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Abstract 

Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients 
present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. 
The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial 
dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there 
is a possible genetic component that is poorly understood. This review summarizes current literature on genetic 
risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the 
biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been 
associated with MSA including genes related to Parkinson’s disease (PD), oxidative stress, inflammation, and tandem 
gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that 
modulate MSA risk, including complex gene–gene and gene-environment interactions, which influence the disease 
phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of 
how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification 
of novel pathophysiologic clues, and pave the way for translational research into the development of disease-
modifying therapeutic targets.
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Introduction
Multiple system atrophy (MSA) comprises a group of 
clinically heterogenous, uniformly fatal, progressive neu-
rodegenerative conditions associated with dysautonomia, 
parkinsonism, cerebellar dysfunction and corticospinal 
degeneration [1–4]. MSA is broadly categorized into the 
Cerebellar subtype (MSA-C) and Parkinsonism subtype 
(MSA-P), depending on the predominant neurological 
presentation [5]. Recently, the International Parkinson 

and Movement Disorder Society (MDS) revised the diag-
nostic criteria for MSA using an evidence-based and con-
sensus-based approach [6]. These criteria classify MSA 
into four groups with varying diagnostic certainty: neu-
ropathologically established MSA, clinically established 
MSA, clinically probable MSA, and possible prodromal 
MSA.

MSA is regarded as an ɑ-synucleinopathy, with its 
neuropathological hallmark being glial cytoplasmic 
inclusions (GCI) in oligodendrocytes [7–9]. The exact 
pathogenesis is poorly understood, but has been postu-
lated to arise from ɑ-synuclein overexpression and accel-
erated uptake in neurons and oligodendrocytes, impaired 
ɑ-synuclein degradation from autophagic and protea-
somal dysfunction, mitochondrial dysfunction, oxidative 
stress, and neuroinflammation [10].

MSA is widely regarded as a primarily sporadic disease, 
with a possible genetic component (Fig.  1). Familial 
forms are rare, with pooled estimates of heritability 
approximated to be 2.09–6.65% [11] alongside case 
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reports of multiplex families with both autosomal 
dominant and autosomal recessive inheritance patterns 
[12–16].

Current knowledge of the genetics of MSA is lim-
ited. To address this gap, we provide a concise review of 
published literature on genetic risk factors and poten-
tial pathogenic genes and loci linked to both sporadic 
and familial MSA, and outline the biological basis and 
evidence that support the genetic underpinnings in its 
pathophysiology. Furthermore, we highlight complex 
gene–gene and gene-environment interactions which 
influence the disease phenotype and have clinical signifi-
cance in both presentation and prognosis.

SNCA
The SNCA gene (ɑ-synuclein, 4q22.1) encodes 
ɑ-synuclein, a protein that is found mainly in the pre-
synaptic terminals of neurons and contributes to synap-
tic transmission [17, 18]. Similar to Parkinson’s disease 
(PD), SNCA has been of great interest since MSA is 
classified as an ɑ-synucleinopathy and GCI mainly 
contains filamentous, insoluble ɑ-synuclein. To date, 
no pathogenic SNCA mutation have been associated 

with monogenic forms of MSA. Although several case 
studies have reported rare mutations (including G51D, 
A53E), they have not been replicated in larger cohorts 
[19–21].

Studies looking at SNCA SNPs have been more 
promising. Scholz et  al. [22] identified SNCA variants 
rs11931074 and rs3857059 to be significantly associated 
with MSA in a European population, with the former 
association also observed by Ross et al. [23]. A separate 
European study found another two SNCA variants 
that were linked to MSA, rs3822086 and rs3775444 
[24]. However, these findings could not be replicated in 
Asian populations [25–27] and this could, in part, be 
related to the differences in the frequency of the risk 
alleles in different populations since the prevalence 
of the rs11931074 “T” allele is considerably higher in 
Asian populations (51–58%) than European populations 
(2–10%) [25]. All Asian studies also recruited clinically-
diagnosed MSA patients only, compared to the European 
studies which included pathologically-diagnosed MSA 
patients. Other SNCA variants, including specific SNPs 
linked to PD (rs2736990 and rs356220) and a set of 

Fig. 1  Both genetic and environmental factors influence MSA risk. Genetic factors, whose expression is influenced by epigenetics and ethnicity, 
include genes associated with monogenic forms of PD, genes related to oxidative stress, genes with repeat expansions, genes related to 
inflammation, other genes related to PD and genes identified through MSA GWAS. The pathophysiology is further complicated by complex gene–
gene and gene-environment interactions that have yet to be fully elucidated. GWAS genome-wide association study, MSA Multiple System Atrophy, 
PD Parkinson’s Disease
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tagging SNPs estimated to represent 95% of haplotype 
diversity have not been shown to modify MSA risk 
[28–30].
SNCA copy number variations (CNV) have been asso-

ciated with MSA, with copy number gains and result-
ing increase in SNCA expression leading to greater 
ɑ-synuclein inclusions in both the non-neuronal and 
neuronal cells of MSA subjects [31–33]. This was cor-
related with earlier onset of disease, reflecting the clini-
cal implications of gene dosage on disease presentation. 
An earlier study of 58 MSA cases did not observe any 
SNCA gene multiplication, but there were limitations in 
the methodology as only whole gene multiplication was 
evaluated [34]. Larger cohorts are needed to draw rela-
tions between SNCA CNVs and MSA.

Of note, a genome-wide association study conducted in 
patients with MSA of European ancestry failed to detect 
any association between SNCA and MSA [35]. This may 
be attributed to interpopulation heterogeneity of SNCA, 
as observed by the authors.

LRRK2
LRRK2 (leucine-rich repeat kinase, 12q12), also referred 
to as dardarin or PARK8, is a large protein that has both 
kinase and GTPase activity [36]. Mutations are associated 
with autosomal dominant and sporadic late-onset PD, 
with incomplete and age-variable penetrance [37–39]. As 
pathological studies have revealed significant pleomor-
phism at the cellular level (including Lewy bodies and 
tau/ubiquitin inclusions) [40], various groups have inves-
tigated the association of LRRK2 mutations and other 
neurodegenerative conditions.
LRRK2 G2019S is the most commonly occurring path-

ogenic mutation, especially among the Ashkenazi Jewish, 
North African Arab and Spanish populations [41–43]. 
Studies thus far have failed to establish an association 
between LRRK2 G2019S and MSA [44–46], although 
interestingly a recent case report detected the mutation 
in a Caucasian subject who had pathologically-diagnosed 
MSA [47].

In a large combined US-UK series, LRRK2 M2397T 
polymorphism was protective for MSA, with a stronger 
association observed in the US cohort and for MSA-P/
MSA-mixed patients [48]. A similar negative correlation 
was observed for G1624G, M1646T and N2081D within 
the US group, and N551K and R1398H within the UK 
group, but observed associations did not reach statistical 
significance.

Other LRRK2 variants (R1628P, G2385R) have also 
been investigated but no association has been found [49–
52], with the exception of a case report of a rare variant 
Ile1371Val in an MSA patient [53].

GBA
GBA (glucocerebrosidase, 1q21) homozygous muta-
tions are associated with Gaucher Disease, and more 
than two hundred pathogenic variants have been iden-
tified [54]. Pathogenic GBA variants have been demon-
strated to increase the risk of developing PD [55–59] and 
dementia with Lewy bodies [60, 61]. A large-scale mul-
ticenter study identified twenty heterozygous GBA SNPs 
amongst MSA patients, of which nine are known to be 
pathogenic for Gaucher Disease (R120W, G202R, F213I, 
N370S, G377S, D409H, L444P, L444R, RecNciI) [62]. The 
pooled results across the North American, European, and 
Japanese series were statistically significant, but only the 
North American cohort reached significance when ana-
lyzed separately. One possible explanation could be the 
relatively large proportion of Ashkenazi Jews in North 
America compared to other parts of the world (with the 
exception of Israel), given that Gaucher Disease (espe-
cially type 1) has higher incidence in the Ashkenazi Jew-
ish population compared to other ethnicities [63]. This 
was further supported by US studies which found sig-
nificant associations between GBA SNPs and MSA, with 
one study noting that 3 out of the 6 Ashkenazi Jews in 
the study carried GBA mutations [64, 65]. Comparatively, 
there was no significant relationship between disease-
causing GBA variants and MSA in European and Asian 
populations [66–70]. Functional studies suggest that 
lysosomal dysfunction as a result of GBA deficiency dys-
regulates ɑ-synuclein processing and induces its aggrega-
tion [71, 72]. This relationship is further complicated by 
other molecular regulatory mechanisms, such as the Thy-
roid Hormone Receptor Interacting Protein 12 (TRIP12), 
which ubiquinates glucocerebrosidase and influences 
GBA expression [73].

COQ2 and other oxidative stress‑related genes
COQ2 (coenzyme Q2, polyprenyltransferase, 4q21.23) 
encodes an important enzyme in the Coenzyme Q10 
(CoQ) biosynthetic pathway, with loss-of-function 
mutations resulting in CoQ deficiency and consequent 
increase in mitochondrial oxidative stress with reduction 
in ATP synthesis [74, 75]. Reduction in COQ2 expression 
with corresponding decrease in CoQ and ATP levels have 
been shown in both the brain tissue and plasma of MSA 
patients, implicating CoQ biosynthesis in the pathogen-
esis of MSA [76–78].

The Multiple-System Atrophy Research Collaboration 
(MSARC) first published findings of a possible 
association between COQ2 and MSA after identifying a 
homozygous mutation (M128V-V393A/M128V-V393A) 
and compound heterozygous mutations (R387X/V393A) 
in COQ2 in two multiplex Japanese families [79]. The 
allele frequency of the V393A variant was found to be 
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higher in MSA patients than controls within the Japanese 
series (4.8% vs 1.6%), but the variant was not found in any 
of the MSA patients or healthy controls in the European 
or North American series. In addition, this observation 
was made mainly within the MSA-C subgroup. Although 
the results were not always reproducible [80–84], other 
East Asia population case-control studies and meta-
analyses showed a significant association between the 
V393A variant and MSA-C patients [85–87], suggesting 
that this genetic susceptibility is, at least in part, specific 
to certain populations and ethnicities [88–92]. The rarity 
of V393A polymorphism in the Caucasian population 
may also explain the lack of replicability.

Several other genetic polymorphisms have been 
reported (S107T, M128R, M128V, R387X, R197H, 
S146N, L402F, R173H, A32A, L25V, N386I, L162F), how-
ever larger sample sizes are needed to confirm their asso-
ciation [80–83, 85, 90].

Other genes involved in oxidative stress have been 
evaluated. Soma et al. [93] examined eight genes (CHOP, 
ATF3, CEBPB, SQSTM1, CARS, SLC1A4, ATF4, EIF-
4EBP1) involved in oxidative stress pathways and found 
significant associations between SLC1A4 rs759458 and 
MSA. Secondary analysis further uncovered several 
haplotypes of SLC1A4, SQSTM1 and EIF4EBP1 that 
altered MSA risk. Oxidative stress involves multiple 
complex pathways with various gene–gene interactions, 
thus requires more studies to further elucidate these 
mechanisms.

MAPT
The MAPT gene (microtubule associated protein tau, 
17q21.31) encodes tau, a protein which confers and 
maintains neuronal microtubule stability, and whose 
aberrant deposition in neuronal or glial cells results in 
neurodegenerative disorders known as tauopathies [94–
99]. There are 2 extended MAPT haplotypes H1 and H2, 
with H1 further divided into subhaplotypes (e.g., H1c, 
H1b, etc.) [100]. MAPT has been shown to affect sus-
ceptibility to PD [101], Alzheimer’s Disease [102–104], 
frontotemporal dementia [105], progressive supranuclear 
palsy [106], corticobasal degeneration [107] and demen-
tia with Lewy bodies [108].

An association between H1 haplotype (rs1052553) “A” 
allele and MSA has been reported by some investigators, 
but not for the H1c subhaplotype (rs242557) [109]. The 
same group conducted a follow-up study [110] using a 
larger sample size and six tagging SNPs to capture > 95% 
of the haplotype diversity and define over twenty H1 
haplotypes [111, 112]. When analyzing individual SNPs, 
three variants (rs242557, rs3785883 and rs8070723) 
modulated MSA risk amongst pathologically-diagnosed 
patients. In the haplotype analysis, two risk haplotypes 

(H1x and H1J) were identified amongst pathologically-
diagnosed patients, although this differed from the one 
(H1U) identified amongst clinically-diagnosed patients. 
Separately, two protective haplotypes (H2 and H1E) were 
identified, with the H2 haplotype showing a significant 
association for MSA-C and MSA-mixed subtypes only.

Chen et al. studied MAPT rs242557 in a Chinese pop-
ulation but did not find any relation with MSA, which 
could be attributed to ethnic differences or diagnostic 
inaccuracies since this study included clinically-diag-
nosed patients only.

SCA‑related genes, C9orf72, and other repeat expansions
Spinocerebellar Ataxia (SCA) refers to a broad group of 
genetic disorders where cerebellar ataxia is a common 
feature, with CAG repeat expansions as the most com-
mon underlying genetic anomaly [113, 114]. Trinucleo-
tide repeat expansions in SCA-implicated genes have 
been shown to increase the risk of amyotrophic lateral 
sclerosis and depression [115–119], and affect disease 
severity in Alzheimer’s disease [120].

Studies have identified intermediate and pathologic 
expansions in SCA-related genes in MSA patients. This 
seems to vary between ethnicities as ATXN1 (Ataxin 1) 
and ATXN2 (Ataxin 2) (corresponding to SCA-1 and 
SCA-2 respectively) were implicated in an Italian popula-
tion [121], whereas the majority of patients in a Korean 
population had repeat expansions in TBP (TATA-box 
binding protein) (corresponding to SCA-17) [122]. It is 
unclear if the larger number of CAG repeats in normal 
alleles of ATXN1 and ATXN2 amongst Caucasians is a 
contributory factor [123]. These expansions seem to be 
more associated with MSA-C than MSA-P, but more 
data are still needed as cases have been reported in both 
groups [124]. Interestingly, studies have also shown a 
higher mean CAG repeat length in MSA patients com-
pared to controls [121, 125, 126].

Caution is needed in drawing definitive conclusions as 
all the included studies relied primarily on a clinical diag-
nosis of MSA based on consensus criteria, which may 
lead to diagnostic inaccuracies since both conditions can 
present with cerebellar dysfunction and parkinsonian 
features [127, 128]. This raises the possibility of misdi-
agnosis [129, 130] or dual pathologies [131, 132] rather 
than an underlying genetic association.

The hexanucleotide GGG​GCC​ repeat expansion in 
C9orf72 (chromosome 9 open reading frame 72, 9p21.2) 
is most commonly associated with amyotrophic lateral 
sclerosis and frontotemporal dementia [133–135], but 
has also been detected in rare cases of PD, Alzheimer’s 
Disease, psychosis and atypical parkinsonism [136–143]. 
Goldman et  al. were one of the first to report a link 
between C9orf72 repeat expansion and MSA in a pair of 
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siblings carrying the mutation, and who were each diag-
nosed with clinical MSA and ALS respectively [144]. 
Subsequent publications, which comprised Caucasian 
and Asian cohorts and included pathologically-diag-
nosed MSA patients, could not replicated the findings 
[145–149]. However, a recently published Italian study 
found heterozygous mutations in the pathological range 
in two patients and intermediate/premutation range in 
four patients [150]. Given the small sample size (n = 100) 
and lack of neuropathological diagnosis of this study, 
more work needs to be done to further elucidate the role 
of C9orf72 repeat expansions in MSA.
RFC1 (Replication Factor C Subunit 1) biallelic intronic 

repeat expansions is associated with cerebellar ataxia, 
neuropathy and vestibular areflexia syndrome (CAN-
VAS) [151]. Given the similar clinical presentation with 
MSA-C, pentanucleotide repeat polymorphisms of RFC1 
were investigated in recent studies. Wan et  al. found 
biallelic and heterozygous AAGGG repeat expansions 
in three and thirteen clinically-diagnosed MSA patients 
respectively, but the association did not reach statistical 
significance [152]. Other studies, including one consist-
ing exclusively of pathologically-diagnosed MSA patients 
only, did not identify any RFC1 repeat expansions [153, 
154].

Trinucleotide repeats in NOTCH2NLC is responsible 
for neuronal intranuclear inclusion disease (NIID) [155]. 
Pathogenic GGC repeat expansions (at least 100 repeats) 
were identified in 2.6% of clinically-diagnosed MSA 
patients in one study [156], but were not present in any 
of the MSA patients in another study [157]. In the for-
mer, the patients with GGC repeat expansions had longer 
disease duration, slower progression and ɑ-synuclein-
negative skin biopsies, suggesting a non-MSA condition 
or an underlying dual pathology.

Inflammation‑related genes
Neuroinflammation has been a purported mechanism 
in the pathogenesis of MSA [158–160]. The consequent 
microglial activation, cytokine and chemokine release, 
and pro-inflammatory conditions are thought to acceler-
ate ɑ-synuclein aggregation and oligodendroglial apopto-
sis [161, 162].

Genes encoding various interleukins (IL), TNF-ɑ 
and other inflammatory mediators have thus been an 
area of interest. The high producer allele “C” of gene 
polymorphism TNF-ɑ-1031C/T (rs1799964) was found 
to increase risk of MSA in both genotype distribution and 
minor allele frequency [163, 164]. IL-1ɑ-889 (rs1800587) 
allele “T”-carrying genotypes, associated with higher 
transcriptional activity, were also overrepresented in 
MSA with a positive gene dose effect in Caucasians [165]. 

However, this was not observed in two separate Asian 
series [164, 166].

The IL-8-251 (rs4073) “T” allele was found to increase 
risk of MSA in a dose-dependent manner despite having 
lower transcriptional activity than the “A” allele, a rela-
tionship that strengthened in individuals who also carry 
the intercellular adhesion molecule-1 (ICAM-1: E469K) 
“KK” genotype [167]. IL-1β-511 (rs16944) low producer 
allele “A” was also noted in greater frequency amongst 
MSA patients compared to allele “G” [166], and even 
contributed to earlier onset of disease [164]. This under-
scores the complexity of neuroinflammatory responses, 
especially since some cytokines play critical roles in 
neuronal regeneration and can confer early protection 
against neurodegeneration [168, 169].
TREM2 (Triggering Receptor Expressed On Myeloid 

Cells 2) encodes a receptor that binds TYROBP (TYRO 
protein tyrosine kinase-binding protein) and forms a 
signaling complex that is involved in microglial activa-
tion, neuroinflammation and cytokine production [170]. 
TREM2 variants, specifically rs75932628 (p.R47H), have 
been implicated in neurodegenerative disorders such as 
PD [171], Alzheimer’s Disease [172, 173], amyotrophic 
lateral sclerosis [174] and frontotemporal lobe demen-
tia [175]. This substitution was shown to be associated 
with increased risk of MSA in a Caucasian population, 
although this relationship weakened after adjusting for 
age and sex [176]. It is possible that this loss-of-function 
mutation affects myelin homeostasis and reduces clear-
ance of myelin debris, causing microglial activation. 
Although a separate study in a Chinese population only 
found one patient carrying the T allele [177], this may be 
due to the relative rarity of this polymorphism amongst 
Asians [178].

Shadrin et  al. recently employed a genome-wide 
genetic pleiotropy-informed approach to investigate the 
link between MSA and seven autoimmune diseases [179], 
and found substantial polygenic overlap between inflam-
matory bowel disease and MSA with three shared genetic 
loci (rs4957144 in the first intron of C7, rs12740041 and 
rs116843836 upstream of DENND1B and RSPO4 respec-
tively). A transgenic mice model further showed that C7 
expression in the midbrain was dysregulated. The effects 
for rs4957144 and rs12740041 on MSA and IBD were 
in opposite directionality, suggesting that these shared 
genes likely have complicated and differing pathogenic 
mechanisms on these diseases. It further lends credibil-
ity to the gut-brain axis theory and a connection between 
chronic bowel immune dysfunction and neuroinflamma-
tion [180–182].

The rs3135500 variant in the NOD2 gene, which acti-
vates nuclear factor κB (NK-κB) mediated inflammation, 
was shown to increase risk of MSA and correlate with 
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increased peripheral mononuclear cell mRNA NO2 and 
plasma NOD2 protein levels [183, 184]. Acute phase 
reactant alpha 1-antichymotrypsin (ACT), encoded by 
the SERPINA3 gene, was also found in higher levels in the 
cerebrospinal fluid of MSA patients and correlated with a 
greater distribution of AA genotype compared to healthy 
controls [185]. This genotype also manifested phenotypi-
cally with earlier onset of symptoms and greater progres-
sion of disease compared to non-AA genotypes.

Genetic polymorphisms in IL-1R2, IL-1RA, IL-6, IL-
10, TGF-β1, WNT3, HLA-DRB5 were not found to have 
significantly affected risk for developing MSA [163, 166, 
186].

Other Parkinson’s disease (PD)‑related genes
There are overlapping mechanisms and common path-
ways in the pathogenesis of PD and MSA, given the 
shared clinical and histopathological features, coexist-
ence of both diseases within the same pedigree [15], and 
higher rates of parkinsonism among 1st-degree relatives 
of MSA [14, 187]. The susceptibility risk of genetic pol-
ymorphisms known to be related to PD have thus been 
studied in MSA cohorts.

One study investigated dopamine metabolism-related 
gene polymorphisms known to alter PD risk of pheno-
type (DDC rs921451, TH rs6356, COMT rs4680, MAOB 
rs1799836, DBH rs1611115) [188]. DDC rs921451 minor 
allele “C” was associated with an increased risk of MSA, 
especially in male subjects, while haplotype analysis 
showed the “T-T” haplotype in TH rs6356 and DDC 
rs921451 risk alleles reduced the risk for MSA. DDC 
rs921451 T > C was associated with reduced expression 
or activity of DDC, an enzyme involved in dopamine and 
norepinephrine synthesis [189, 190]. This may conse-
quently result in features of parkinsonism and autonomic 
dysfunction, which are cardinal features in MSA [191, 
192].

Another study found a possible increased risk of MSA 
amongst female patients carrying the NMD3 rs34016896 
minor allele, which has been shown to correlate with 
nigral neuronal loss [193, 194], although it has not been 
shown to conclusively increase PD risk [195, 196].

Other genes and polymorphisms related to PD have 
been studied, but no associations have been found with 
MSA: PARK2 (parkin) [197], PINK1 [197], SREBF1 
(rs11868035) [198], GPNMB (rs156429) [199], FBXO7 
[200], SLC1A2 (rs3794087) [201], TMEM230 [202, 203], 
TMEM106B (rs1990622, rs3173615) [204], VMAT2 
(rs363371, rs363324) [204], LINGO1 (rs11856808, 
rs9652490) [205], LINGO2 (rs10968280, rs13362909, 
rs7033345) [205], RAB7L1 (rs1572931) [206], CHCHD2 
[207], DCTN1 [208] and ATP13A2 [209].

MSA genome‑wide association studies
The only genome-wide association study conducted on 
MSA to date was published by Sailer et al. in 2016 [35]. 
It included subjects of European ancestry recruited from 
European and North American centers, with 291 out of 
918 being pathologically-diagnosed cases. The study 
identified four loci of interest, FBXO47, ELOVL7, EDN1, 
and MAPT, but none surpassed the Bonferroni threshold 
for multiple testing. Notably, COQ2 and SNCA specifi-
cally were not found to significantly modify MSA risk in 
this cohort. Wenick et al. investigated ELOVL7 in a group 
of pathologically-diagnosed MSA patients, but could not 
identify any significant association [210].

Gene‑environment interactions and epigenetics
Analyzing the genetic risk profile of the disease without 
observing its interplay with environmental factors would 
be overly simplistic. There have been various studies 
reporting the association between MSA and various envi-
ronmental risk factors (including organic solvents, plastic 
monomers/additives, pesticides, agricultural activities, 
metals and smoking) [187, 211–214], but data on gene-
environment interactions are limited. A recent case–con-
trol study found differential risks between individuals 
who shared the same SNPs and had varied exposures to 
different environmental factors including smoking, alco-
hol, drinking well water and pesticide exposure [215]. 
Such-gene-environment interactions will be clinically 
relevant since different genotypes may accentuate or 
attenuate the impact of certain environmental factors on 
MSA risk. Similarly, epigenetics is becoming increasingly 
implicated in the development of MSA through regula-
tion of gene expression. Recent genome-wide studies 
have shown altered DNA methylation profiles between 
MSA patients and healthy controls (including hypometh-
ylation of SNCA), some of which are modified by various 
environmental exposures [216, 217]. More work needs to 
be done to delineate such complex relationships.

Genetic model organisms
Animal models have been used to gain insight into the 
genetic basis of MSA [218]. For example, transgenic 
mouse models involving the overexpression of 
ɑ-synuclein in oligodendrocytes have been able to 
replicate MSA pathology and facilitate the understanding 
of GCI-linked neurodegeneration. However, this 
overexpression model may not fully recapitulate 
the processes seen in human model of MSA [219, 
220]. Another transgenic mouse model showed that 
overexpression of ɑ1B-adrenergic receptors produced 
a MSA-like disorder with features of parkinsonism, 
autonomic dysfunction and ɑ-synuclein aggregation 
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in oligodendrocytes [221]. However, the relevance and 
association of ɑ1B-adrenergic receptors to human MSA 
is unclear [222]. At present, there are no ideal MSA 
genetic models that have been developed and this should 
be a priority for investigators.

Discussion and limitations
We present a comprehensive review of genes associated 
with MSA (Table 1). We highlight the possible biological 
mechanisms, outline complex gene–gene and gene-
environment interactions, and show how genetic 
variations influence disease phenotype (Fig. 2).

Despite the interesting observations from genetic stud-
ies in MSA, these must be interpreted with caution. To 
date, no large familial MSA pedigrees and monogenic 
forms have been identified. The genetic association stud-
ies reporting links with several genetic variants and loci 
do not determine an exact cause-effect relationship. 
Certain genes may contain innumerous disease-causing 
variants and haplotypes, thus preventing genome-wide 
association studies from detecting association signals 
from truly pathogenic genes. Most of these gene variants 

appear to confer a small or minimal effect size in the pop-
ulation, suggesting the possibility of other genetic deter-
minants and contribution from environmental factors. 
Each gene may have an underlying set of gene regulators, 
or may in turn regulate other genes, hence adding further 
variables to an already convoluted genetic landscape. The 
sample sizes for most studies are small and do not have 
sufficient power to identify small differences. Further-
more, given that the phenotype of MSA is wide and var-
ied, studies replying on solely clinical features assessed at 
a single time point may not be accurate. Most reported 
studies recruit clinically-diagnosed MSA patients based 
on the consensus statement proposed by Gilman et  al. 
[5], as opposed to neuropathological criteria. One esti-
mate places the clinical diagnostic accuracy of MSA at 
only 62% [223]. Thus, these studies may contain a size-
able minority of patients who do not actually have MSA, 
but rather a MSA-mimic such as other Parkinson-Plus 
syndromes with differing genetic susceptibility.

Fig. 2  Pathophysiological mechanisms and underlying genetic aberrations that modulate MSA risk. The pathological hallmark of MSA is the 
presence of glial cytoplasmic inclusions. Our understanding of disease biology is inadequate, but purported mechanisms include ɑ-synuclein 
overexpression and accelerated uptake, oxidative stress, and microglial activation. These mechanisms are modulated by a range of genes, which 
have been shown to influence disease phenotype. This is further complicated by gene–gene interactions (e.g. IL-8 and ICAM-1), gene-environmental 
interactions (e.g. between COQ2 and organic solvents/pesticides) and epigenetics (e.g. DNA hypomethylation of SNCA). MSA-C Multiple System 
Atrophy (Cerebellar subtype), MSA-P Multiple System Atrophy (Parkinsonian subtype), MSA-Mixed Multiple System Atrophy (Mixed subtype)
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Conclusion and future directions
Although MSA is largely sporadic, genetic studies have 
allowed us to understand potential genetic factors that 
underpin the disease. Current studies have suggested 
possible associations between MSA risk and a wide range 
of gene mutations and polymorphisms. These genes 
include those linked to other common neurodegenerative 
conditions and those which are known to play a major 
functional role on oxidative stress, neuroinflammation, 
and protein degradation. However, thus far no mono-
genic forms of MSA have been identified. Multinational 
and multicenter studies with longitudinal follow up data 
will be helpful in identifying rare gene variants with small 
effect sizes and delineating heterogeneity between vari-
ous age, sex and ethnic subgroups. In addition, large scale 
epidemiologic cohorts will also facilitate the identifica-
tion of gene–gene and gene-environmental interactions. 
Functional studies in both animal and human models 
of the various identified genetic variants/mutations can 
identify novel pathophysiologic clues which may lead to 
development of disease-modifying therapeutic targets 
[224–226].
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