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Abstract 

Background  The popular statistics-based Genome-wide association studies (GWAS) have provided deep insights 
into the field of complex disorder genetics. However, its clinical applicability to predict disease/trait outcomes remains 
unclear as statistical models are not designed to make predictions. This study employs statistics-free machine-learning 
(ML)-optimized polygenic risk score (PRS) to complement existing GWAS and bring the prediction of disease/trait 
outcomes closer to clinical application. Rheumatoid Arthritis (RA) was selected as a model disease to demonstrate 
the robustness of ML in disease prediction as RA is a prevalent chronic inflammatory joint disease with high mortal-
ity rates, affecting adults at the economic prime. Early identification of at-risk individuals may facilitate measures to 
mitigate the effects of the disease.

Methods  This study employs a robust ML feature selection algorithm to identify single nucleotide polymorphisms 
(SNPs) that can predict RA from a set of training data comprising RA patients and population control samples. There-
after, selected SNPs were evaluated for their predictive performances across 3 independent, unseen test datasets. The 
selected SNPs were subsequently used to generate PRS which was also evaluated for its predictive capacity as a sole 
feature.

Results  Through robust ML feature selection, 9 SNPs were found to be the minimum number of features for excellent 
predictive performance (AUC > 0.9) in 3 independent, unseen test datasets. PRS based on these 9 SNPs was signifi-
cantly associated with (P < 1 × 10–16) and predictive (AUC > 0.9) of RA in the 3 unseen datasets. A RA ML-PRS calculator 
of these 9 SNPs was developed (https://​xista​nce.​shiny​apps.​io/​prs-​ra/) to facilitate individualized clinical applicability. 
The majority of the predictive SNPs are protective, reside in non-coding regions, and are either predicted to be poten-
tially functional SNPs (pfSNPs) or in high linkage disequilibrium (r2 > 0.8) with un-interrogated pfSNPs.

Conclusions  These findings highlight the promise of this ML strategy to identify useful genetic features that can 
robustly predict disease and amenable to translation for clinical application.
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Introduction
Over the past few decades, genome wide association 
studies (GWAS) have revolutionised the field of complex 
disorder genetics, with the identification of more than 
70,000 significant association (p ≤ 5 × 10–8) of variants 
with diverse diseases and traits (GWAS catalogue as of 
April 2022) [1]. While providing deep insight into com-
plex diseases, significant challenges remain before GWAS 
findings can be clinically applicable. Current GWAS 
employs statistical approaches to identify variants associ-
ated with a phenotype [2], based on population inferred 
relationship between data and the outcome variable [3]. 
While statistical models are able to make predictions, 
predictive accuracy is neither their aim nor their strength 
[4]. As such, clinical applicability of a disease-associated 
variant is less clear since statistically significant asso-
ciation identified in one set of data may not necessarily 
apply in a future dataset [5–7]. Classical statistics was 
designed for the analyses of data with moderate number 
of dependent and independent variables [3]. However, 
GWAS interrogates hundreds of thousands to millions 
of SNPs (single nucleotide polymorphisms) for disease 
association in an often limited number of samples. This 
analysis is prone to type-I errors and provides imprecise 
statistical inferences about the complex associations and 
relationships among the many variables [3]. Two strate-
gies are used in GWAS to reduce the multiple testing and 
the subsequent type-I error burden. To reduce the num-
ber of variables being examined, current GWAS focuses 
on interrogating mainly tag-SNPs, removing other SNPs 
that are in strong linkage disequilibrium (LD) [8]. The 
second strategy to address type-I error is to employ Raw 
P-value Thresholding (RPVT) [9], where statistical signif-
icance of association of each SNP to phenotype is evalu-
ated through a predefined threshold after multiple test 
correction. The criticisms of GWAS are that it may detect 
association that is spurious [10, 11], may not identify the 
causal variant/gene [10] and only accounts for a small 
fraction of the heritability of complex traits [8, 12]. These 
problems could be due to the removal of variants from 
analysis to mitigate the multiple-testing burden, as well 
as the treatment of variants as individual and independ-
ent, without consideration for potential higher order 
interactions amongst them [13, 14]. To address these 
criticisms, there are recent attempts to combine variants 
identified in GWAS to estimate the genetic risk for a trait 
using polygenic risk score (PRS) [15], which employs a 
fixed model that sums the contribution of a group of risk 
alleles for a specific complex disorder [16, 17], either as 
weighted PRS based on (p-value) and/or effect size (odds 
ratio) or unweighted PRS [16]. Initial attempts which 
employed weighted PRS achieved only limited predictive 
performance [16]. While relatively easy to implement and 

interpret, traditional PRS is based on independent, linear 
combination of risk alleles and assumes normal distribu-
tion of underlying data. Hence, it may not capture non-
linearity or complex interactions amongst the risk alleles 
[17].

In contrast, machine learning (ML) is a statistics-free 
approach which instead focuses on the use of algorithms 
to identify patterns in rich and unwieldy data [3]. While 
statistical models often require assumptions to be made 
regarding the distribution of the population or the data, 
ML requires minimal assumptions and is effective even 
in the presence of complicated nonlinear interactions 
[3]. ML is also effective in analysing large, complex data-
sets with high dimensionality, which is a challenge for 
traditional statistical modelling methods, as in GWAS. 
To address the ‘curse of dimensionality’ [18–20] in ML, 
feature selection can be implemented to identify a sub-
set of features that contribute most to the prediction of 
a variable, restricting the overall dimensionality of the 
dataset to only features (SNPs) that are most relevant 
to the prediction variable [21]. While computationally 
intensive, feature selection techniques such as recursive 
feature selection importantly considers both joint effects 
of SNPs and their possible interactions, identifying a set 
of SNPs with the best predictive performance [21, 22]. 
Combining machine learning (ML) with PRS has the 
potential to capture non-linear and complex interactions 
and facilitate better clinical decision-making. Thus, ML 
can complement existing statistical approaches to bring 
the prediction of disease or trait outcomes closer to clini-
cal application.

In this study, rheumatoid arthritis (RA) was selected as 
a model disease to demonstrate the robustness of ML-
optimized PRS in disease prediction. Affecting ~ 1% of 
the population worldwide, RA is one of the more preva-
lent chronic inflammatory joint diseases with mortal-
ity rates up to 54% higher than the general population 
[23, 24]. It is a complex autoimmune disease primar-
ily characterised by the swelling of the joints leading to 
joint pain, stiffness and in severe cases irreversible joint 
damage. This is further exacerbated by several associ-
ated comorbidities such as coronary artery diseases and 
hyperlipidaemia [25]. Notably, as the onset of RA occurs 
in middle-aged adults at their economic and productiv-
ity prime, the effects of the disease poses a major socio-
economic burden on both patient and society [26, 27]. 
Hence, early identification of at-risk individuals may be 
critical in minimising the effects of the disease, through 
the provision of early preventive or mitigation measures 
or treatment. There is no single diagnostic test for RA 
and experts rely on patterns of clinical presentation.

Several non-genetic factors, including gender, smok-
ing, pollutants, silica and asbestos have been found to 
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modulate the risk of RA [28, 29]. The high prevalence 
of RA within families, with strongest risks observed in 
first-degree relative, suggests that genetics play an impor-
tant role in RA development [30]. Since the first three 
RA GWAS were performed in 2007 [31], > 400 unique 
SNPs had been documented in the GWAS catalog (as of 
April 2022) [32] to be significantly associated with RA. 
While polymorphisms within HLA regions accounted for 
11–37% of RA heritability and non-HLA risk loci were 
estimated to account for ~ 5% of heritability [33], > 50% 
of heritability remain unaccounted for [34]. Several stud-
ies have attempted to predict RA using known RA risk 
alleles (from previous association analyses) with some 
incorporating lifestyle and clinical characteristics (Addi-
tional file 2: Table S1).

Here, as a complement to GWAS, we employ ML, 
using similar algorithm that we previously reported for 
the prediction of methotrexate response in RA patients 
[35, 36], to select predictive SNPs that can robustly pre-
dict RA across 3 separate unseen test cohorts. We then 
developed an ML-optimized PRS to facilitate better clini-
cal decision making. A summary of our overall ML strat-
egy is presented in Fig. 1.

Materials and methods
Study cohort
This study examines 978 Singaporean RA patients of 
Chinese ethnicity, who are at least 18 years old, and satis-
fied the 1987 American College of Rheumatology revised 
criteria or the 2010 American College of Rheumatology/
European League against Rheumatism criteria for RA. 
All protocols were performed according to the Declara-
tion of Helsinki and written informed consent was col-
lected from all participants. The study was approved by 
the National Healthcare Group Domain Specific Review 
Board (DSRB 2015/00582).

Whole-genome sequencing (WGS) data of 2732 Sin-
gaporean Chinese from the SG10K pilot study served as 
controls [37].

Exome sequencing, sequence alignment, and quality 
control
The exome regions of genomic DNA, collected from 
peripheral blood mononuclear cells of 978 RA patients, 
were enriched using the Nimblegen SeqCap EZ kit 
(Roche). Exomes were captured using the Agilent Sure-
Select Human All Exon (V5/6) kit (Agilent Technologies, 
CA), followed by purification using AMPure XP system 
(Beckman Coulter, Beverly, USA). Quantification was 
subsequently performed using the Agilent high sensitiv-
ity DNA assay on the Agilent Bioanalyzer 2100 system. 
Whole exome sequencing was performed with Illumina 

HiSeq 4000 platform with 151  bp pair-end sequencing 
read.

Training and test data
978 RA case samples were randomly split into a sin-
gle training dataset (N = 599) and three test sets 
(N = 125/127/127). To maintain the ratio between 
case and controls, the 2732 population control sam-
ples were similarly split in the same proportion, with 
a single training dataset (N = 1673), and three test sets 
(N = 349/355/355). To ensure that the test cohort is truly 
‘unseen’, samples were split into training and test datasets 
before further downstream analyses/processing.

Sequence alignment, variant calling, and quality control
Utilising the BWA-MEM algorithm [38], the sequenced 
data of RA patients were aligned to the hs37d5 human 
reference genome, followed by the removal of dupli-
cated reads using PICARD. Each sample was processed 
separately where realignment, recalibration and geno-
type calling were performed using the BaseRecalibrator 
and HaplotypeCaller modules of the Genome Analysis 
Toolkit (GATK). Using the genomicsDBImport and geno-
typeGVCF modules to call for variants on samples jointly 
[39] for the training dataset. For quality control, hard 
filtering of SNPs was performed based on GATK best 
practice (QD < 2.0, FS > 60.0, MQ < 40.0, SOR > 4.0, 
MQRankSum < −  12.5, ReadPosRankSum < −  8.0) using 
the VariantFiltration module.

Pre‑processing of Training dataset
Training dataset of both cases (N = 599) and controls 
(N = 1673) were merged together (N = 2272) using 
BCFtools [40] to identify SNPs that are common in 
both case and control datasets. The merged training 
dataset was further processed by removing SNPs with 
minor allele frequency < 1%, or > 10% genotype miss-
ingness or deviate from Hardy–Weinberg equilibrium 
(p-value < 0.01).

Missing genotypes were phased and imputed using the 
Beagle 5.1 software with HapMap Phase II recombina-
tion maps and 1000 Genomes Project phase III reference 
panels for each respective chromosome [41]. Thereafter, 
a Bayesian Ridge model, coupled with the IterativeIm-
puter function from the Scikit-learn Python module [42], 
was fitted using the training dataset. This fitted model 
was then used to impute the remaining unimputed geno-
types in the training dataset.

Selecting features/SNPs that are predictive for RA cases
Within the training set, features identified to have the 
same genotype across > 90% of the samples were excluded 
from subsequent analyses. Additionally, for features 
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Fig. 1  Summarised pipeline employed to identify predictors of RA. 978 RA case samples were split into a single training dataset (N = 599) and 
three test sets (N = 125/127/127). To maintain the ratio (61.2%/12.8%/13%/13%) between case and controls, the 2732 population control samples 
were similarly split in the same proportion, with a single training dataset (N = 1673), and three test sets (N = 349/355/355). Subsequently, the 
individual datasets were merged based on the common SNPs between both case and control datasets. The resultant training dataset was subjected 
to SNP filtering based on minor allele frequency genotype missingness or deviation from Hardy–Weinberg equilibrium. Missing genotypes were 
imputed using Beagle 5.0 initially and supplemented with machine learning imputation using the Bayesian Ridge algorithm. Training set was 
further divided into eight subsets of varying sample sizes prior to the implementation of recursive feature elimination with cross-validation (RFECV) 
using a Random Forest estimator. Commonly selected features following RFECV across the eight subsets were determined followed by stepwise 
inclusion of each of the commonly selected features based on their feature importance scores to identify the minimum number of features 
required to achieve an optimal performance metrics. The minimum features will then be determined as the final optimal feature set based on the 
evaluation of their predictive capacity across five diverse ML classifiers using cross-validation and separately in the three independent unseen test 
datasets. Likewise, a univariate logistic regression was used to establish the effect sizes of selected features for the calculation of the polygenic risk 
scores (PRS). PRS was also evaluated for its predictive capacity across the same five ML classifiers using cross-validation and separately in the three 
independent unseen test datasets. Finally, a PRS-Risk calculator for RA was developed to facilitate the calculation of PRS and RA-risk by providing the 
genotypes of the selected features of patients as inputs
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sharing a > 95% correlation (Pearson Correlation Coef-
ficient) in each chromosome, only one of the correlated 
features was retained for further analyses. The remaining 
training dataset of 76,713 SNPs was then processed into 
eight subsets of variable sample sizes using a stratified 
random sampling with replacement approach to ensure 
that features selected are stable. Thereafter, the recur-
sive feature elimination with cross-validation (RFECV) 
algorithm was implemented with a Random Forest clas-
sifier estimator using the Scikit-learn Python module to 
identify an optimal set of important features sufficient 
for the prediction for each training subset. With the goal 
of obtaining features with a high stability of importance 
[35, 36, 43], features commonly selected across all eight 
subsets were chosen as the final set of features for further 
evaluation of predictive performances.

Extraction of genotypes for selected SNPs for the test 
datasets
Using BCFtools, the genotype data for RA case samples 
in test sets were identified for the selected SNPs (after 
training) directly from the GVCF files produced from the 
HaplotypeCaller step. Separately, genotype data for pop-
ulation control samples were extracted from the VCF files 
obtained from the SG10K Pilot Study. For each of the 3 
unseen test datasets, genotype data from the RA case and 
population control samples were combined. Thereafter, 
a Bayesian Ridge model, coupled with the IterativeIm-
puter function from the Scikit-learn Python module [42], 
was fitted using the training dataset. The fitted model 
was subsequently used for the imputation of any missing 
genotypes in each of the 3 unseen test datasets. The indi-
vidual test datasets consisting of both RA cases and pop-
ulation control samples were then independently used to 
evaluate the predictive performance of models that were 
trained using the train dataset.

Evaluating the predictive performance of selected features 
using supervised ML
The selected features were assessed across five diverse ML 
classifiers: Logistic Regression, Support Vector Machines, 
Naïve Bayes, Random Forest and XGBoost. Within the 
training dataset, a fivefold cross-validation using stratified 
k-fold was performed for each of the five classifiers. Evalu-
ation of predictive performance was conducted by ref-
erencing metrics such as the area under the curve (AUC) 
of a receiver operating characteristic (ROC) curve, sensi-
tivity, specificity, accuracy scores, and average precision 
(area under a precision-recall curve). Similarly, the five 
classifiers were also fitted with the entire training datasets 
composed of the selected features and tested against the 
three independent unseen test datasets for their predic-
tive performances based on the same metrics. The selected 

features were ranked based on their mean feature impor-
tance scores provided by the Random Forest estimator 
used in RFECV. To identify the minimum number of fea-
tures required to achieve an optimal performance metrics 
(namely AUC, sensitivity, and specificity), the selected fea-
tures were added one at a time to train models and evalu-
ated for their predictive performance. The Shapley Additive 
exPlanations (SHAP) method [44] was adopted to explore 
the contribution of the selected features in the machine 
learning models for the classification of RA case samples, 
focusing on the Random Forest classifier that was initially 
used for the selection of predictive features.

To verify that the observed predictive performances 
by the selected features are not a random occurrence, the 
same number of features were randomly sampled (with 
replacement) from all the features in the training dataset 
prior to performing RFECV. These randomly sampled fea-
tures were evaluated across all three unseen test sets and 
the results were used to plot a distribution of model perfor-
mances using the ROC-AUC metric, across 1,000 iterations 
of sampling.

Annotation and analysis of potential variant functions
Selected SNPs were annotated using ANNOVAR [45] and 
SNPNexus database [46], to identify their correspond-
ing functional regions and genes. To obtain information 
regarding their potential functionality (e.g., transcription 
factor binding sites, miRNA binding sites, exonic splice 
enhancer/silencer (ESE/ESS), etc.), we referenced these 
SNPs against the pfSNP database resource [47], which 
has been updated to include information such as expres-
sion-associated SNPs or expression quantitative trait loci 
(eQTLs) [48, 49]. SNPs that were not predicted to be poten-
tially functional were further interrogated for neighbouring 
pfSNPs in linkage disequilibrium (LD) (R2 > 0.8). The WGS 
data from the SG10K pilot study was used to identify pfS-
NPs in LD with these selected SNPs.

machine‑learning‑optimized polygenic risk scores (PRS)
To improve interpretability and clinical applicability of 
the identified predictive SNPs for individual patients, a 
PRS was developed based on the ML-identified predictive 
SNPs. The effect sizes of these predictive SNPs were deter-
mined through univariate logistic regression analyses using 
PLINK [50], assuming additive effects of allele dosage, of 
all the samples in the training dataset. The following is the 
formula for calculating the PRS based on our 13 SNPs [51]:

For each SNP (i) within a sample (j), the product of the 
SNP’s effect size (Si) and the sample’s allelic dosage (Gij) 

PRS =

∑
13

i Si × Gij

P ×Mj
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was calculated. The resultant product for all selected 
SNPs were then summed and divided by the product of 
the ploidy (P) of an individual (2 for humans) and the 
number of non-missing variants in that sample (Mj). 
The resultant PRS takes into consideration the possibil-
ity of missing genotypes by identifying the average PRS 
through the division of the number of non-missing SNP 
dosages. Most importantly, it prevents PRS of samples 
with missing genotypes to be consistently lower than 
those with complete data of their genotypes, mitigating 
bias of these samples towards a lower risk [52]. The dis-
tribution of PRS of samples in the training set was then 
plotted.

The same effect sizes of SNPs established from the 
training set was similarly used to calculate the PRS of 
samples across the 3 unseen test sets. Logistic regression 
was performed to examine the significance of association 
between the calculated PRS with RA. Using PRS as the 
sole predictor in our ML models, we further assessed the 
predictive capacity of PRS for RA.

Results
Case and population control datasets are comparable
Exome sequencing was performed on Singaporean Chi-
nese RA case samples, while WGS data of Singaporean 
Chinese population controls were obtained from the 
SG10K pilot study [37]. As data from cases and con-
trols were derived from different sequencing platforms, 
principal component analyses (PCA) were performed to 
establish that there was no batch effect that could con-
found our analysis (Additional file 1: Fig. S1).

A signature of 9 SNPs was identified that robustly classifies 
RA in 3 independent unseen datasets
To reduce dimensionality and identify a robust set of 
SNPs that are resistant to sample size bias [35, 36], fea-
ture selection using the RFECV algorithm was employed 
on eight randomly generated variable-sized sample sub-
sets. Thirteen SNP features, with mean feature impor-
tance scores between 0.0118 and 0.0612 were commonly 
identified across all 8 subsets (Fig.  2). To identify the 
minimum number of features necessary for optimal pre-
dictive performance, stepwise inclusion of each of the 13 
SNPs based on their feature importance scores (Addi-
tional file  2: Table  S2) was assessed through cross-vali-
dation in the training dataset across all 5 ML models as 
well as the 3 independent unseen test datasets. As shown 
in Fig.  3, 9 out of the 13 SNPs (reduction of 30%) was 
required to achieve a reasonable predictive performance 
in all the 3 metrics examined (> 90% for AUC, sensitivity, 
and specificity) across both the training as well as 3 inde-
pendent unseen test datasets. While 8 SNPs were suffi-
cient to achieve reasonably good AUC and sensitivity, the 

addition of the 8th SNP resulted in a dip in the specificity, 
hence 9 SNPs is an optimal number to achieve high per-
formance in both sensitivity and specificity, in addition to 
AUC.

These 9 SNPs achieved mean AUC values between 
0.990 and 0.994 when assessed using Cross-Valida-
tion in the Training dataset across all 5 selected ML 
models (Table  1, Fig.  4). Significantly, when tested 
against 3 independent unseen datasets, these same 9 
SNPs performed exceptionally well, with AUC > 0.97 

Fig. 2  Number of important features (SNPs) identified across the 
eight training subsets of variable sample sizes from RFECV. Each 
column represents the different training subsets, and each row 
represents the individual features. Features are row-sorted based on 
the number of subsets that they were commonly identified in, with 
each block separated by a pale-blue divider (i.e., the first block of 
features, highlighted by a red box, represented the SNPs that were 
identified across all eight subsets based on the RFECV algorithm). 
Intensity of red represent the importance of the feature (based on 
the feature importance score) within each subset; Black represents 
features that were not identified to be important in the respective 
subset
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and all other pertinent metrics (F1 Score, Accuracy, 
Sensitivity,Specificity, and Average Precision) above 0.90 
in all the different ML models (Table  2 and Additional 
file  1: Figures  S2-S4, S6-S8). SHAP analyses of the 9 
selected SNPs within the Random Forest classifier model 
(Fig.  5) reveals the contribution of each of the SNPs 
towards the model prediction output, ordered from the 
SNPs with the greatest contribution to the least amongst 
the 9 SNPs.

With such excellent predictive performance in 3 dif-
ferent unseen datasets, it is pertinent to evaluate the 
validity of the observation and give assurance that the 
excellent predictive performance is not merely due to 
random chance. A thousand iterations of random sam-
pling of 9 SNPs from the total pool of > 70,000 SNPs 
were performed. These randomly selected 9 SNPs were 
then evaluated, as above, for predictive performance 
using Random Forest, one of the 5 ML models, in the 3 

Fig. 3  ROC-AUC, Sensitivity, and Specificity scores using an increasing number of the commonly selected SNPs from RFECV based on their mean 
feature importance scores for prediction of RA. Each of the commonly selected SNPs from RFECV were gradually included based their feature 
importance scores (from highest to lowest) in the evaluation of using fivefold cross-validation of training set, unseen test set 1, unseen test set 2, 
and unseen test set 3. Evaluation scores (ROC-AUC, Sensitivity, Specificity) were plotted against the number of selected SNPs (# SNPs) included in 
the prediction model. Dotted vertical line in each plot represented the determined optimal number of SNPs for a good evaluation score
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unseen Test dataset. AUCs obtained were then binned 
with intervals of 0.01 and the distribution of AUCs were 
plotted. As evident in Fig. 6, the AUCs of the 1000 ran-
domly identified 9 SNPs are normally distributed with 
peak AUC between 0.50 and 0.51 and the highest AUC is 
less than 0.7.

PRS utilising 9 ML‑identified predictive SNPs clearly 
distinguishes RA patients from healthy individuals
Univariate logistic regression analyses revealed that all 9 
ML-identified predictive SNPs were significantly associ-
ated with RA (P < 1 × 10–5) (Additional file  2: Table  S2). 
Six ML-identified predictive SNPs have effect sizes in the 
negative range (β: − 5.24 to − 2.23) and hence confer pro-
tection against RA while the remaining three SNPs with 
positive effect sizes (β: 3.50to 7.28) predispose to RA. 
The ML-optimized PRS of training set samples from RA 
patients and control population displayed relatively nor-
mal but distinct distributions with some overlap (−  0.3 
to 0.2), with PRS of RA patients ranging from −  0.3 to 
1.1, while PRS of control population ranges from −  1.7 
to 0.2 (Fig. 7). Notably, using logistic regression analyses, 
PRS was found to be significantly associated (P < 1 × 10–6) 
across all 3 unseen test sets. Significantly, the predictive 
performance of the sole ML-optimized PRS (Additional 
file 2: Table S5, Fig. 8 and Additional file 1: Figures S9–
S11) was found to be comparable to ML-identified 9 
SNPs (Tables  1 and 2) across all 5 selected ML models 
and 3 independent test sets.

Characteristics of these 9 Predictive SNPs
Although these 9 SNPs were identified primarily from 
exome sequenced DNA, the majority (6, 67%) of these 
SNPs are intronic, while 3 (33%) reside within exons 
(Additional file 2: Table S2). The 3 exonic SNPs were all 
non-synonymous, with one predicted to be a deleterious 
alteration. Two of the intronic predictive SNPs are poten-
tial eQTL (expression quantitative trait locus) SNPs, 
predicted to be associated with changes in expression 

(Additional file  2: Table  S2). Of the other 4 predictive 
intronic SNPs, 3 SNPs are in strong linkage disequilib-
rium (LD) (R2 > 0.8) with SNPs that are potentially func-
tional (Additional file 2: Table S3).

To gain further insight into the significance of these 
predictive SNPs, several GWAS databases were interro-
gated to determine if any of these SNPs were previously 
reported to be significantly associated with any pheno-
type. Three SNPs were identified by 3 GWAS databases 
(BioBank Japan PheWeb [53], IEU Open GWAS Project 
[54], GWAS Atlas [55]) to be significantly (P < 1 × 10–5) 
associated with various phenotypes (Additional file  2: 
Table  S4). These phenotypes were summarized into 7 
general categories (Additional file 2: Table S2).

The 9 genic SNPs reside in 10 different genes with one 
residing in the exonic regions of 2 genes. These genes 
reside in pathways such as signal transduction, sensory 
perception, immune, and metabolism of lipids/proteins 
(Additional file  2: Table  S2). Amongst these pathways, 
some such as signal transduction, sensory perception, 
immune, metabolism of lipids/proteins are consistent 
with characteristics of pathology/development of RA. 
Two of these genes have previously been reported to be 
associated with RA (Additional file 2: Table S2).

Discussion
In this study, through rigorous ML feature selection 
that is tolerant to differences in sample sizes [35, 36], we 
identified a signature of 9 SNPs that can predict RA with 
excellent predictive performance not only in the training 
dataset (mean AUC > 0.99; mean sensitivity > 0.96, mean 
specificity > 0.95, mean accuracy > 0.96, and mean aver-
age precision > 0.96) assessed through cross-validation, 
but also in not one, but 3 independent, unseen test data-
sets (AUC > 0.97; sensitivity > 0.91, specificity > 0.95, F1 
score > 0.90, accuracy > 0.94, and average precision > 0.93 
in all 3 test datasets). This excellent predictive perfor-
mance is unlikely due to random chance since the pre-
dictive performance of 1,000 9 randomly selected SNPs 

Table 1  Predictive performance of the 9 selected SNPs in a fivefold cross-validation of the Training dataset

Dataset Evaluation
metric

Machine learning models

Logistic
regression

Naïve
bayes

Random
forest

XGBoost SVM RBF

Training set
Cross-validation

Mean AUC​ 0.992 0.990 0.994 0.994 0.992

Mean Sensitivity 0.968 0.975 0.975 0.973 0.968

Mean Specificity 0.963 0.956 0.962 0.963 0.965

Mean accuracy 0.966 0.966 0.968 0.968 0.966

Mean average precision 
(PR-AUC)

0.979 0.973 0.980 0.981 0.968
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was poor with AUC < 0.7, and majority of the 9 randomly 
selected SNPs have AUC of only between 0.50 and 0.51.

To facilitate interpretability and clinical applicabil-
ity of the 9 ML-identified predictive SNPs for indi-
vidual patients, a PRS was developed based on these 

9 ML-identified predictive SNPs. Notably, not only 
are the 9 ML-identified predictive SNPs significantly 
(P < 1 × 10–5) associated with RA individually, the cal-
culated PRS score (from these 9 SNPs) were also 
found through logistic regression to be significantly 

Fig. 4  Predictive performance of 9 selected SNPs in the training set using fivefold cross-validation. ROC-AUC curves with Accuracy, Sensitivity, and 
Specificity of 9 selected SNPs using a Logistic regression, b Naïve bayes, c Random forest, d XGBoost, and e Support vector machine (SVM) classifiers
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(P < 1 × 10–6) associated with RA across all 3 unseen data-
sets and this single ML-optimized PRS was also found 
to have comparable excellent predictive performance 
as the 9 SNPs across all 5 selected ML models and 3 
independent test sets. To further facilitate the potential 
clinical application, an RA ML-optimized PRS calcula-
tor based on the 9 ML-identified predictive SNPs was 
developed; it is accessible via this link: https://​xista​nce.​
shiny​apps.​io/​prs-​ra/. In this RA ML-optimized PRS cal-
culator, the genotype of the 9 ML-identified predictive 
SNPs in a patient are entered and the PRS, odds as well 
as probability of the patient developing RA will be given, 
enabling the healthcare provider to make an earlier diag-
nosis when the patient presents with only minimal clini-
cal signs.

Although exome sequencing data was interrogated, 
only a minority (3/9) of the predictive SNPs reside in 
the coding region. Two (rs1266832853 and rs60465633) 
of the 3 coding predictive SNPs are benign, non-syn-
onymous susceptibility SNPs with positive effect sizes 
while one (rs143773270) is a potential deleterious, non-
synonymous protective SNP with negative effect size. 
The majority of the predictive SNPs resides in the introns 
(6/9). Most (5/6) of these intronic predictive SNPs are 
potentially protective SNPs with negative effect sizes. 
These potentially protective predictive SNPs in non-cod-
ing regions with negative effect sizes, are potential eQTL 
SNPs or are in strong LD (R2 > 0.8) with non-interrogated 

SNPs that are predicted to be potentially functional, 
modulating expression of the gene by being eQTL SNPs, 
or potentially altering transcription factor binding sites 
(TFBS) or intronic splicing regulatory elements (ISRE). 
The putative functionality of the sole intronic predictive 
susceptibility SNP (rs200901373) with positive effect size 
remains unknown. These data thus suggest that while the 
majority (2/3) of the non-synonymous, predictive coding 
SNPs have positive effect size and thus may confer sus-
ceptibility to RA through modulating protein structure/
function, the majority of the (5/6) of intronic predictive 
SNPs have negative effect size and thus may confer pro-
tection against RA through modulating the expression of 
the intricate network of genes as these intronic predic-
tive SNPs are either eQTL SNPs or have potential to alter 
TFBS/ISRE sites. Validating the potential function and 
effect of these SNPs in the RA pathway would be a worth-
while future direction.

None of the 9 predictive SNPs have previously been 
reported to be associated with RA. To gain further insight 
into these 9 predictive SNPs, numerous GWAS data-
bases were interrogated to evaluate if any of these 9 pre-
dictive SNPs were previously reported via GWAS to be 
associated with any disease/phenotype/function which 
may help explain the role of these SNPs/genes in RA. As 
GWAS mainly interrogate tag-SNPs and this study inter-
rogates exomic SNPs, only 3 of these 9 predictive SNPs 
were reported by 3 GWAS databases (BioBank Japan 

Table 2  Predictive performance of the 9 selected SNPs in each of the 3 unseen Test datasets

Dataset Evaluation
metric

Machine learning models

Logistic
regression

Naïve
bayes

Random
forest

XGBoost SVM RBF

Test 1
evaluation

AUC​ 0.990 0.986 0.993 0.994 0.991

Sensitivity 0.928 0.936 0.928 0.936 0.936

Specificity 0.963 0.960 0.963 0.963 0.963

F1 score 0.913 0.914 0.913 0.918 0.918

Accuracy 0.945 0.948 0.945 0.949 0.949

Avg. Precision 0.970 0.951 0.975 0.976 0.970

Test 2
evaluation

AUC​ 0.988 0.982 0.989 0.992 0.990

Sensitivity 0.937 0.945 0.945 0.945 0.937

Specificity 0.961 0.961 0.963 0.963 0.963

F1 Score 0.915 0.920 0.923 0.923 0.919

Accuracy 0.949 0.953 0.954 0.954 0.950

Avg. Precision 0.964 0.960 0.968 0.972 0.965

Test 3
evaluation

AUC​ 0.987 0.972 0.987 0.991 0.986

Sensitivity 0.913 0.921 0.921 0.937 0.921

Specificity 0.966 0.958 0.966 0.966 0.966

F1 Score 0.910 0.903 0.914 0.922 0.914

Accuracy 0.940 0.940 0.944 0.952 0.944

Avg. Precision 0.961 0.936 0.958 0.965 0.946

https://xistance.shinyapps.io/prs-ra/
https://xistance.shinyapps.io/prs-ra/
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PheWeb [53], IEU Open GWAS Project [54], GWAS 
Atlas [55]) to be significantly associated (P < 1 × 10–5) 
(Additional file  2: Table  S4) with several different func-
tions (including eQTL association) and some diseases, 
which can be categorized into 6 different themes (Addi-
tional file 2: Table S2). Notably, most of these association 
were consistent with the characteristics or phenotype 
of RA. For example, rs11385557 in the intronic region 
of BAIAP2L1 was found in OpenGWAS database to be 
significantly (P < 7.69 × 10–5) associated with peripheral 
nerve disorders (Additional file 2: Table S4, #8) which is 
consistent with RA patients often experiencing periph-
eral neuropathy with pain, numbness, and muscle weak-
ness [56]. Similarly, rs11385557 was also reported by 
OpenGWAS database to be significantly (P < 9.08 × 10–5) 

associated with lymphocyte and monocyte counts (Addi-
tional file  2: Table  S4, #1–4). This is consistent with 
reports of lymphopenia (low lymphocyte counts) com-
monly observed in RA patients [57], as well as monocytes 
activation and migration into joints in early RA [58]. 
Hence, it may be worthwhile to further investigate their 
roles in RA.

Although these 9 SNPs were not previously associated 
with RA, 2 of them reside in disease susceptibility genes 
(Additional file 2: Table S2, Row 5 and 9). rs11385557 is 
found in the intron of the BAIAP2L1, an insulin recep-
tor tyrosine kinase gene (Additional file  2: Table  S2). 
The expression of the BAIAP2L1 gene is positively cor-
related with C-reactive protein (CRP) levels within fibro-
blast-like synovial cells from RA patients [61]. CRP is an 

Fig. 5  Summary of the impact of the 9 selected SNP features on Random Forest model output. Summary of the impact on the Random Forest 
classifier model output by the 9 selected SNP features. a Average impact on both model output (Population control and RA cases). b Impact on 
Population control classification based on feature values. c Impact on RA cases classification based on feature values
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immune regulator that is commonly used as a marker for 
systemic inflammation in RA [62]. Although the intronic 
SNP was not predicted to be potentially functional, it 
was found to be in strong linkage disequilibrium (r2 > 0.8) 
with 19 potentially functional SNPs, most of which are 
associated with modulation of gene expression (eQTL 
SNPs), while some are predicted to alter intronic splice 
regulatory elements (ISRE) (Additional file  2: Table  S3). 
Hence, the above observation is consistent with SNPs 
in LD with rs11385557 modulating gene expression of 
the BAIAP2L1 gene, which in turn alters the CRP levels 
in RA patients. rs112667995 resides within the intron 
of the PRKN (Parkin RBR E3 Ubiquitin Protein Ligase) 
gene. PRKN deficiency ameliorates inflammatory arthri-
tis through the suppression of p53 degradation [63]. 
Similarly, although this intronic SNP (rs79555231) is 
not predicted to be potentially functional (Additional 
file 2: Table S2), it is in strong LD (r2 > 0.8) with 21 poten-
tially functional SNPs that are mainly predicted to alter 
transcription factor binding sites (TFBS) (Additional 
file 2: Table S3). Thus, SNPs in LD with rs79555231 may 
influence the expression of PRKN which in turn modu-
lates inflammatory arthritis. Taken together, both these 
intronic SNPs are in LD with markers that modulate gene 
expression of either BAIAP2L1 or PRKN that is associ-
ated with RA. Since majority of the predictive SNPs are 

in non-coding regions and many of the potentially func-
tional SNPs likely reside beyond the regions that were 
sequenced through exome sequencing, it may thus be 
worthwhile to build models from WGS data.

While these 9 SNPs displayed excellent predictive 
performance for RA in Singaporean Chinese popula-
tion, future work could explore the generalizability of 
the predictive performance of these 9 SNPs in other 
populations. It may be worthwhile to initially determine 
whether these SNPs exhibit population differentiation 
between Singaporean Chinese and another population 
[64] before general adoption. Further studies could also 
focus on the characterization of the roles of the predic-
tive coding SNPs in conferring predisposition to RA as 
well as the roles of the predictive intronic SNPs in confer-
ring protection against RA.

These 9 SNPs have potential to be clinically applicable 
for diagnosing individual patients with RA through the 
development of rapid genotyping assays for these SNPs. 
With improvements of WGS technology coupled with its 
rapidly declining cost, it will not be surprising that most, 
if not all, individuals will have their genome sequenced 
in the foreseeable future. Then, it will be cost-effective 
to deploy PRS on a large scale. However, due to resource 
constraints, current WGS data is primarily stored as vari-
ant call format (VCF) files [65] with small data storage 

Fig. 6  Distribution of AUC scores obtained from 1000 sets of randomly selected 9 SNPs. Distribution of AUC-ROC scores binned in intervals of 0.01 
of 1000 sets of randomly selected 9 SNPs to verify that predictive performance observed from the selected 9 SNPs by the feature selection pipeline 
employed was a non-random occurrence. AUC-ROC scores were obtained by evaluation in each of the three unseen test sets using one of the five 
chosen ML classifiers, the Random Forest classifier
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space requirements. One limitation of storing WGS 
data as VCF is that, in order to generate VCF files, raw 
sequences from a group of individuals are aligned and 
variants are then identified based on a reference genome. 
The sequence identity of loci which do not show varia-
bility between the group of individuals and the reference 
genome are not stored. As such, depending on the size of 
the group of individuals, the number of variations stored 
will be different, with more variation stored in VCF files 
of large and more diverse group and less variation stored 
in VCF files of smaller and more homogenous group of 
individuals. For locus without sequence identity assigned, 
it is not possible to accurately extract the genotype infor-
mation at the individual level. One cannot assume that 
locus to be the homozygous genotype of the reference 
genome as the unassigned region could also be excluded 
due to low mapping quality or poor read coverage during 
sequencing. Hence, for WGS data to be clinically appli-
cable at an individual level, an alternative VCF file, the 
genomic VCF (gVCF) file format which can be generated 
using the GATK suite [66], as done in this study, could 
be explored. Although the storage size required for gVCF 

files is larger than typical VCF files, it is still overall much 
smaller compared to the storage of BAM files contain-
ing the sequencing read alignments [67]. The advantage 
of the gVCF file is that it stores not only information of 
the genotypes of variant site, but it also compactly stores 
information of the invariant genomic regions, facilitat-
ing the more accurate assignment of genotype at invari-
ant sites for clinical implementation of our prediction 
models.

Conclusions
In summary, PRS of the 9 ML-selected predictive SNPs 
is significantly associated (P < 1 × 10–6) with and predic-
tive (AUC > 0.9) of RA in all 3 independent, unseen test 
datasets. To facilitate individualized clinical applicabil-
ity, RA ML-PRS calculator of these 9 SNPs (https://​xista​
nce.​shiny​apps.​io/​prs-​ra/) was developed. Majority of the 
predictive SNPs are protective and reside in non-coding 
regions and are either predicted potentially functional 
SNPs (pfSNPs) or in high linkage disequilibrium (r2 > 0.8) 
with un-interrogated pfSNPs. These data highlight the 
promise of this ML strategy to identify useful genetic 

Fig. 7  Distribution of Polygenic Risk Scores (PRS) of samples within Training dataset. Distribution plots of PRS scores binned in intervals of 0.1 for RA 
case samples and Population control samples

https://xistance.shinyapps.io/prs-ra/
https://xistance.shinyapps.io/prs-ra/
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features that can robustly predict disease with good 
potential for clinical application.
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Fig. 8  Predictive performance of using PRS in the training set using fivefold cross-validation. ROC-AUC curves with Accuracy, Sensitivity, and 
Specificity of PRS using a Logistic Regression, b Naïve Bayes, c Random Forest, d XGBoost, and e Support Vector Machine (SVM) classifiers
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 Additional file 1: Figure S1–Figure S15. Figure S1. Principal Com-
ponent Analysis (PCA) of Case and Control samples from WXS and WGS 
respectively for the evaluation of underlying batch effects. (a) Plot of % 
of variance explained by each principal component (PC). (b) PCA plot of 
the first two principal components of variation based on the combined 
case and control samples from differing data sources. (c) Boxplots of the 
case and control samples within PC1. (d) Boxplots of the case and control 
samples within PC2. Figure S2. Predictive performance of 9 selected SNPs 
in unseen Test Set 1. ROC-AUC curves with F1 score, Accuracy, Sensitivity, 
and Specificity of 9 selected SNPs using (a) Logistic Regression, (b) Naïve 
Bayes, (c) Random Forest, (d) XGBoost, and (e) Support Vector Machine 
(SVM) classifiers. Figure S3. Predictive performance of 9 selected SNPs in 
unseen Test Set 2. ROC-AUC curves with F1 score, Accuracy, Sensitivity, 
and Specificity of 9 selected SNPs using (a) Logistic Regression, (b) Naïve 
Bayes, (c) Random Forest, (d) XGBoost, and (e) Support Vector Machine 
(SVM) classifiers. Figure S4. Predictive performance of 9 selected SNPs in 
unseen Test Set 3. ROC-AUC curves with F1 score, Accuracy, Sensitivity, 
and Specificity of 9 selected SNPs using (a) Logistic Regression, (b) Naïve 
Bayes, (c) Random Forest, (d) XGBoost, and (e) Support Vector Machine 
(SVM) classifiers. Figure S5. Predictive performance of 9 selected SNPs 
in training set using fivefold cross-validation. Precision-Recall curves of 9 
selected SNPs using (a) Logistic Regression, (b) Naïve Bayes, (c) Random 
Forest, (d) XGBoost, and (e) Support Vector Machine (SVM) classifiers. 
Figure S6. Predictive performance of 9 selected SNPs in unseen Test 
Set 1. Precision-Recall curves with of 9 selected SNPs using (a) Logistic 
Regression, (b) Naïve Bayes, (c) Random Forest, (d) XGBoost, and (e) Sup-
port Vector Machine (SVM) classifiers. Figure S7. Predictive performance 
of 9 selected SNPs in unseen Test Set 2. Precision-Recall curves with of 9 
selected SNPs using (a) Logistic Regression, (b) Naïve Bayes, (c) Random 
Forest, (d) XGBoost, and (e) Support Vector Machine (SVM) classifiers. 
Figure S8. Predictive performance of 9 selected SNPs in unseen Test Set 
3. Precision-Recall curves with of 9 selected SNPs using (a) Logistic Regres-
sion, (b) Naïve Bayes, (c) Random Forest, (d) XGBoost, and (e) Support 
Vector Machine (SVM) classifiers. Figure S9. Predictive performance of cal-
culated PRS in unseen Test Set 1. ROC-AUC curves with F1 score, Accuracy, 
Sensitivity, and Specificity of PRS using (a) Logistic Regression, (b) Naïve 
Bayes, (c) Random Forest, (d) XGBoost, and (e) Support Vector Machine 
(SVM) classifiers. Figure S10. Predictive performance of calculated PRS in 
unseen Test Set 2. ROC-AUC curves with F1 score, Accuracy, Sensitivity, 
and Specificity of PRS using (a) Logistic Regression, (b) Naïve Bayes, (c) 
Random Forest, (d) XGBoost, and (e) Support Vector Machine (SVM) classi-
fiers. Figure S11. Predictive performance of calculated PRS in unseen Test 
Set 3. ROC-AUC curves with F1 score, Accuracy, Sensitivity, and Specificity 
of PRS using (a) Logistic Regression, (b) Naïve Bayes, (c) Random Forest, 
(d) XGBoost, and (e) Support Vector Machine (SVM) classifiers. Figure S12. 
Predictive performance of calculated PRS in the training set using fivefold 
cross-validation. Precision-Recall curves of PRS using (a) Logistic Regres-
sion, (b) Naïve Bayes, (c) Random Forest, (d) XGBoost, and (e) Support 
Vector Machine (SVM) classifiers. Figure S13. Predictive performance of 
calculated PRS in unseen Test Set 1. Precision-Recall curves of PRS using 
(a) Logistic Regression, (b) Naïve Bayes, (c) Random Forest, (d) XGBoost, 
and (e) Support Vector Machine (SVM) classifiers. Figure S14. Predic-
tive performance of calculated PRS in unseen Test Set 2. Precision-Recall 
curves of PRS using (a) Logistic Regression, (b) Naïve Bayes, (c) Random 

Forest, (d) XGBoost, and (e) Support Vector Machine (SVM) classifiers. 
Figure S15. Predictive performance of calculated PRS in unseen Test Set 
3. Precision-Recall curves of PRS using (a) Logistic Regression, (b) Naïve 
Bayes, (c) Random Forest, (d) XGBoost, and (e) Support Vector Machine 
(SVM) classifiers. 

Additional file 2: Table S1–Table S5. Table S1. Summary of studies 
that have used of genetics in the prediction of RA. Table S2. Detailed 
information of the 9 selected SNPs and their genes from feature selection. 
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