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Abstract 

Background/Aims  Arsenic trioxide (ATO) is the first-line therapeutic drug for acute promyelocytic leukemia. How-
ever, the cardiotoxicity of ATO limits its clinical application. This study aims to explore the long noncoding RNA 
(lncRNA) involved molecular mechanism in ATO-induced cardiotoxicity and to identify available prevention strategies.

Methods  ATO was administered to mice or primary cultured mouse cardiomyocytes. Small interfering RNA target-
ing lncRNA Kcnq1ot1 (si-Kcnq1ot1) was used to knockdown lncRNA Kcnq1ot1. MiR-34a-5p mimic and antisense 
morpholino oligonucleotide targeting miR-34a-5p (AMO-34a-5p) were used to upregulate and downregulate the 
expression of miR-34a-5p, respectively. TUNEL staining was conducted to detect cell DNA damage. Flow cytometry 
assay was used to detect cell apoptosis. Western blot was conducted to detect Bcl-2, Bax and Sirt1 protein expression. 
Real-time PCR was used to detect lncRNA Kcnq1ot1, miR-34a-5p, and Sirt1 mRNA expression. Dual-luciferase reporter 
assay was performed to validate the predicted binding site.

Results  ATO induced apoptosis in cardiomyocytes both in vivo and in vitro. Simultaneously, the expression of 
lncRNA Kcnq1ot1 and Sirt1 was downregulated, and miR-34a-5p was upregulated. MiR-34a-5p has binding sites with 
lncRNA Kcnq1ot1 and Sirt1. Knockdown of lncRNA Kcnq1ot1 induced apoptosis of cardiomyocytes, with increased 
miR-34a-5p and decreased Sirt1 expression. Inhibition of miR-34a-5p attenuated si-Kcnq1ot1-induced apoptosis in 
cardiomyocytes. Therefore, the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 signaling pathway is involved in ATO-induced 
cardiotoxicity. Propranolol alleviated ATO-induced apoptosis in cardiomyocytes both in vivo and in vitro, which was 
related to the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 signaling pathway.

Conclusion  The lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway is involved in ATO-induced cardiotoxicity. Propranolol 
can attenuate ATO-induced cardiotoxicity at least partially through the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway. 
Combined administration with propranolol may be a new strategy for alleviating the cardiotoxicity of ATO.

Keywords  Arsenic trioxide, Cardiotoxicity, LncRNA Kncq1ot1, Propranolol

†Xiuyun Shen and Fengnan Zhi contributed equally to this work

*Correspondence:
Yanan Jiang
jiangyanan@hrbmu.edu.cn
Yunlong Bai
baiyunlong@ems.hrbmu.edu.cn

1 Department of Pharmacology (State‑Province Key Laboratories 
of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular 
Research, Ministry of Education), College of Pharmacy, Harbin Medical 
University, Harbin, China
2 Translational Medicine Research and Cooperation Center of Northern 
China, Heilongjiang Academy of Medical Sciences, Harbin, China
3 College of Bioinformatics Science and Technology, Harbin Medical 
University, Harbin, China
4 Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese 
Academy of Medical Sciences (2019RU070), Harbin, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-03895-0&domain=pdf
http://orcid.org/0000-0003-4202-3676


Page 2 of 15Shen et al. Journal of Translational Medicine  2023, 21(1):52

Introduction
Arsenic trioxide (ATO) is an important clinical therapeu-
tic drug for leukemia [1] and liver cancer [2, 3], which 
also has therapeutic potential for breast cancer [4, 5], 
lung cancer [6, 7], and gastric cancer [8, 9], etc. However, 
ATO can induce some toxic or side effects, including car-
diotoxicity [10, 11], liver toxicity [12], and kidney toxic-
ity [13]. Among them, cardiotoxicity is the main reason 
that limited the clinical use of ATO [14, 15]. However, the 
mechanism underlying ATO-induced cardiotoxicity has 
not been fully elucidated.

Noncoding RNAs, such as microRNAs (miRNAs) and 
long noncoding RNAs (lncRNAs), play pivotal roles in 
various cardiac diseases, such as cardiac hypertrophy, 
myocardial infarction, and heart failure [16–18]. MiR-
NAs can bind to the 3’UTR of target genes, thus regulat-
ing gene expression. LncRNAs can exert gene regulatory 
functions in different ways. In the competing endogenous 
RNA (ceRNA) mechanism, noncoding RNAs (such as 
lncRNAs)  can interact with miRNAs, thus regulating 
target mRNA expression. This mechanism is consid-
ered the Rosetta Stone of a hidden RNA language [19]. 
Many lncRNAs are involved in cardiac apoptosis through 
competitive binding with miRNAs [20]. For example, the 
lncRNA MIRF contributes to cardiac apoptosis through 
regulation of the miR-26a-Bak1 signaling pathway [21].

One of the major mechanisms of ATO-induced car-
diotoxicity is induction of apoptosis [22–24]. Noncoding 
RNAs are also involved in ATO-induced cardiotoxic-
ity. LncRNA NEAT1 was found to be downregulated in 
ATO-treated H9c2 cardiomyocytes. Enhanced expres-
sion of lncRNA NEAT1 protected H9c2 cardiomyocytes 
against ATO-induced injury through the miR-124/NF-κB 
signaling pathway [25]. Our previous study demonstrated 
that ATO-induced QT interval prolongation of electro-
cardiograms (ECGs) was related to inhibition of lncRNA 
Kcnq1ot1 [26]. In addition, recent studies verified that 
lncRNA Kcnq1ot1 contributes to the apoptosis process 
[27, 28]. However, the involvement of lncRNA Kcnq1ot1 
in ATO-induced apoptosis of cardiomyocytes remains 
unclear. Therefore, based on our previous work and the 
existing findings, the present study aims to clarify the 
underlying mechanism and to explore the therapeutic 
potential of lncRNA Kcnq1ot1 in ATO-induced cardio-
myocytes apoptosis.

Materials and methods
Animals and treatment
C57BL/6 mice (20–22  g) were obtained from Liaoning 
Changsheng Biotechnology Co., Ltd. (China). The experi-
mental procedure was approved by the Experimental 
Animal Ethics Committee of Harbin Medical University, 

China (No. HMUIRB 20150034). Mice were administered 
ATO (1.5  mg/kg/day, intraperitoneal injection; Harbin 
Yida Pharmaceutical Co., Ltd., China) alone or in com-
bination with propranolol (10  mg/kg/day, intragastric 
administration; YABANG Pharma, China) for 2 weeks.

Primary culture of neonatal mouse cardiomyocytes
Cardiomyocytes were isolated from neonatal mice (1 
to 3  days). Myocardial tissues were digested with 0.25% 
pancreatin (Solarbio, China). After filtering and centrif-
ugation (1500 revolutions per minute at 4 °C for 5 min), 
the isolated cells were collected and cultured in Dulbec-
co’s modified Eagle’s medium (DMEM; HyClone, USA) 
with 10% fetal bovine serum (FBS; BI, Israel) for 1.5  h 
to remove noncardiomyocytes. Cardiomyocytes were 
seeded into another culture plate and incubated under 
5% CO2 at 37 °C [26, 29, 30]. After 48 h, the cardiomyo-
cytes were used for the following experiments.

Treatment and transfection of neonatal mouse 
cardiomyocytes
ATO (5  μM, Harbin Yida Pharmaceutical Co., Ltd., 
China) and propranolol (10 μM; Sigma, USA) were added 
to the culture medium for 48 h. MiR-34a-5p mimic, anti-
sense morpholino oligonucleotide targeting miR-34a-5p 
(AMO-34a-5p) and the corresponding negative con-
trols (miR-NC and AMO-NC) were biosynthesized by 
RIBOBIO (China), and the working concentration was 
5 nmol/250 μL. Small interfering RNA targeting lncRNA 
Kcnq1ot1 (si-Kcnq1ot1) and the negative control (si-NC) 
were biosynthesized by GenePharma (Shanghai, China), 
and the working concentration was 1 OD260/125 μL [26]. 
For the 12-well plate system, each well required 50 μL 
Opti-MEM (Gibco, USA), 3 μL X-tremeGENE siRNA 
Transfection Reagent (Roche, Switzerland) and 9 μL 
miRNA/siRNA. For the 96-well plate system, each well 
required 20 μL Opti-MEM, 0.5 μL X-tremeGENE siRNA 
Transfection Reagent and 1.5 μL miRNA/siRNA. After 
transfection, the culture plates were placed in an incuba-
tor containing 5% CO2 at 37 °C for 48 h.

CCK‑8 assay
Cardiomyocytes were cultured in a 96-well plate at a den-
sity of 2.5 × 104 cells/well. After treatment, the culture 
medium of cardiomyocytes was removed, and CCK-8 
(DOJINDO, China) solution was added. The plate was 
incubated at 37  °C for 2.5 h. The OD value of each well 
was measured at 450 nm. The calculation formulas were 
as follows: Cell viability (%) = (experiment group−blank 
well)/(control group−blank well) × 100% [31]; Inhibition 
rate (%) = (control group−experimental group)/(control 
group−blank well) × 100% [32].
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TUNEL assay
Briefly, 5 µm frozen heart tissue slides or cultured cardio-
myocytes were fixed in 4% paraformaldehyde for 10 min 
and then washed with phosphate buffered saline (PBS; 
HyClone, USA) thrice for 5  min each time, followed by 
incubation with 0.1% Triton X-100 for 2 min and wash-
ing with PBS for 5 min. The slides were blocked with goat 
serum for 20 min and washed with PBS for 10 min, and 
TUNEL reaction mixture (50 μL; Roche, Switzerland) 
was added. The slides were incubated at 37  °C for 1  h, 
washed with PBS for 15  min, incubated with DAPI for 
5 min, and washed with PBS for 10 min. A fluorescence 
microscope (BX53F; OLYMPUS, China) was used to cap-
ture images.

Prediction of miRNA targets
Physical interactions between lncRNAs and miRNAs, 
and between miRNAs and mRNAs were considered to 
predict the mechanism of lncRNA Kcnq1ot1. MiRNA 
targets were predicted using RNAhybrid [33], Miranda 
[34], MIREAP[35], TargetScan [36] and ENCORI [37].

Western blot assay
Total protein was extracted from myocardial tissues and 
cardiomyocytes [38]. The protein content in each lane of 
the same membrane is the same. Each lane was loaded 
with about 30–50 μg cell protein or about 80–120 μg tis-
sues protein. The protein samples were separated via 10% 
SDS-PAGE, transferred to an NC membrane (Pall Cor-
poration, USA), and incubated with primary antibod-
ies, including antibodies targeting GAPDH (ZSGB-BIO, 
China), Bcl-2 (ABclonal, China), Bax (ABclonal, China) 
and Sirt1 (Abcam, Britain), at 4 °C overnight. Afterward, 
the membrane was washed and incubated with second-
ary antibody for 1  h at room temperature. An Odys-
sey infrared fluorescence scanning imaging system was 
used to obtain the images. The densitometry of the pro-
tein bands was quantified using Image Studio software. 
GAPDH served as an internal control to normalize pro-
tein expression levels. The data were normalized to the 
control group data.

Real‑time PCR assay
Total RNA was extracted from myocardial tissues and 
cardiomyocytes using RNAiso Plus (Takara, Japan). A 
NanoDrop spectrophotometer (Thermo Fisher Scien-
tific, USA) was used to detect the RNA concentration 
and the A260/A280 ratio of the samples. An ABI 7500 
Fast Real-time PCR System (ABI, USA) was used to 
perform qRT-PCR analysis with SYBR Green I (Toy-
obo, Japan) [38]. The primer sequences were shown in 
Table 1. U6 and GAPDH served as internal controls for 
miRNA and mRNA/lncRNA, respectively. The relative 
gene expression level was analyzed using the 2−ΔΔCT 
method.

Dual‑luciferase reporter assay
HEK-293 cells were seeded in 24-well plates. Transfec-
tion was performed using Cellfectin II Reagent (Inv-
itrogen, CA, USA) when the confluence of the cells 
was approximately 50%−60%. The wild-type (WT) 
sequence of Kcnq1ot1 is “actgcca”, while the muta-
tion sequence was “ctgattc”. The luciferase density was 
detected using a Dual-Luciferase Reporter Assay Sys-
tem (GloMax™ 20/20; Promega, WI, USA).

Table 1  Primer sequences

Gene name Primer sequences

Kcnq1ot1 Forward: 5’-GCA​CTC​TGG​GTC​CTG​TTC​TC-3’
Reverse: 5’-CAC​TTC​CCT​GCC​TCC​TAC​AC-3’

Sirt1 Forward: 5’-GAC​GCT​GTG​GCA​GAT​TGT​T-3’
Reverse: 5’-GCA​AGG​CGA​GCA​TAG​ATA​CC-3’

GAPDH Forward: 5’-AAG​AAG​GTG​GTG​AAG​CAG​GC-3’
Reverse: 5’-TCC​ACC​ACC​CTG​TTG​CTG​TA-3’

miR-34a-5p Forward: 5’-GTG​GCA​GTG​TCT​TAG​CTG​-3’
Reverse: 5’-TAT​CCA​GTG​CGT​GTC​GTG​-3’
Reverse transcription: 5’-GTC​GTA​TCC​AGT​GCG​TGT​CGT​GGA​
GTC​GGC​AAT​TGC​ACT​GGA​TAC​GAC​ACA​ACC​-3’

U6 Forward: 5’-GCT​TCG​GCA​GCA​CAT​ATA​CTA​AAA​T -3’
Reverse: 5’-CGC​TTC​ACG​AAT​TTG​CGT​GTCAT-3’
Reverse transcription: 5’-CGC​TTC​ACG​AAT​TTG​CGT​GTCAT -3’

Fig. 1  ATO induced apoptosis of cardiomyocytes both in vitro and in vivo. A Representative mouse cardiomyocyte images. Magnification: 200 × ; 
scale bar: 100 μm. B ATO decreased the viability of mouse cardiomyocytes. C ATO increased the inhibition rate of mouse cardiomyocytes. D 
Representative TUNEL staining images of mouse cardiomyocytes. Magnification: 200 × ; scale bar: 100 μm. E Representative TUNEL staining images 
of mouse myocardial tissues. Magnification: 400 × ; scale bar: 40 μm. F ATO increased Bax protein expression in mouse cardiomyocytes. G ATO 
decreased Bcl-2 protein expression in mouse cardiomyocytes. H ATO increased Bax protein expression in mouse myocardial tissues. I ATO decreased 
Bcl-2 protein expression in mouse myocardial tissues. For B, C, one-way ANOVA F value = 63.49 and 63.49, respectively. *P < 0.05, ***P < 0.001 vs. 
control group ; n = 3–4

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Flow cytometry assay
The cells were digested using trypsin without EDTA, 
washed with PBS, and resuspended in 1 × binding 
buffer at a concentration of 2 × 106 cells/mL. The cells 
were stained using an Annexin V-FITC/PI Apoptosis 
Detection Kit (4A BIOTECH, Beijing, China) according 
to the manufacturer’s instructions and detected using 
a BD FACSCelesta™ flow cytometer. The proportion of 
apoptotic cells (Annexin V ( +) PI (−)) was analyzed.

Statistical analysis
Data are presented as the mean ± SEM. Each experi-
ment was duplicated at least three times. Comparisons 
between two groups were analyzed using Student’s t 
test; and comparisons among three or more groups 
were analyzed via one-way ANOVA followed by New-
man-Keuls multiple comparisons. Statistical signifi-
cance was defined as P < 0.05.

Fig. 2  The effect of ATO on lncRNA Kcnq1ot1, miR-34a-5p, and Sirt1 expression in mouse cardiomyocytes and myocardial tissues. A Predicted 
binding sites between miR-34a-5p and lncRNA Kcnq1ot1/Sirt1. B The direct binding site between miR-34a-5p and lncRNA Kcnq1ot1 was validated 
with dual-luciferase reporter assay. C ATO decreased lncRNA Kcnq1ot1 expression in mouse cardiomyocytes. D ATO increased miR-34a-5p 
expression in mouse cardiomyocytes. E ATO decreased Sirt1 mRNA expression in mouse cardiomyocytes. F ATO decreased Sirt1 protein expression 
in mouse cardiomyocytes. G ATO decreased lncRNA Kcnq1ot1 expression in mouse myocardial tissues. H ATO increased miR-34a-5p expression in 
mouse myocardial tissues. I ATO decreased Sirt1 mRNA expression in mouse myocardial tissues. J ATO decreased Sirt1 protein expression in mouse 
myocardial tissues. For B, one-way ANOVA F value = 362.2. ***P < 0.001. For C–J, *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group; n = 3–6
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Results
ATO induced apoptosis in mouse myocardial tissues 
and cardiomyocytes
CCK-8 assay results showed that 5 μM and 10 μM ATO 
reduced the cell viability and increased the inhibition rate 
of cardiomyocytes (Fig.  1A−C). The relatively low and 
effective dose of ATO (5  μM) was selected for further 
experiments. ATO induced apoptosis of cardiomyocytes, 
which presented as an increased number of TUNEL-pos-
itive cells (Fig. 1D), increased Bax protein expression, and 
decreased Bcl-2 protein expression (Fig. 1F, G).

The effect of ATO on cardiomyocytes was vali-
dated in  vivo. ATO increased the number of TUNEL-
positive cells in mouse myocardial tissues (Fig.  1E). 

Simultaneously, similar Bax and Bcl-2 expression changes 
were observed in ATO-treated mouse myocardial tissues 
(Fig. 1H, I).

The effect of ATO on lncRNA Kcnq1ot1, miR‑34a‑5p, 
and Sirt1 expression in mouse myocardial tissues 
and cardiomyocytes
We then explored the mechanism of ATO-induced apop-
tosis. Based on the ceRNA theory, the target of lncRNA 
Kcnq1ot1 was predicted. LncRNA Kcnq1ot1 could bind 
with miR-34a-5p. Moreover, Sirt1 is a downstream tar-
get of miR-34a-5p (Fig.  2A). Dual-luciferase reporter 
assay showed that miR-34a-5p has a direct binding site 

Fig. 3  The effect of miR-34a-5p on Sirt1 expression in mouse cardiomyocytes. A The expression of miR-34a-5p in cardiomyocytes transfected 
with miR-34a-5p mimic. B Upregulation of miR-34a-5p inhibited Sirt1 mRNA expression in mouse cardiomyocytes. C Upregulation of miR-34a-5p 
inhibited Sirt1 protein expression in mouse cardiomyocytes. D The expression of miR-34a-5p in cardiomyocytes transfected with AMO-34a-5p. E 
Downregulation of miR-34a-5p increased Sirt1 mRNA expression in mouse cardiomyocytes. F Downregulation of miR-34a-5p increased Sirt1 protein 
expression in mouse cardiomyocytes. For A–C, *P < 0.05, **P < 0.01 vs. miR-NC group. For D–F, *P < 0.05 vs. AMO-NC group; n = 3–6
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with lncRNA Kcnq1ot1 (Fig. 2B). The expression levels of 
lncRNA Kcnq1ot1, miR-34a-5p, and Sirt1 were measured 
in ATO-treated mouse cardiomyocytes and myocardial 
tissues. The results showed that lncRNA Kcnq1ot1 and 
Sirt1 expression were downregulated and miR-34a-5p 
expression was upregulated in ATO-treated mouse car-
diomyocytes (Fig.  2C–F). Similar results were observed 
in ATO-treated mouse myocardial tissues (Fig. 2G–J).

The effect of miR‑34a‑5p on Sirt1 expression in mouse 
cardiomyocytes
MiR-34a-5p expression was elevated in cardiomyocytes 
transfected with miR-34a-5p mimic (Fig.  3A). Overex-
pression of miR-34a-5p downregulated Sirt1 expression 
in cardiomyocytes (Fig.  3B, C). AMO-34a-5p transfec-
tion inhibited miR-34a-5p and increased Sirt1 expression 
in cardiomyocytes (Fig. 3D–F).

Fig. 4  Inhibition of miR-34a-5p alleviated apoptosis of cardiomyocytes induced by ATO. A Inhibition of miR-34a-5p increased the viability 
of ATO-treated mouse cardiomyocytes. B Inhibition of miR-34a-5p decreased the inhibition rate of ATO-treated mouse cardiomyocytes. C 
Representative TUNEL staining images of mouse cardiomyocytes. Magnification: 200 × ; scale bar: 100 μm. D Downregulation of miR-34a-5p 
decreased Bax protein expression in ATO-treated mouse cardiomyocytes. E Downregulation of miR-34a-5p increased Bcl-2 protein expression in 
ATO-treated mouse cardiomyocytes. F Downregulation of miR-34a-5p increased Sirt1 mRNA expression in ATO-treated mouse cardiomyocytes. G 
Downregulation of miR-34a-5p increased Sirt1 protein expression in ATO-treated mouse cardiomyocytes. For A, B, D, E, F and G, one-way ANOVA F 
value = 66.59, 66.59, 17.14, 6.733, 48.78 and 7.761, respectively. *P < 0.05, **P < 0.01, ***P < 0.001 vs. AMO-NC group. #P < 0.05, ##P < 0.01, ###P < 0.001 
vs. ATO + AMO-NC group; A, B, n = 12; C–G, n = 3–6
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Inhibition of miR‑34a‑5p alleviated ATO‑induced apoptosis 
in cardiomyocytes
The effect of miR-34a-5p on ATO-induced apoptosis in 
cardiomyocytes was measured. Downregulation of miR-
34a-5p relieved the effect of ATO on cell viability and 
the inhibition rate in mouse cardiomyocytes (Fig. 4A, B). 

Moreover, transfection with AMO-34a-5p decreased the 
number of TUNEL-positive cells in ATO-treated cardio-
myocytes (Fig. 4C), accompanied with decreased Bax and 
increased Bcl-2 protein expression (Fig. 4D, E). Simulta-
neously, transfection with AMO-34a-5p also alleviated 

Fig. 5  The effect of lncRNA Kcnq1ot1 knockdown on miR-34a-5p and Sirt1 expression in cardiomyocytes. A The expression of lncRNA 
Kcnq1ot1 was downregulated in si-Kcnq1ot1-transfected cardiomyocytes. B Knockdown of lncRNA Kcnq1ot1 decreased the viability of 
mouse cardiomyocytes. C Knockdown of lncRNA Kcnq1ot1 increased the inhibition rate of mouse cardiomyocytes. D Knockdown of lncRNA 
Kcnq1ot1 upregulated miR-34a-5p expression in cardiomyocytes. E Knockdown of lncRNA Kcnq1ot1 downregulated Sirt1 mRNA expression in 
cardiomyocytes. F Knockdown of lncRNA Kcnq1ot1 downregulated Sirt1 protein expression in cardiomyocytes. *P < 0.05, **P < 0.01 vs. si-NC group; 
n = 3–6

(See figure on next page.)
Fig. 6  Inhibition of miR-34a-5p relieved the apoptosis of cardiomyocytes induced by lncRNA Kcnq1ot1 knockdown. A Inhibition of miR-34a-5p 
increased the viability of mouse cardiomyocytes with lncRNA Kcnq1ot1 knockdown. B Inhibition of miR-34a-5p decreased the inhibition rate of 
mouse cardiomyocytes with lncRNA Kcnq1ot1 knockdown. C Representative TUNEL staining images of mouse cardiomyocytes. Magnification: 
200 × ; scale bar: 100 μm. D Inhibition of miR-34a-5p increased lncRNA Kcnq1ot1 expression in si-Kcnq1ot1-transfected mouse cardiomyocytes. 
E Transfection with si-Kcnq1ot1 increased miR-34a-5p expression, which was reversed by miR-34a-5p inhibition. F Inhibition of miR-34a-5p 
increased Sirt1 mRNA expression in si-Kcnq1ot1-transfected mouse cardiomyocytes. G Inhibition of miR-34a-5p increased Sirt1 protein expression 
in si-Kcnq1ot1-transfected mouse cardiomyocytes. H Inhibition of miR-34a-5p decreased Bax protein expression in si-Kcnq1ot1-transfected mouse 
cardiomyocytes. I Inhibition of miR-34a-5p increased Bcl-2 protein expression in si-Kcnq1ot1-transfected mouse cardiomyocytes. For A, B, and D–I, 
one-way ANOVA F value = 8.525, 8.525, 11.17, 16.29, 29.86, 7.684, 22.66 and 16.11, respectively. * P < 0.05, ** P < 0.01, ***P < 0.001 vs. si-NC + AMO-NC 
group. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. si-Kcnq1ot1 + AMO-NC group; for A, B, n = 10; for C–I, n = 3–4
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Fig. 6  (See legend on previous page.)
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the inhibitory effect of ATO on Sirt1 mRNA and protein 
expression in cardiomyocytes (Fig. 4F, G).

The effect of lncRNA Kcnq1ot1 knockdown on miR‑34a‑5p 
and Sirt1 expression in mouse cardiomyocytes
Transfection with si-Kcnq1ot1 downregulated the 
expression of lncRNA Kcnq1ot1 in cardiomyocytes 
(Fig.  5A). Knockdown of lncRNA Kcnq1ot1 expression 
reduced cell viability and increased the inhibition rate 
of cardiomyocytes (Fig.  5B, C). In addition, miR-34a-5p 
expression was upregulated and Sirt1 expression was 
downregulated after knockdown of lncRNA Kcnq1ot1 
(Fig. 5D–F).

Inhibition of miR‑34a‑5p relieved apoptosis 
of cardiomyocytes induced by lncRNA Kcnq1ot1 
knockdown
The effect of lncRNA Kcnq1ot1 knockdown on cell via-
bility and the inhibition rate was reversed by the inhibi-
tion of miR-34a-5p (Fig. 6A, B). Knockdown of lncRNA 
Kcnq1ot1 increased the number of TUNEL-positive car-
diomyocytes, which was attenuated by transfection with 
AMO-34a-5p (Fig. 6C). In accordance with these results, 
the Bax protein expression was upregulated and Bcl-2 
protein expression was downregulated after knockdown 
of lncRNA Kcnq1ot1 in cardiomyocytes, which was 
reversed by coadministration of AMO-34a-5p (Fig. 6H, I). 
In addition, downregulation of lncRNA Kcnq1ot1 upreg-
ulated miR-34a-5p and downregulated Sirt1 expression. 
However, transfection with AMO-34a-5p attenuated the 
effect of Kcnq1ot1 knockdown (Fig. 6D–G).

Propranolol alleviated ATO‑induced apoptosis in mouse 
cardiomyocytes and myocardial tissues
Subsequently, we explored the therapeutic potential 
of the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 signaling 
pathway in ATO-induced cardiotoxicity. The protec-
tive effect of propranolol on ATO-induced apoptosis 
in cardiomyocytes was detected using flow cytometry 
assay (Fig. 7A, B). Propranolol decreased the number of 
TUNEL-positive cells in ATO-treated mouse cardiomyo-
cytes (Fig. 7C), which also decreased Bax and increased 
Bcl-2 protein expression (Fig.  7D, E). Similar results 

were validated in  vivo. Administration of propranolol 
decreased the number of TUNEL-positive cells in ATO-
treated mouse myocardial tissues (Fig. 7F). Correspond-
ingly, propranolol attenuated the alteration of Bax and 
Bcl-2 expression in ATO-treated mouse myocardial tis-
sues (Fig. 7G, H).

Propranolol attenuated the effect of ATO on the lncRNA 
Kcnq1ot1/miR‑34a‑5p/Sirt1 pathway in mouse 
cardiomyocytes and myocardial tissues
Finally, the effect of propranolol on the lncRNA Kcn-
q1ot1/miR-34a-5p/Sirt1 pathway was detected. ATO 
decreased lncRNA Kcnq1ot1 and Sirt1 expression and 
increased miR-34a-5p expression in mouse cardiomyo-
cytes and myocardial tissues, while propranolol attenu-
ated the effect of ATO (Fig. 8A–H). These in vitro and 
in  vivo results suggest that Propranolol can attenuate 
ATO-induced cardiotoxicity at least partially through 
the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway 
(Fig. 9).

Discussion
The cardiotoxicity of ATO is still a major problem in its 
clinical application. However, the involvement of lncR-
NAs in this process has not been fully clarified. Our 
previous work discovered that lncRNA Kcnq1ot1 is 
involved in the cardiotoxicity of ATO [26]. The present 
study further explored the role and underlying mecha-
nism of lncRNA Kcnq1ot1 in ATO-induced cardiomyo-
cyte apoptosis.

ATO at 10  mg/day  (~ 0.15  mg/kg) is recommended 
for acute promyelocytic leukemia in the clinic. Accord-
ing to the conversion relationship between humans and 
mice, 10  mg/day for humans is approximately equal 
to 1.5  mg/kg for mice. In general, ATO is administered 
continuously for 2 weeks. Therefore, mice were adminis-
tered ATO (1.5 mg/kg) for 2 weeks. For in vitro experi-
ments, the dosage of ATO was screened by CCK-8 assay, 
and the relatively low and effective dose of ATO (5 μM) 
was selected in our experiments. In ATO-treated mouse 
cardiomyocytes and myocardial tissues, the number of 
TUNEL-positive cells was increased, which was asso-
ciated with increased Bax and decreased Bcl-2 pro-
tein expression. These results were in accordance with 

Fig. 7  Propranolol alleviated ATO-induced apoptosis in mouse cardiomyocytes and myocardial tissues. A Representative flow cytometry images. B 
Statistical analysis of the flow cytometry results. C Representative TUNEL staining images of mouse cardiomyocytes. Magnification: 200 × ; scale bar: 
100 μm. D Propranolol decreased Bax protein expression in ATO-treated mouse cardiomyocytes. E Propranolol increased Bcl-2 protein expression 
in ATO-treated mouse cardiomyocytes. F Representative TUNEL staining images of mouse myocardial tissues. Magnification: 400 × ; scale bar: 
40 μm. G Propranolol decreased Bax protein expression in ATO-treated mouse myocardial tissues. H Propranolol increased Bcl-2 protein expression 
in ATO-treated mouse myocardial tissues. For B, D, E, G and H, one-way ANOVA F value = 709, 11.64, 41.51, 8.302 and 5.311, respectively. *P < 0.05, 
**P < 0.01, ***P < 0.001 vs. control group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. ATO group; n = 3–6

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Fig. 8  Propranolol attenuated the effect of ATO on the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway in mouse cardiomyocytes and myocardial 
tissues. A Propranolol increased lncRNA Kcnq1ot1 expression in ATO-treated mouse cardiomyocytes. B Propranolol decreased miR-34a-5p 
expression in ATO-treated mouse cardiomyocytes. C Propranolol increased Sirt1 mRNA expression in ATO-treated mouse cardiomyocytes. D 
Propranolol increased Sirt1 protein expression in ATO-treated mouse cardiomyocytes. E Propranolol increased lncRNA Kcnq1ot1 expression in 
ATO-treated mouse myocardial tissues. F Propranolol decreased miR-34a-5p expression in ATO-treated mouse myocardial tissues. G Propranolol 
increased Sirt1 mRNA expression in ATO-treated mouse myocardial tissues. H Propranolol increased Sirt1 protein expression in ATO-treated mouse 
myocardial tissues. For A–H, one-way ANOVA F value = 10.17, 10.79, 25.16, 153.9, 9.598, 24.71, 12.15 and 4.356, respectively. *P < 0.05, **P < 0.01, 
***P < 0.001 vs. control group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. ATO group; n = 4–8

Fig. 9  Schematic diagram of the mechanism of propranolol in the treatment for ATO-induced cardiotoxicity
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previous findings that ATO can induce apoptosis of 
cardiomyocytes [24, 39, 40]. Then, the target of lncRNA 
Kcnq1ot1 was predicted based on the ceRNA theory. 
The results showed that lncRNA Kcnq1ot1 has binding 
sites with miR-34a-5p. Moreover, Sirt1 is a downstream 
target of miR-34a-5p. The dual-luciferase reporter assay 
results showed that mouse-derived miR-34a-5p has a 
direct binding site with lncRNA Kcnq1ot1. For humans, 
the direct binding site between lncRNA Kcnq1ot1 and 
miR-34a-5p was validated using dual-luciferase reporter 
assay [41]. In addition, the direct binding site between 
miR-34a-5p and Sirt1 has previously been validated using 
dual-luciferase reporter assay [42, 43]. Therefore, the 
lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway may be 
involved in the cardiotoxicity of ATO. The expression of 
lncRNA Kcnq1ot1 and Sirt1 was downregulated and that 
of miR-34a-5p was upregulated in ATO-treated mouse 
myocardial tissues and cardiomyocytes, which is consist-
ent with ceRNA theory.

MiR-34a-5p has been verified to be increased in car-
diomyocytes undergoing apoptosis induced by different 
factors, such as ischemia, hypoxia, and doxorubicin. This 
enhanced expression can aggravate cardiomyocyte apop-
tosis, while inhibition of miR-34a-5p can protect against 
cardiomyocyte apoptosis [44–47]. In our study, miR-
34a-5p was overexpressed or inhibited in cardiomyocytes 
to observe its effect on Sirt1 expression. The upregula-
tion of miR-34a-5p inhibited Sirt1 expression, while the 
downregulation of miR-34a-5p increased Sirt1 expres-
sion. The involvement of the miR-34a-5p/Sirt1 pathway 
was detected by inhibition of miR-34a-5p in ATO-treated 
cardiomyocytes. The inhibition of miR-34a-5p alleviated 
ATO-induced apoptosis in mouse cardiomyocytes and 
attenuated the inhibitory effect of ATO on Sirt1 expres-
sion. Sirt1 is an NAD + -dependent deacetylase that is 
involved in the regulation of cellular senescence and 
apoptosis[48–50]. Enhanced Sirt1 expression exerts a 
protective effect on cardiomyocytes [50, 51]. In addition, 
the miR-34a-5p/Sirt1 pathway contributes to doxoru-
bicin-induced cardiomyocyte apoptosis [47].

The effect of lncRNA Kcnq1ot1 on cardiomyocytes and 
the miR-34a-5p/Sirt1 pathway was then detected. The 
results showed that knockdown of lncRNA Kcnq1ot1 
promoted apoptosis of cardiomyocytes. In addition, miR-
34a-5p was upregulated and Sirt1 was downregulated 
after knockdown of lncRNA Kcnq1ot1 in cardiomyo-
cytes. While, administration of AMO-34a-5p attenuated 
the effect of lncRNA Kcnq1ot1 knockdown. The above 
findings suggest that the lncRNA Kcnq1ot1/miR-34a-5p/
Sirt1 pathway is involved in ATO-induced cardiotoxicity.

Subsequently, we explored the potential of the lncRNA 
Kcnq1ot1/miR-34a-5p/Sirt1 pathway as a therapeutic 
target for ATO-induced cardiotoxicity. Cardioprotective 

drugs may alleviate ATO-induced cardiotoxicity through 
the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway. The 
beta-blocker propranolol is a widely used cardiopro-
tective agent [52]. We explored the effect of proprano-
lol on ATO-induced cardiotoxicity. Coadministration 
of propranolol alleviated ATO-induced apoptosis in 
mouse myocardial tissues and cardiomyocytes. Similarly, 
propranolol has also been shown to alleviate clozap-
ine-induced cardiac oxidative stress injury and cardio-
myocyte apoptosis[53]. Finally, we detected the effect of 
propranolol on the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 
pathway. The results showed that propranolol increased 
lncRNA Kcnq1ot1 and Sirt1 expression, and decreased 
miR-34a-5p expression in ATO-treated mouse cardio-
myocytes and myocardial tissues. These findings suggest 
that propranolol alleviated ATO-induced cardiomyocyte 
apoptosis both in  vitro and in  vivo, which at least par-
tially through the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 
pathway.

Conclusions
In conclusion, the lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 
pathway is involved in ATO-induced cardiotoxicity. 
Propranolol can attenuate ATO-induced cardiotoxicity 
at least partially through the lncRNA Kcnq1ot1/miR-
34a-5p/Sirt1 pathway. Combined administration with 
propranolol may be a new strategy for alleviating the 
cardiotoxicity of ATO. This study revealed a new mech-
anism of ATO-induced cardiotoxicity and a molecular 
basis of combined application of ATO and propranolol, 
which provides new insight into the study and rational 
use of ATO in the clinic.
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