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Abstract 

Background:  Mounting evidence has revealed the dynamic variations in the cellular status and phenotype of the 
smooth muscle cell (SMC) are vital for shaping the atherosclerotic plaque microenvironment and ultimately mapping 
onto heterogeneous clinical outcomes in coronary artery disease. Currently, the underlying clinical significance of 
SMC evolutions remains unexplored in atherosclerosis.

Methods:  The dissociated cells from diseased segments within the right coronary artery of four cardiac transplant 
recipients and 1070 bulk samples with atherosclerosis from six bulk cohorts were retrieved. Following the SMC fate 
trajectory reconstruction, the MOVICS algorithm integrating the nearest template prediction was used to develop a 
stable and robust molecular classification. Subsequently, multi-dimensional potential biological implications, molecu‑
lar features, and cell landscape heterogeneity among distinct clusters were decoded.

Results:  We proposed an SMC cell fate decision signature (SCFDS)-based atherosclerosis stratification system and 
identified three SCFDS subtypes (C1–C3) with distinguishing features: (i) C1 (DNA-damage repair type), elevated 
base excision repair (BER), DNA replication, as well as oxidative phosphorylation status. (ii) C2 (immune-activated 
type), stronger immune activation, hyper-inflammatory state, the complex as well as varied lesion microenvironment, 
advanced stage, the most severe degree of coronary stenosis severity. (iii) C3 (stromal-rich type), abundant fibrous 
content, stronger ECM metabolism, immune-suppressed microenvironment.

Conclusions:  This study uncovered atherosclerosis complex cellular heterogeneity and a differentiated hierarchy of 
cell populations underlying SMC. The novel high-resolution stratification system could improve clinical outcomes and 
facilitate individualized management.

Keywords:  Atherosclerosis, Smooth muscle cell-based, Single-cell RNA-seq, Cell fate decisions, Molecular subtypes, 
Heterogeneity
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Background
Atherosclerosis (AS) or coronary artery disease (CAD), 
the most common form of cardiovascular disease, is 
characterized by the lifelong accumulation and transfor-
mation of lipids, smooth muscle cells (SMCs), inflam-
matory cells, and necrotic cell debris in the intimal 
space underneath a monolayer of endothelial cells [1, 
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2]. Despite the declining incidence in several countries, 
AS remains the leading cause of mortality worldwide 
[3]. Currently, coronary artery contrast CT and cardio-
angiography are broadly but inadequately used to guide 
clinical management due to the diverse clinical outcomes 
of patients with the same disease status. CAD is mainly 
divided into different clinical subgroups according to dif-
ferent clinical manifestations, not adequately encompass-
ing the complex and dynamic behaviour of the disease 
[4]. The development of molecular classification takes the 
plunge towards more effective interventions and provides 
critical insights into AS heterogeneity.

Integration of cell-specific fate mapping and single-cell 
genomics has proved the advancements in decoding the 
genomic codes and is widely used to uncover athero-
sclerotic plaque heterogeneity [5, 6]. SMCs are currently 
reported to play vital roles in plaque stability and pro-
gression via a process of medial proliferation, dedifferen-
tiation, and migration into the intimal lesions in response 
to stimuli [7]. Human genetic studies have refocused 
attention on molecules regulating SMC functions as 
directly causal in CAD [8]. Additionally, the interactions 
and dynamic variations between SMCs and others are 
vital for shaping the atherosclerotic plaque microenvi-
ronment and further mapping onto heterogeneous clini-
cal outcomes [9]. However, most current therapies for AS 
target lipoprotein cholesterol, causing little direct impact 
on SMCs per se [10]. Directly targeting SMC during AS 
provides therapeutic promise, which could be beneficial 
or harmful depending on the trajectories of these cells 
[9].

To tackle this issue, we revealed a roadmap of the cel-
lular fate program in SMCs and a dynamic differentiated 
state-related signature based on human atherosclerotic 
plaque single-cell RNA seq integrated with bulk tran-
scriptome data to define potential targets for early inter-
vention better. On this basis, we further introduced an 
efficient genotyping system, which reflected distinct lev-
els of SMC development and distinguished pathologi-
cal, clinical, and molecular peculiarities at the individual 
level. Our findings provided a high-resolution classifi-
cation system and improved the understanding of AS 
patient heterogeneity from a developmental perspective.

Methods
Available data source and data preprocessing
The human datasets were selected from the Gene Expres-
sion Omnibus database under the National Center for 
Biotechnology Information platform (NCBI), where the 
method of acquisition and application performed com-
plied with relevant guidelines and policies. The analyzed 
data we used in this research were mainly acquired from 
the public database, and hence the need for the local 

ethics committee approval or patient informed consent 
was waived. In total, 1074 samples from seven independ-
ent public cohorts were enrolled from available data-
bases. A discovery cohort consisted of 195 samples, and 
another five independent cohorts were used for valida-
tion, including GSE20680 (GPL4133; discovery cohort: 
pbmc samples from 52 atherosclerosis patients with 
luminal stenosis of ≤ 25%, 56 patients with luminal ste-
nosis > 25% but less than 50%, 87 patients ≥ 70% steno-
sis in > 1 major vessel or ≥ 50% stenosis in > 2 arteries), 
GSE20681 (GPL4133; pbmc samples from 99 atheroscle-
rosis patients with ≥ 50% stenosis in ≥ 1 major vessel, 
99 patients with luminal stenosis of < 50%), GSE90074 
[GPL6480; pbmc samples from 143 stable CAD (sCAD)], 
GSE59867 [GPL6244; pbmc samples from 46 stable CAD 
(sCAD) patients, 111 patients on the first day of acute 
myocardial infarction (AMI), 101 patients after 4–6 days 
of AMI, 95 patients after 1 month of MI, 83 patients after 
6  months of MI], GSE62646 (GPL6244; pbmc samples 
from 14 sCAD patients, 28 patients on the first day of 
AMI, 28 patients after 4–6 days of MI, 28 patients after 
6 months of MI). The dissociated cells from Diseased seg-
ments within the right coronary artery of four cardiac 
transplant recipients were collected to perform analysis 
using 10× genomics platform-based single-cell RNA-seq 
protocol (SRP199578).

The bulk raw data were processed, normalized and 
corrected using limma and sva packages based on dif-
ferent platforms according to previous studies [11–13]. 
The Ensembl database was utilized to obtain gene anno-
tations for each probe set. If multiple probe sets corre-
spond to the same gene, the probe set with the highest 
mean intensity across all samples was retained. The 
limma package was applied for the differential analysis.

Single‑cell RNA‑seq data processing
The quantified single-cell gene expression matrices were 
analyzed through the Seurat pipeline (Version: 4.1.3). 
Cells with more than 7.5% of reads from mitochondria 
genes and less than 500 or more than 3500 genes were 
removed, while genes expressing in more than 3 single 
cells were included. Using “FindIntegrationAnchors” 
and “IntegrateData” functions integrate cells from differ-
ent samples. The top 2000 variable genes were identified 
via “vst” selection, considered as the input features for 
dimensionality reduction using PCA. The first 20 signifi-
cant PCs determined by jackstraw analysis were incor-
porated into UMAP analysis for further dimensional 
reduction and clustering visualization. The findAllMark-
ers function with “wilcox” method was performed to 
identify DEGs from the top 2000 variable genes.
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From clustered cells mapping to corresponding cell types
Highly expressed genes of all cell subclusters were used 
as the potential reference, which was combined with 
canonical cell-type-specific surface markers derived from 
CellMarker for comprehensive annotation of cell type. 
The computational tool scCATCH was also pursued to 
confirm the inferred cell types in an unbiased fashion. 
The known cell surface biomarkers of T cell (CD3D, 
CD3E, CD8A, CD274, CD7), B cell (CD79A, CD79B, 
MS4A1), monocyte/macrophage (LYZ, CD68, CD14, 
CD163, FCGR3A), neural cell/Schwann cell (PLP1, 
S100B), smooth muscle cell (TAGLN, ACTA2, CALD1, 
MYH11, MFAP4, DCN), mast cell (KIT, HDC), endothe-
lial cell (VWF, CD34, PECAM1, VWF, ICAM2), plasma 
cell (JCHAIN, MZB1, IGHG3) were selected for annota-
tion of the plaque cell populations.

Based upon previous studies [6, 9, 14–18], the current 
paradigm was that modulated SMCs can adopt either (1) 
a pro-inflammatory macrophage-like phenotype charac-
terized by LGALS3, CXCL12, CCL4, KLF4 expression, 
that could result in plaque destabilization; (2) an extra-
cellular matrix producing “synthetic” SMC synthetic-
like phenotype characterized by COL1A1, COL1A2, 
COL3A1, MGP, FN1, DCN, BGN, LUM, TNFRSF11B, 
CTHRC1, FMOD, VIM expression, which could contrib-
ute to the protective fibrous cap; (3) mesenchymal stem 
cell (MSC)-like population featured by ENG, NT5E; (4) 
endothelial cell (EC)-like population featured by VCAN1, 
CD34; (5) contractile-like population featured by ACTA2, 
CNN1, MYH11, TAGLN.

Single‑cell RNA‑seq data analysis
For cell cycle discrimination analysis and quantification, 
Cell Cycle Scoring function was performed according 
to previously defined cell cycle-related genes [19]. Cell-
Chat pipeline was conducted following the guidelines at 
https://​github.​com/​sqjin/​CellC​hat. The overall interac-
tion, overall signalling pattern, outgoing/incoming sig-
nalling pattern, and ligand-receptor pair were checked in 
detail step by step.

To analyze the heterogeneity of the differentiated state 
in SMC lineages, the Monocle2 [20] was carried out to 
identify the translational relationships among SMC clus-
ters. In summary, genes for trajectory ordering were fil-
tered from the top genes differentially expressed among 
SMC subclusters using the differentialGeneTest func-
tion. Following the selection of top 2000 ordering genes 
through DDRTress algorithm (q < 0.001), single cells were 
projected onto the lower dimensional space reduced 
from expression profiles and ordered along pseudotime 
with the reduceDimension function. Before identify-
ing the final SMC cell fate decision signature (SCFDS), 
to minimize the noise-induced error and improve the 

practicability and operability of biomarkers, features 
were further screened by integrating multiple algorithms. 
We retained only molecules as SMC cell fate leader genes 
that satisfied the conditions as follows:

(a)	 genes used for ordering cells along the trajectory 
from DDRTress algorithm (q < 0.05);

(b)	 differential genes among different differentiated 
states (q < 0.05);

(c)	 genes that included in top 2000 variable genes 
among different SMC phenotypes.

Subtyping identification through MOVICS
To map differentiation-related gene expression signa-
tures against a series of AS samples, we identified the 
significant gene modules as the final SMC cell fate leader 
genes, used for exploring heterogeneity, through the 
time course analysis by the Mfuzz analysis based on bulk 
level [21, 22]. The CPI and Gaps-statistics were used to 
estimate the optimum number of clusters, which needs 
to be small enough to reduce noise but large enough to 
retain important information. Based on multiple clus-
tering approaches, including ‘SNF’, ‘PINSPlus’, ‘NEMO’, 
‘COCA’, ‘LRAcluster’, ‘ConsensusClustering’, ‘IntNMF’, 
‘CIMLR’, ‘MoCluster’, we performed each algorithm with 
default parameters one by one using SMC cell fate deci-
sion signature upregulated and downregulated modules. 
Afterwards, MOVICS algorithm was applied to perform 
multi-omics integrative clustering and visualization 
for AS subtyping research [23]. Specifically, under the 
idea of consensus, we integrated the clustering results 
derived from different algorithms, ensuring our subtyp-
ing robustness.

Nearest template prediction validation
The nearest template prediction (NTP) is a flexible tech-
nique that evaluates class prediction confidence for the 
single patient [24]. To further test the dependability and 
stability of clusters, the NTP technique developed in the 
CMScaller package was leveraged to validate through 
several cohorts from inconsistent platforms. The subtyp-
ing-related highly differential expressed genes were gen-
erated as the signature gene list to employ in NTP.

Exploration of biological interpretability underlying 
stratification model
Gene sets over-representation analysis (GSORA) based 
algorithm was implemented to assess whether a par-
ticular gene set is over-represented base on the hyper-
geometric test [25]. Terms were sorted by Z-score. 1000 
gene permutations, Z-score cut-off of 1.96, as well as per-
muted p-value cut-off of 0.05 were adopted. The GSEA 

https://github.com/sqjin/CellChat
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algorithm was utilized to decode underlying biometric 
differences behind ASVS at the bulk- and single-level 
[26], which was performed through fgsea R package. 
The number of permutations per gene set was set to 
10,000 to yield a normalized enrichment score (NES). 
Gene sets with a false discovery rate (FDR) < 0.05 were 
deemed statistically significant. The limma package was 
used to decode the similarities and differences between 
distinct subtypes. In our work, gene lists such as colla-
gen and hallmark pathway signatures were retrieved from 
MSigDB [27]. The relative activation states of the path-
way or specific signature among different subtypes were 
evaluated by implementing Gene Set Variation Analysis 
(GSVA) algorithm [28]. It performs a change in coor-
dinate systems, transforming the data from a gene-by-
sample matrix into a gene set-by-sample matrix, thereby 
facilitating the evaluation of pre-defined gene set activi-
ties over each sample.

Cellular heterogeneity estimation
To quantify the relative cell composition fractions in the 
plaque microenvironment, Cell-type ES was obtained 
through a gene signature expression-based cell-type 
enrichment tool xCell (https://​xcell.​ucsf.​edu/) [29]. xCell 
algorithm analyzes transcripts per million for 64 immune 
and stroma cell types according to the previously learned 
information from thousands of pure cell types varying on 
the sources. This analysis is efficient in reducing associa-
tions among closely related cell types, reliably portraying 
the cellular heterogeneity landscape.

Statistical analysis
Both two-tailed p-values of 0.05 and false discovery rate 
(FDR) of 0.05 were indicated to be statistically significant 
in this investigation. Descriptive statistics were calcu-
lated using the mean and standard deviation for continu-
ous variables with a normal distribution. Moreover, only 
continuous variables with an irregular distribution were 
given a median (range). The correlation between two 
continuous variables was evaluated through Pearson’s 
correlation analysis. The Kruskal–Wallis test was uti-
lized to compare the difference among the three groups. 
The association between categorical variables was exam-
ined using the Fisher exact test. R version 4.1.3 software 
was utilized in all data cleaning, statistical analysis, and 
visualization.

Results
The landscapes of human atherosclerotic plaques revealed 
by scRNA‑seq analysis
A summary of participant flow is provided in Fig.  1. 
After filtration and quality control for single-cell RNA 
sequencing data (Additional file  1: Fig. S1), 11,756 cells 

derived from four patients with atherosclerosis were col-
lected. The UMAP reduction analysis clearly identified 
20 clusters and eight cell populations (B cells, Endothelial 
cells (EC), Mast cells, Monocytes/Macrophages (Mono/
Mø), Neural cells, Plasma cells, T cells, SMC) (Fig.  2A 
and Additional file  2: Fig. S2). The cell cycle score dis-
tribution suggested that the majority of the nonimmune 
cell population, such as SMC and EC, was at S phase, 
significantly facilitating biological behaviours during AS 
progression (Fig. 2B). The relative levels of the top differ-
entially expressed genes (DEGs) in each population were 
presented in the heatmap (Fig. 2C). The ligand-receptor 
interactions among atherosclerotic plaque cells were 
determined using the CellChat analysis. SMC cells dis-
played the highest interactions significantly with other 
cells based on communication strength and count, which 
might potentially affect the plaque microenvironment 
(Fig. 2D). In addition, we found that fibrosis and inflam-
matory-related pathways, such as collagen and CXCL sig-
nalling networks, were strengthened between SMC and 
immune cells (Fig.  2E). Indeed, during atherosclerosis, 
SMC most likely contributes to the underlying necrotic 
core and both the fibrous cap through a development 
known as ‘phenotypic modulation’, where SMC de-differ-
entiate and proliferates in response to atherogenic stimuli 
[30, 31].

SMC lineages’ phenotypic and functional heterogeneity
Further analysis was carried out for 5419 SMC extracted 
from plaque only, where we first performed raw cell clus-
tering through UMAP analysis. All SMCs were segre-
gated into nine major cell clusters (SMC1-C9, Fig.  3A). 
Next, each SMC single cell was assigned a cell cycle phase 
score, presenting a higher proliferation score, and the 
highest proliferating cells were observed in SMC1 and 
SMC9 subpopulations (Fig.  3B). Moreover, a significant 
correlation of the most variable genes were identified. 
SMC2, SMC5, and SMC7 were clustered together, and 
the close cell–cell interaction between SMC4 and SMC6 
was also shown, suggesting a tight relationship involved 
during AS progression (Fig. 3C). To figure out the molec-
ular mechanism underlying SMC lineages, GSVA analysis 
revealed that SMC1 involved a wide spectrum of biologi-
cal contexts, indicating an advanced stage of cell devel-
opment. SMC3 and SMC4 were found to be implicated 
in some inflammatory hallmark signalling pathways, such 
as TNFA signalling via NFKB and interferon-gamma 
response. Notably, epithelial-mesenchymal transition-
related processes were selectively enriched in SMC1, 
SMC5, and SMC9 (Fig.  3D). SMC4, SMC6, and SMC7, 
with strong correlations, were characterized by contrac-
tile-like classical markers ACTA2, MYH11, CNN1, and 
TAGLN, related to the mature stage of differentiation. 

https://xcell.ucsf.edu/
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The high levels of mesenchymal stem cell (MSC) markers 
ENG and NT5E suggested that SMCs undergo a trans-
differentiation process during AS. Strikingly, some SMC 
clusters variably expressed collagen, proteoglycan, and 
inflammation signatures (Fig.  3E). The comprehensive 
analyses above indicated polarized populations of dis-
tinct phenotypes and functions that emerged in SMC 
during disease state.

Trajectory reconstruction revealed SMC cell fate decisions
To identify the dynamics of SMC cell state over the 
continuous development process, we performed a 
pseudotime analysis based on the cell continuous devel-
opment process by Monocle2 algorithm (Fig. 4A). SMCs 

bifurcated into vastly five cellular states at two key time 
points. The SMC4 and SMC6 subpopulations primarily 
dominated the starting state of the progression trajectory, 
and mid-state cells were mainly comprised of SMC2, 
SMC5, and SMC7, which were endowed with high plas-
ticity. SMC1, SMC8, and SMC9 were predominantly in 
terminal states (Fig.  4B). Evidently, the contractile-like 
phenotype disappeared gradually with AS progression. 
The fibroblast-like phenotype marker enriched in the 
middle-to-end trajectory and upregulated along pseu-
dotime, but sharply decreased sharply at the end of the 
stage, suggesting the vulnerable features of advanced 
plaques (Fig. 4C).

Fig. 1  Overall workflow and summary of outcomes in each step

(See figure on next page.)
Fig. 2  Single-cell RNA-seq profiling revealed cell landscapes derived from atherosclerotic plaques. A UMAP plot of 11,756 scRNA-seq cells, with 
each color-coded for eight cell types (B cells, Endothelial cells, Mast cells, Monocytes/Macrophages, Neural cells, Plasma cells, T cells, Smooth 
Muscle cells) (left). Expression levels of representative cell type markers on UMAP feature plots (right). B UMAP plot of expected outcomes of the 
cell cycle analysis. C Differential expression analysis showing dysregulated genes across each cell type. The adjusted p-value < 0.01 is presented 
in red, while an adjusted p-value < 0.01 is suggested in black (right). D Communication strength-based and number-based interaction networks 
showing the ligand-receptor interaction prediction focused on SMC and other GBM cells. Solid lines indicated ligand-receptor pairs, with different 
subpopulations color-coded (left). The heatmap displaying the specific inferred interactions number and strength of all cells in the atherosclerotic 
plaque (right). E The circos plots of the ligand-receptor interaction of Collagen and CXCL signaling pathways among cell populations
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Fig. 2  (See legend on previous page.)
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Considering SMC phenotype transition reflects AS 
progression, we identified 1072 genes as SMC cell fate 
leader genes based on the significant cell state and the 
trajectory ordering gene set (Fig.  4D and Additional 
file  3: Table  S1). The Mfuzz expression profiles of 1072 
genes fall into eight groups in their temporal expres-
sion dynamics (Additional file  4: Table  S2). Modules 
that were gradually upregulated and downregulated as 

the AS worsened (Cluster2 and Cluster6) were identi-
fied as the SMC cell fate decision signature (SCFDS) 
(Fig. 4E). SCFDS was subsequently characterized by gen-
erating continuous variables SMC_Score_Upregulated 
and SMC_Score_Downregulated for each sample using 
principal-component 1 score, which outlined significant 
differences between AS risks (Fig.  4F). The  over-repre-
sentation analysis (ORA) revealed that the upregulated 

Fig. 3  Heterogeneity of SMC in human atherosclerotic plaques. A UMAP plot of only SMC, with each color-coded for different subpopulations. 
B UMAP plot projecting the cell cycle states. C Heatmap of correlation among different subpopulations. D Heatmap representation of the GSVA 
analysis for each subpopulation based on hallmark gene sets. E Heatmap of the average expression of SMC phenotype switching marker genes in 
each subpopulation

(See figure on next page.)
Fig. 4  The dynamics of SMC during atherosclerosis progression. A Developmental trajectory of SMC with pseudotime, all subpopulations 
demonstrated in the trajectory. B Developmental trajectory of SMC, with color-coded for pseudotime and cell states. C Dynamical expression 
of representative phenotype switching markers plotted as a function of pseudotime, colored by subpopulations. D The diagram shows the 
overlapping of differential genes among cell states and ordering genes, termed cell fate leader genes. E Eight gene clusters were obtained via the 
soft clustering method (Mfuzz) in cell fate leader genes. F The violin plot illustrates significant differences in the principal-component 1 score for 
three risk statuses based on SCFDS. KEGG (G) and GO (H) enrichment analysis of upregulated (left) and down-regulated (right) SCFDS
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Fig. 4  (See legend on previous page.)
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SCFDS were mainly involved in the extracellular matrix, 
inflammatory response and TGF-beta pathway, while 
down-regulated SCFDS in vasculature development and 
AGE-RAGE pathway (Fig. 4F, H).

The molecular subtyping of atherosclerosis based on cell 
fate decision signature
MOVIES is a clustering approach whereby cluster assign-
ments found on multiple data levels are jointly utilized 
for subtype classification [23]. The optimal subtype 
number was identified as three following the calculation 

Fig. 5  Establishment of three molecular subtypes with heterogeneous illness severity by MOVICS analysis. A Determination of optimal cluster 
number through calculating CPI (blue line) and Gaps-statistics (red line) in AS cohort. B Consensus heatmap based on outcomes from 10 
multi-omics integrative clustering approaches with subtype number of 3 showing perfect diagonal rectangle. C Comprehensive heatmap based 
on consensus across ten algorithms with upregulated and downregulated SCFDS. D Agreement of predicted three subtypes with the severity of 
coronary stenosis in AS cohort. E Comparison of our novel subtype and the severity of coronary stenosis in AS patients. (Fisher exact test; P < 0.05). 
F Alluvial diagram presenting the flow distribution of AS severity between different subtypessubtypes. G The distribution of hallmark signatures 
enrichment score among three subtypes. H The distribution of top subtype-specific activated pathways. I The most predominant upstream 
regulators of each subtype
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of the GAP- and CPI-statistics (Fig.  5A). Based on the 
SCFDS upregulated and downregulated modules, multi-
ple approaches were utilized to decipher the higher-order 
composition of AS and explore how multiple molecular 
levels interacted when integrated. MOVICS was then 
used to seek a stable clustering by hierarchical cluster-
ing (Fig. 5B). Notably, SCFDS upregulated along with the 
AS progression was highly expressed in C2, and down-
regulated SCFDS showed increased expression in C3 
(Fig. 5C). Further, assessing the agreement of novel sub-
types with previous stenosis degree of coronary arter-
ies is significant to reflect the robustness of subtyping 
and determine potential but novel subtypes. Four sta-
tistics: Rand Index (RI), Adjusted Mutual Information 
(AMI), Jaccard Index (JI), and Fowlkes-Mallows (FM), 
suggested the consistency of the original appraise with 
the current subtypes as reference (Fig. 5D). To facilitate 
clinical application, the extent of severity of AS of sub-
types was further explored. Patients in C2 exhibited more 
severe coronary stenosis, while C3 presented a lower risk 
(P < 0.05) (Fig. 5E).

Molecular features characterization for SCFDS subtypes
To depict the specific biological characteristics of 
SCFDS-based subtypes, we calculated the enrichment 
score of each sample based on multiple gene sets. C3, 
the subtype with the lowest risk of acute coronary syn-
drome, was explicitly associated with Myogenesis, 
Angiogenesis and Epithelial–mesenchymal transition 
hallmark, suggesting high activity in collagen and pro-
fibrosis signal pathways. Moreover, the intimal SMC 
secrete an extracellular matrix consisting largely of col-
lagen to induce a protective fibrous cap against rupture 
(Fig. 5G) [7]. Similarly, C3 was mainly involved in ECM 
receptor interaction, Calcium signalling pathway, Dilated 
cardiomyopathy, Hypertrophic cardiomyopathy HCM 
and multiple metabolism-related pathways (Fig.  5H). 
We noticed that C2, where patients exhibited the worst 
situation, was involved in numerous hallmark signals, 
suggesting the complexity of the biological mechanism. 
Hallmarks specifically enriched with C2 were primar-
ily related to inflammation and immune function, espe-
cially TNF signalling via NFKB, Inflammatory response, 
IFN response, TLR receptor pathway, Antigen process-
ing and presentation and Chemokine pathways (Figs. 4I, 
5H). Indeed, even in the absence of infection, chronic 
and low-grade inflammation frequently develops with 
advanced age, contributing to the progression of AS. 
Notably, DNA repair, DNA replication, base excision 
repair, nucleotide excision repair and proliferation-
related pathways showed significant selective enrichment 
in C1, whose severity was considered moderate (Figs. 4I, 
5H). DNA damage in SMC has been demonstrated to 

alter plaque phenotype inhibiting fibrous cap areas in 
advanced lesions [32]. The failure of DNA repair gener-
ated defects in cell proliferation, which in turn resulted in 
ketosis, hyperlipidemia, and increased fat storage, further 
promoting AS [33]. Moreover, the most predominant 
upstream regulators of each subtype were identified in 
Fig. 5I. The ORA provided a more global understanding 
of the dysregulated biological characteristics of the most 
high-risk C2 compared to other subtypes (Fig. 6A). Col-
lectively, we characterized C1 as DNA-damage repair 
type AS and C2 as immune-activated type AS, whereas 
C3 was defined as stromal-rich type AS.

Performance of SCFDS subtypes verified by nearest 
template prediction
In order to assess the presence of SCFDS-based molecu-
lar subtypes in coronary artery disease and myocardial 
infarction, we applied the Broad Institute’s Nearest Tem-
plate Prediction (NTP) method. The expression-based 
classifier for each subtype was generated by identifying 
the top 300 subtype-specific genes upregulated in each 
subtype compared with the other subtypes (Fig.  6B). 
Then, we calculated the distances between each subtype 
template and the samples to be classified, and the sam-
ples were predicted to belong to the subtype with the 
smallest template distance. Overall, the novel SMC cell 
fate classification was proven to be reproducible and 
robust by five independent external cohorts from distinct 
platforms (GSE26081, GSE21545, GSE59867, GSE62646, 
GSE90074) (Fig. 6C).

Assessment of multi‑dimensional potential biological 
implications
Since the phenotypic distinctions could be mirrored by 
the specific pathways, GSEA analysis was performed to 
associate each subtype with its corresponding activated 
signalling. We noticed that except for the pro-inflam-
matory pathway, infection factors and lysosome, insulin 
signalling was significantly activated in C2. Moreover, C2 
was also characterized by the inhibition of steroid hor-
mone metabolism, calcium signalling and extracellular 
matrix (ECM) signalling (Fig. 7A). As expected, the indi-
viduals with the lowest extent of the severity of coronary 
stenosis from C3 possessed conspicuous enrichment 
in steroid hormone and ECM metabolism. C1 patients 
with a moderate degree of blockage could be regulated 
by DNA replication, Mismatch repair, and base excision 
repair (Fig. 7A).

Next, we compared the landscape of cell composition 
within the AS microenvironment using the xCell algo-
rithm. The outcomes indicated that the most inflamma-
tory cells presented a significantly higher infiltration in 
C1 and C2.
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Monocyte, especially macrophage M1, had an increas-
ing and more significant infiltration profile than other 
immune cells in C2. Surprisingly, a significantly higher 
degree of fibroblast and chondrocyte fractions was found 
in C3 (Fig.  7B, C). Collectively, elevated immune levels 
and loss of stroma density were present in the C2 micro-
environment (Fig. 7D).

The change in SCFDS-based SMC_score_upregulated/
downregulated over the development of advanced AS 
has been demonstrated previously (Fig.  4F). Here, we 
assessed the SMC_score of each subtype and found C2 
was in an advanced stage of AS while C3 was in an early 
stage (Fig. 7E). Additionally, AS lesions from the C3 sub-
type were mainly likely to accumulate prominently ECM 
consisting essentially of collagen, which could give rise to 

Fig. 6  Validation of three heterogeneous molecular subgroups classified by nearest template prediction (NTP). A Bar plot of GO pathway ORA 
results showing significantly different biological functional categories involved in the most high-risk subtype. B Heatmap of subtype-specific 
upregulated biomarkers using limma for three identified subtypes. C Heatmap of the template feature expression level between 3 SCFDS subtypes 
in the GSE20681, GSE21545, GSE59867, GSE62646, and GSE90074 cohorts (panels top to bottom)
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a protective (against rupture) (Fig. 7F). To further explore 
the SMC phenotypic switch in AS progression, we evalu-
ated the SMC differentiation markers expression pat-
terns in different molecular subtypes. Subtype C2 was 
characterized by the low level of the fibroblast-like phe-
notype markers (Fig.  7G), which also decreased sharply 
at the end of the SMC differentiation stage at single-cell 
resolution (Fig.  4C). Unsurprisingly, these collagen and 

proteoglycan genes exhibited high expression in C1. In 
contrast, the contractile-like SMC phenotype was rela-
tively lost (Fig. 7G).

Collectively, the above mentioned findings revealed a 
wide biological heterogeneity among AS patient popula-
tion, which may provide implications for further studies 
of meticulous management and individual therapies.

Fig. 7  Multi-dimensional analyses uncovered the biological heterogeneity underlying SCFDS subtyping. A The ridge plot of the top KEGG terms 
depicted by GSEA of three subtypes. B The boxplot displays the xCell enrichment score of different cell subsets using the xCell algorithm. C 
Distribution of cell abundance in the microenvironment among three subtypes. D Distribution difference of the immune score, stroma score, and 
microenvironment score among three subtypes. E The violin plot of significant differences in the principal-component 1 score for three subtypes 
based on SCFDS. F The fibrosis-associated comprehensive pathway and gene set profiles of three clusters. G Distribution difference of the SMC 
differentiation markers expression patterns among three subtypes
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Discussion
Understanding the heterogeneity of AS individuals could 
facilitate more meticulous management to retard the 
development of clinically significant CAD and its con-
sequences [4]. Integration of single-cell genomics, cell-
specific fate mapping, and human genetics contribute 
to decoding cell complexity and novel genetic regulation 
of disease. Here, we leveraged the cellular fate state of 
SMC to discover the novel heterogeneous subtypes of AS 
based on the lineage differentiation hierarchy. As previ-
ously reported, SMC could partly modulate the stability 
and progression of atherosclerotic plaque through phe-
notypic switching in response to atherogenic stressors 
[15, 31], preferably characterizing the biological patterns 
of patients. Notably, current data [6, 9] lacks an in-depth 
analysis of the heterogeneity of SMC populations and the 
genetic mechanism underlying differentiation in humans. 
It is necessary to explore key bioactive molecules gov-
erning SMC cell fate decisions and develop more precise 
stratification.

Our results indicated that SMC exhibited the strong-
est cross-talk with other cells and constituted the core 
communication position in the human atherosclerotic 
plaque. One previous animal study has also reported that 
SMC-derived cells account for a large proportion of cells 
within AS lesions [34]. We further uncovered the exist-
ence of nine distinct SMC phenotypes, characterizing the 
transcriptional profiles and their functional heterogenei-
ties. Currently, it remains uncertain whether the SMC 
phenotypic switching presented predominantly athero-
protective or harmful. Along with disease progression, 
we found that all phenotypes were mapped to five dif-
ferentiation states and two cellular fates (inflammation-
potentiating and ECM-producing). The shift toward a 
pro-inflammatory fate may serve to destabilize the lesion, 
while an extracellular matrix-producing fate may contrib-
ute to the protective fibrous cap, preventing plaque rup-
ture [15]. In this work, the extent of pro-inflammatory 
and ECM markers was demonstrated to be significantly 
upregulated in the mid- and end-stage of the trajectory. 
Notably, the extent of collagen markers was elevated 
more intensely in ECM-producing fate compared to the 
markers in inflammation-potentiating fate. Neverthe-
less, this finding contrasts the previous report that SMC 
transdifferentiated predominantly into macrophage-like 
cells in mouse lesions [35]. Moreover, we also demon-
strated that the loss of contractile phenotype contributes 
to lesion progression. SMC polarization depends on the 
disease microenvironment and transcriptome landscape 
during malignant cell fate commitment. In our opinion, 
SCFDS underlying the programming of the SMC differ-
entiation state was significant to heterogeneous clinical 

efficacy and also an excellent choice to construct molecu-
lar subtypes for AS patients.

To address the lack of an efficient stratification system 
reflecting distinct levels of molecular differentiation and 
development of SMC within lesions, the MOVICS clus-
tering algorithm was conducted to establish a novel AS 
stratification model using SCFDS. The patients were split 
into three novel molecular subtypes. Considering that 
the stability and reproducibility of molecular subtypes 
are fundamental for clinical application, the SCFDS tax-
onomy was rigorously verified in five external cohorts 
with distinct platforms. Our subtyping maintained com-
parable proportions and shared analogical transcriptional 
in the discovery and validation cohorts.

Furthermore, the SCFDS taxonomy also conveyed clear 
molecular and biological interpretability, providing a 
foundation for future risk stratification and personalized 
treatment decision-making. Briefly, the MOVICS cluster-
ing labels were recapitulated as follows.

C1, a DNA-damage repair type, is endowed with 
elevated base excision repair (BER), DNA replication, 
nucleotide excision repair, and oxidative phosphorylation 
status. The coronary stenosis severity of this subtype falls 
in a range among the others. Thus, further interventions 
should focus on how to convert C1 into subtypes with 
better clinical outcomes. We have demonstrated that 
SMC clusters in the intermediate stage of differentiation 
also shared such biological characteristics, suggesting a 
progressed stage in this subtype. Indeed, some human 
DNA damage syndromes are reported to be associated 
with premature atherosclerosis [36]. The development 
of atherosclerotic plaques demonstrated an extensive 
8oxoG accumulation, the most abundant DNA damage 
formed on oxidative exposure [37, 38]. Polymorphisms 
in some BER enzymes also correlated with MI [39], pro-
moting plaque development or vulnerability. Importantly, 
Studies have shown that endogenous levels of oxidative 
DNA lesions in vascular SMCs accelerate plaque devel-
opment, and correcting the BER defect in SMC alone 
can markedly reduce plaque formation [40]. For C1 AS, 
patients are suitable for increased DNA repair and pro-
tection against oxidative DNA damage in SMCs, effec-
tively preventing the condition deterioration.

As described above, C2, an immune-activated type, 
is characterized by stronger immune activation, hyper-
inflammatory state, complex and varied lesion micro-
environment, advanced stage, and the most severe 
degree of coronary stenosis severity; more considera-
tions are needed to facilitate outcomes and therapeutic 
efficacy for patients. Many immune signalling pathways 
were activated in this subtype, with a large amount of 
inflammatory cell infiltration, mainly monocytes and 
macrophages. The macrophages contribute to plaque 
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destabilization by amplifying inflammation, produc-
ing proteases, and attacking the fibrous cap [4]. The 
lysosomal biogenesis process was also enriched in C2, 
suggesting its non-negligible potential to benefit from 
macrophage autophagy-lysosome system-based therapy 
[41, 42]. We also documented that significantly elevated 
neutrophil counts were predominantly assigned to C2. 
Neutrophils, although rare in common atherosclerotic 
lesions, were demonstrated to trigger endothelial ero-
sion through the secretion of matrix metalloproteinases, 
further accelerating artery thrombosis in this subtype 
[1, 43]. Our study further also proved that C2 featured 
by abundant IFN response, indicating C2 patients could 
be intervened by specific inhibitors antagonizing IFN-
related signaling cascades. Indeed, the effect of IFN-
gamma on other cytokines further inhibits the synthesis 
and excretion of ECM and collagen deposition, leading to 
plaque rupture [44].

C3, a stromal-rich type, is distinguished by abun-
dant fibrous content, a high level of ECM metabolism, 
and an immune-suppressed microenvironment. Our 
study indicated that SMC in this subtype was undergo-
ing the transdifferentiation into synthetic’ fibrotic phe-
notype, increasing the protective fibrous cap thickness 
[7]. Except for the mild coronary stenotic lesions, C3 
commonly exhibits decent clinical outcomes due to the 
atherosclerotic lesions with thick fibrous caps tend to be 
more stable than fatty, inflammatory plaque. Thus, fur-
ther interventions should focus on how to block SMC 
transition to the pro-inflammatory and dysfunctional 
phenotype coincident with attenuation of atherosclerotic 
severity, such as all-trans retinoic acid (ATRA) for the 
RA signalling activation [9, 45]. Moreover, we also found 
that C3 was significantly associated with the drug metab-
olism-cytochrome P450 (CYP) pathway, and CYP1B1 
could serve as additional supplements for routine agents 
[46].

Some limitations of this work should be acknowledged. 
Due to the bias base on pure computational biology, our 
study cannot fully recapitulate the diversity of develop-
mental states within SMCs. Further experiments and 
prospective multicenter studies are still imperative to 
validate the biological interpretability of SCFDS and sup-
port the clinical relevance of novel subtyping from multi-
ple dimensions. All the samples enrolled in this research 
were retrospective, and a prospective study should be 
applied to validate the results.

Conclusions
Our study developed and validated an efficient subtyping 
system from the perspectives of molecular differentia-
tion and the development of plaque SMCs. The multifari-
ously biological and clinical peculiarities of this novel 

high-resolution taxonomy contribute to understanding 
disease heterogeneity and facilitate risk stratification and 
individuation management for atherosclerosis patients.
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