gene), and several other IFNs [43]. 
IFN-I responses are primarily mediated by microglia 
and regulate microglia functions in various neurologi-
cal diseases [44, 45]. On one hand, IFN-I response has 
been shown to have neuroprotective effects in viral 
infection of the CNS and multiple sclerosis [46]. On the 
other hand, excessive or prolonged activation of IFN-I 
response can lead to chronic inflammation and neuro-
degeneration. Microglial chimeras from patients with 

Down syndrome have an elevated expression of IFNARs 
compared to controls, whereas inhibiting the IFNARs 
expression increases the ramification of DS microglia 
and rescues their synaptic pruning functions [47]. In 
addition, amyloidosis leads to the progressive activation 
of microglia and a heightened microglia-mediated syn-
aptic engulfment process in the brain by inducing the 
IFN-I responses [48]. In this study, miR-218-5p over-
expression decreases the volume and aberrant phago-
cytosis in microglia of MPTP-injected mice, indicating 
that miR-218-5p restrains IFN-I responses. It has been 
reported that enhanced IFN-I responses in PD promote 
microglia-mediated neuroinflammation and neuron 

Fig. 6  miR-218-5p overexpression suppresses IFN-I and inflammatory responses in BV2 cells treated with MPP + conditioned media. A A schematic 
diagram showing treatment of conditioned medium (CM) from MPP+ stimulated SH-SY5Y cells into BV2 cells. B miR-218-5p expression in BV2 cells 
treated with PBS-conditioned media (PBS-CM) and MPP+-conditioned media (MPP+-CM) is shown by qPCR analysis. N = 3 per group. C Effective 
miR-218-5p overexpression in the BV2 cells transfected with miR-218-5p mimic was verified by qPCR analysis. N = 6 per group. D–H Ifnb1 (D), Irf7 
(E), Il6 (F), Il1b (G) and Tnf (H) mRNA expression in BV2 cells transfected with miR-218-5p mimic and stimulated with or without MPP+-CM is shown 
by qPCR analysis. N = 3 per group. I, J DDX41 and IL-1β protein levels in BV2 cells transfected with miR-218-5p mimic and stimulated with or without 
MPP+-CM by western blot (I) and quantitative analysis (J) are shown. N = 3 per group. Data are shown as the mean ± SEM, *p < 0.05, **p < 0.01, 
***p < 0.001,****p < 0.0001 
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degeneration [49–52], whereas blocking IFN-I signal-
ing rescues inflammation and the loss of DA neurons in 
various PD models [49, 53]. Consistent of these reports, 
we found miR-218-5p alleviated MPP+ induced inflam-
mation by inhibiting IFN-I responses in microglia-like 
BV2 cells, suggesting that miR-218-5p may regulate neu-
roinflammation in PD through IFN-I signaling. Moreo-
ver, we identified miR-218-5p as a target gene of Ddx41, 
which has been implicated in IFN-I responses in previous 
studies [25, 26]. MiR-218-5p overexpression suppressed 
Ddx41 expression in vivo and in vitro, despite the single 
binding site in the 3′UTR of Ddx41. Ddx41 knockdown 
also partly reversed neuroinflammation in BV2 cells 
induced by MPP+-CM, suggesting that miR-218-5p regu-
lates neuroinflammation by inhibiting Ddx41 expression.

Our study has several limitations. First, we focused 
on the preventive role of miR-218-5p in our current 
work. However, it would be interesting to test if miR-
218-5p can also reverse the damage caused by MPTP, as 

this would have important implications for therapeutic 
applications. In addition, IFN-I responses may occur in 
neurons with PD pathology and contribute to cell death 
[54]. Yet, whether miR-218-5p regulates neuron-medi-
ated IFN-I responses remains unclear. Furthermore, the 
MPTP model does not induce α-synuclein accumulation 
[55], so this study did not examine the effect of the miR-
218-5p-Ddx41 axis on α-synuclein aggregation. Previous 
studies have demonstrated that α-synuclein aggrega-
tion also contributes to neurodegeneration and inflam-
mation via the IFN-I pathway [51]. We hypothesize that 
miR-218-5p may exert its influence through this pathway. 
Moreover, the validation of miR-218-5p-Ddx41 axis in 
PD requires clinical verification, and single miRNA ther-
apy may cause severe adverse effects [56]. To ensure both 
safety and efficacy, further enhancements will be made 
regarding the in vivo drug delivery mode, dosage optimi-
zation, as well as exploring potential synergistic combi-
nations with other miRNAs.

Fig. 7  Ddx41 knockdown suppresses IFN-I and inflammatory responses in BV2 cells treated with MPP+ conditioned media. A–E Ifnb1 (A), Irf7 (B), 
Il6 (C), Il1b (D) and Tnf (E) mRNA expression in BV2 cells transfected with Ddx41 siRNA and stimulated with or without MPP+-CM is shown by qPCR 
analysis. N = 3 per group. F, G DDX41 and IL-1β protein levels in BV2 cells transfected with Ddx41 siRNA and stimulated with or without MPP+-CM 
by western blot (F) and quantitative analysis (G) are shown. N = 3 per group. Data are shown as the mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001
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In conclusion, miR-218-5p alleviates microglia-medi-
ated neuroinflammation and protects DA neurons from 
degeneration in PD by targeting Ddx41 and regulating 
the IFN-I response. The miR-218-5p-Ddx41 axis may 
represent a potential target for the treatment of PD.
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