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Abstract 

Background:  Growing evidence has suggested that immune-related genes play crucial roles in the development 
and progression of hepatocellular carcinoma (HCC). Nevertheless, the utility of immune-related genes for evaluating 
the prognosis of HCC patients are still lacking. The study aimed to explore gene signatures and prognostic values of 
immune-related genes in HCC.

Methods:  We comprehensively integrated gene expression data acquired from 374 HCC and 50 normal tissues 
in The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) analysis and univariate Cox regression 
analysis were performed to identify DEGs that related to overall survival. An immune prognostic model was 
constructed using the Lasso and multivariate Cox regression analyses. Furthermore, Cox regression analysis was 
applied to identify independent prognostic factors in HCC. The correlation analysis between immune-related 
signature and immune cells infiltration were also investigated. Finally, the signature was validated in an external 
independent dataset.

Results:  A total of 329 differentially expressed immune‐related genes were detected. 64 immune‐related genes 
were identified to be markedly related to overall survival in HCC patients using univariate Cox regression analysis. 
Then we established a TF-mediated network for exploring the regulatory mechanisms of these genes. Lasso and 
multivariate Cox regression analyses were applied to construct the immune-based prognostic model, which consisted 
of nine immune‐related genes. Further analysis indicated that this immune-related prognostic model could be an 
independent prognostic indicator after adjusting to other clinical factors. The relationships between the risk score 
model and immune cell infiltration suggested that the nine-gene signature could reflect the status of tumor immune 
microenvironment. The prognostic value of this nine-gene prognostic model was further successfully validated in an 
independent database.

Conclusions:  Together, our study screened potential prognostic immune-related genes and established a novel 
immune-based prognostic model of HCC, which not only provides new potential prognostic biomarkers and 
therapeutic targets, but also deepens our understanding of tumor immune microenvironment status and lays a 
theoretical foundation for immunotherapy.
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Background
Globally, liver cancer is known as the sixth leading cancer, 
and has the second-highest number of deaths [1]. All over 
the world, more than 600,000 people die of liver cancer 
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each year, and nearly 850,000 new cases occur [1, 2]. 
Hepatocellular carcinoma (HCC) accounts for 85–90% of 
all liver cancers and has received public attention. Despite 
rapid advances in new tests and treatments, the 5-year 
survival rate for HCC is still less than one in five [3]. At 
present, surgery is still the main treatment for early liver 
cancer [4]. However, a significant proportion of patients 
will have postoperative recurrence or distant metastasis 
[5]. Recently, drugs such as sorafenib and regorafenib 
have been shown to be effective against advanced HCC 
[6, 7]. It is worth mentioning that patients with the same 
pathological type and clinical stage often have different 
outcomes after the same treatment, which is mainly due 
to the genetic heterogeneity of patients [8].

The immune system is thought to be a decisive 
factor in the development of cancer [9, 10], including 
HCC. Immune cells are major components of the 
tumor microenvironment and play a role in many key 
steps of HCC development from tumor growth to the 
development of metastasis [11, 12]. Besides, a large 
amount of inflammatory mediators were found to be 
associated with HCC development. IL-22, belongs to 
the cytokine family, was overexpressed in the HCC 
microenvironment and leading to tumor growth [13]. 
Chemokines (e.g. CXCL12, CCL20), as the immune 
molecules members of immune system, also play a crucial 
role in HCC growth, invasion and metastasis [14, 15]. It is 
proven that immunogenicity makes the immunotherapy 
of HCC a promising prospect [16]. Research progress 
discovery that programmed cell death-1 (PD-1) pathway 
is a new target for HCC immunotherapy [17]. As an 
anti-PD-1 monoclonal antibody, nivolumab can block 
PD-1 and restore the body’s anticancer immune response 
by interfering with the signaling pathway, thereby 
preventing T cell activation [18]. In HCC, nivolumab 
showed significant benefits in objective response 
rates and overall survival [19]. Therefore, nivolumab 
may provide a safe, effective and promising treatment 
for HCC [20]. Increasing studies have suggested that 
immune-related genes in HCC are closely related to the 
tumorigenesis and development of HCC [21]. However, 
there is currently no prognostic model based on immune-
related genes to systematically evaluate tumor immune 
environment and predict the overall prognosis of HCC 
patients. Therefore, the construction of an immune-
based prognosis model that can reliably predict HCC 
prognosis is of great clinical significance.

In the first step of this study, we screened differentially 
expressed immune-related genes closely related to HCC 
through bioinformatics analysis of large-scale sequencing 
database. Next, immune‐related genes significantly 
related to prognosis were further detected. Then we 
constructed an immune-related prognostic model by 

integrating immune-related genes for HCC. Moreover, 
the prognostic value of our immune-related prognostic 
model was further validated in an independent 
International Cancer Genome Consortium (ICGC) 
database. We here aimed to provide novel biomarkers 
that would be effective in predicting the prognosis and 
monitoring tumor immune microenvironment in HCC 
patients.

Methods
Data collection
Gene expression data and clinical information of HCC 
samples were acquired from TCGA data portal (https​://
porta​l.gdc.cance​r.gov/cart; up to September 16, 2019). 
Processed RNA-Seq FPKM data of 374 HCC and 50 
adjacent normal HCC tissues were downloaded for 
further analyses. After careful search and examination, 
224 HCC patients were accompanied by hepatitis 
B virus. This included 81 HBsAg positive patients, 
60 HBsAg and HBsAb both positive patients, and 
83 patients whose history risk factors were hepatitis 
B. The International Cancer Genome Consortium 
(ICGC; https​://dcc.icgc.org/searc​h?filte​rs=%7B%22don​
or%22:%7B%22pro​jectI​d%22:%7B%22is%22:%5B%22LIR​
I - J P % 2 2 % 5 D % 7 D , % 2 2 a v a ​i l a b l ​e D a t a​
T y p e s ​% 2 2 : % 7 B % 2 2 i s % 2 2 : % 5 B % 2 2 e x p ​_
seq%22%5D%7D%7D%7D) was a web-based portal that 
provided comprehensive molecular genetic profiles of 
50 different tumor types. ICGC represents a valuable 
database for analyzing cancer genome at the genomic 
and transcriptomic levels. For validation cohort, 
gene expression data and the corresponding survival 
information of 231 HCC patients were retrieved from 
the ICGC database. We download 1811 immune-related 
genes via the Immunology Database and Analysis Portal 
(ImmPort; https​://www.immpo​rt.org/share​d/genel​
ists) database, which contains 17 immune categories 
based on various molecular function [22]. The cistrome 
Cancer (http://cistr​ome.org/Cistr​omeCa​ncer/Cance​
rTarg​et/) represents a useful database for biomedical and 
genetic research and includes totally 318 transcription 
factors (TFs) [23]. In order to investigate the regulatory 
mechanism of immune-related genes, we extracted 
these TFs for subsequent research. Because our data 
were downloaded directly from public databases and we 
strictly abided by the publishing guidelines provided by 
TCGA and ICGC, there were no requirement for ethical 
approvals.

Differential expression analyses
The differentially expressed immune‐related genes and 
TFs in HCC and normal tissues were detected using the 
Wilcoxon test method in R. |log2 foldchange| > 1 and 
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FDR < 0.05 were considered as significant. Heatmaps 
were generated using pheatmap package and volcano 
plots were also conducted in R software. To assess the 
potential biologic functions of differentially expressed 
immune‐related  genes, Gene Ontology (GO) [24] and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [25] were performed by the 
cluster Profiler package [26] in R. Functional categories 
with a adjusted P value < 0.05 were considered as 
significant pathways.

Survival analysis
Only patients with a follow-up time less than 2000 days 
were used for the survival analyses. To investigate the 
prognostic value of differentially expressed immune‐
related genes in HCC patients, univariate Cox analysis 
was implemented by the survival package. Only these 
genes with a P value < 0.01 were considered as prognostic 
immune‐related genes. These prognostic immune‐related 
genes were further analyzed by GO and KEGG analysis. 
To evaluate how TFs regulating these immune‐related 
genes, we first screened prognosis-related TFs using 
univariate Cox analysis with a P value < 0.01 Then the 
correlation test between prognosis-related TFs and 
prognostic immune‐related genes was investigated. 
This step was performed using cor.test function in R, 
whose core method was Pearson test. The correlation 
coefficient and P value were calculated by cor.test. The 
cut-off criteria were set as correlation coefficient > 0.5 
and P < 0.05. In order to make the picture clear, we only 
chose TFs that regulated more than nine immune‐related 
genes. Cytoscape was utilized for constructing and 
visualizing the regulatory network [27].

Construction of the immune‑related signature for HCC
To develop a prognostic model, Lasso and multivariate 
Cox regression analyses were utilized to assess the 
relationship between prognostic immune‐related genes 
expressions and overall survival (OS). To avoid over-fitting 
and delete highly related genes, Lasso Cox regression was 
carried out using survival and glmnet package. Genes 
detected via Lasso algorithm were evaluated by step wise 
multivariate Cox regression analysis. Risk scores were 
acquired  based on genes expression multiplied a linear 
combination of regression coefficient obtained from the 
multivariate Cox regression. Patients were assigned to 
high risk and low risk groups  according to the median 
risk score. The Kaplan–Meier analysis was performed to 
compare overall survival between high risk and low risk 
groups via survival package in R. The receiver operating 
characteristic (ROC) curve was implemented by the R 

software package survival ROC. In addition, univariate 
and multivariate analyses were utilized to assess the 
effect of risk scores on overall survival and several clinical 
features.

Correlation analysis between immune‑related signature 
and immune cells infiltration
To explore the associations between prognostic 
model and immune cells infiltration, we employed 
Tumor Immune Estimation Resource (TIMER) [28], a 
useful resource for comprehensive analysis of tumor-
infiltrating immune cells. TIMER algorithm allows 
users to estimate the composition of six tumor-
infiltrating immune cells subsets (B cells, CD4+ T 
cells, CD8+ T cells, macrophages, neutrophils, and 
dendritic cells). The immune infiltrate levels of HCC 
patients were derived from TIMER website and the 
correlation between the prognostic  model and six 
tumor-infiltrating immune cells were conducted in R.

Genetical alteration of the immune‑related signature
The cBio Cancer Genomics Portal (CBioPortal) 
represents an important online platform for 
visualization and analysis of various cancer genomics 
data [29, 30]. CBioPortal was conducted to analyse 
genetic alterations of prognostic genes in HCC patients 
(TCGA, Provisional). Anti-cancer drugs that target 
these genes were also identified.

External validation of the immune‑related signature
To verify the prognostic value of immune-related 
signature risk score model, we used the ICGC database 
as the validation cohort. The same formula was used to 
calculate risk scores and patients were classified into 
high risk and low risk groups based on the optimal cut-
off point. Kaplan–Meier and ROC curve analyses were 
carried out as described above.

Statistical analysis
All analyses were performed using Rversion 3.5.1. 
Unless otherwise noted, P < 0.05 was considered to be 
significant.

Results
Differentially expressed immune‐related genes and TFs 
in HCC
A total of 329 immune‐related genes (267 upregulated 
and 62 downregulated) and 117 TFs (108 upregulated 
and 9 downregulated) were identified as differentially 
expressed in HCC tissues compared with normal 
tissues. The heat maps revealed that HCC samples can 
be obviously distinguished from the normal samples 
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according to differentially expressed immune‐related 
genes and TFs (Fig.  1a, b). Volcano plots shows the 
distribution of differentially expressed immune‐
related genes and TFs between HCC and normal 
controls (Fig.  1c, d). The 329 differentially expressed 
immune‐related  genes were further analyzed by GO 
and KEGG analysis. GO analysis revealed that primary 
functional categories in the biological processes 
(BP) were leukocyte migration, positive regulation 
of cytokine production and positive regulation of 
defense response. For cellular components (CC), the 

major enriched GO terms were receptor complex 
and external side of plasma membrane. The most 
enriched cellular components (CC) were receptor 
ligand activity, cytokine activity and cytokine receptor 
binding (Fig.  2a). KEGG pathway indicated that the 
differentially expressed immune‐related genes were 
mainly involved in Cytokine–cytokine receptor 
interaction, MAPK signaling pathway and PI3K-Akt 
signaling pathway (Fig. 2b).

Fig. 1  Differentially expressed immune-related genes and transcription factors (TFs) in hepatocellular carcinoma (HCC). a Heatmap of significantly 
differentially expressed immune-related genes in HCC. The color from green to red represents the progression from low expression to high 
expression. b Volcano plot of differentially expressed immune-related genes. The red dots in the plot represents upregulated genes and green dots 
represents downregulated genes with statistical significance. Black dots represent no differentially expressed genes. c Heatmap of significantly 
differentially expressed TFs in HCC. Red represents higher expression while green represents lower expression. d Volcano plot of differentially 
expressed TFs in HCC. Colored dots represent differentially expressed TFs and black dots represent no differentially expressed TFs
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Fig. 2  Functional enrichment analysis of differentially expressed immune-related genes. a Gene ontology analysis; From top to bottom, the figure 
represents biological process, cellular component and molecular function, respectively. b The top 30 most significant Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways
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Screening of immune‑related genes with prognostic value 
in HCC
To determine the differentially expressed immune‐
related  genes with prognostic characteristics, the 329 
genes expression in the 337 HCC samples were evaluated 
by univariate Cox analysis. Totally, 64 immune‐related 
genes were found to be related to OS. The prognostic 
immune‐related genes were shown in Table  1. GO and 
KEGG analysis suggested that these prognostic immune‐
related genes mainly participated in semaphorin–plexin 
signaling pathway, ErbB signaling pathway, Hepatitis C. 
These pathways were shown to be significantly correlated 
with the development of cancer (Fig. 3a, b).

TF regulatory network
To explore the regulatory mechanisms of prognostic 
immune‐related genes, we selected the prognosis-related 
TFs among HCC patients. Univariate Cox regression 
analysis detected that 54 TFs were correlated to patient 
overall survival (Table  2). We established a regulatory 
network according to 54 TFs and 64 immune‐related 
genes. We built the TF regulatory network in three 
steps: (1) 54 prognosis-related TFs and 64 prognostic 
immune‐related genes were selected. (2) The correlation 
test between each TF and each immune‐related gene 
was conducted using cor.test function, whose core 
method was Pearson test. Based on the cut-off criteria, 12 
prognosis-related TFs and 32 prognostic immune‐related 
genes were identified to establish the network. (3) Here, 
we utilized Cytoscape to construct and visualize the main 

Table 1  General characteristics of  prognostic immune‐
related genes

Gene 
symbol

logFC FDR HR P-value

ANGPT1 1.547874506 6.91E−08 1.590922357 0.000591915

AP3B1 1.258960075 4.13E−23 1.151791139 0.000260954

BIRC5 4.814625294 4.67E−26 1.029946214 6.85E−06

BRD8 1.33190695 2.91E−23 1.126741791 0.001638443

CACYBP 1.748309409 3.02E−25 1.050633887 3.28E−07

CANX 1.102288423 1.49E−20 1.004139804 0.002069851

CD320 1.398696619 7.68E−20 1.020939754 0.000868482

CDK4 1.382141701 4.03E−18 1.036790715 4.85E−06

CKLF 1.626423097 7.18E−22 1.04078873 0.007319747

CMTM3 1.27678529 2.27E−07 1.038755913 0.007999383

CSPG5 3.246433614 1.01E−20 1.442576573 0.002352963

DCK 1.344974898 4.37E−15 1.126006789 2.12E−05

EDNRA 1.11092361 0.000755102 1.20178986 0.007367814

EED 1.255516772 1.86E−23 1.273523516 0.006813691

EGF 5.593952491 1.61E−05 1.364265199 0.003925913

FABP6 5.416594713 6.99E−06 1.077060148 0.003829421

FIGNL2 2.311354994 2.27E−10 1.531957465 0.003674266

GMFB 1.023249329 5.89E−16 1.115051082 0.000394597

GRN 1.20949936 6.40E−20 1.003274994 0.002862808

HDAC1 1.026001495 3.30E−18 1.034280566 6.51E−06

HRAS 1.585403435 1.36E−23 1.03121775 0.000418996

HSP90AA1 1.057758216 3.20E−18 1.003949782 0.000797033

HSPA4 1.230240905 1.44E−24 1.043748238 4.02E−07

IFI30 1.12334786 2.02E−08 2.049042625 0.000288336

IL17D 3.841741735 2.39E−12 1.078068488 0.002795608

IRF5 1.245306971 1.70E−16 1.139673698 0.007186085

ISG20L2 1.25060274 2.91E−23 1.105907508 1.49E−05

KITLG 1.899602508 7.45E−12 1.230984408 1.18E−05

MAP2K2 1.318560825 1.04E−24 1.018137718 0.000185682

MAPK3 1.378505311 1.65E−24 1.071629584 8.76E−05

MAPT 3.72836937 6.84E−24 1.462317341 2.13E−05

MAVS 1.54893751 2.05E−23 1.095286557 0.000752941

MDK 4.344790262 1.73E−23 1.001931972 0.006701426

MICB 1.915426385 3.61E−15 1.142650746 0.004845855

NDRG1 1.903124723 1.66E−11 1.010625267 2.24E−10

NR6A1 1.979350372 1.66E−21 1.276712088 5.01E−05

NRAS 1.044758631 2.90E−16 1.061372436 5.25E−07

OSGIN1 1.503239816 2.23E−07 1.003746458 0.005488354

PGF 1.843288391 9.59E−13 1.15659945 0.008495924

PLCG1 1.664062936 1.34E−20 1.104101656 0.001844618

PLXNA1 2.023359471 6.32E−17 1.163576469 1.21E−05

PLXNA2 1.33437797 9.02E−20 1.217021605 0.008639913

PLXNA3 2.123267013 1.14E−14 1.171143858 0.001892787

PPARG​ 1.20822674 1.43E−10 1.075684273 0.000601202

PPIA 1.30098489 9.41E−26 1.011506615 2.02E−05

PSMD10 1.361273275 1.60E−24 1.044232757 0.000519359

PSMD14 1.205250947 3.10E−23 1.097579688 9.44E−08

PSMD2 1.147131985 1.89E−23 1.019634542 7.89E−05

Table 1  (continued)

Gene 
symbol

logFC FDR HR P-value

PSME3 1.169085013 9.38E−23 1.048566596 3.71E−05

RBP2 4.984713661 5.87E−05 1.018064173 0.000257117

S100A10 1.91428128 8.62E−18 1.002461873 0.003233598

S100A11 1.70750925 3.49E−05 1.001204132 0.001558109

S100A6 1.84072664 9.98E−05 1.00128807 0.006992081

SEMA3F 1.920566843 1.66E−26 1.087890549 0.009965887

SEMA4F 2.078275883 5.47E−13 1.355626695 0.008065557

SEMA5B 3.054072412 2.36E−25 1.170460784 0.009801081

SHC1 1.541730574 1.57E−24 1.011068693 0.001450078

SKIV2L 1.150515308 6.64E−24 1.052992847 0.008204257

SORT1 1.846919333 1.23E−16 1.042842316 0.009849761

SRC 1.862441994 4.49E−10 1.044117871 0.004570868

STC2 2.825099592 5.37E−18 1.030706624 0.000996678

TNFRSF11A 1.526321785 0.00039172 1.317452099 0.001542218

TRAF3 1.193726485 2.95E−15 1.252886114 0.000628119

ZYX 1.078749242 2.23E−12 1.010389289 0.002188303
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regulatory network. As shown in Fig. 4, HCFC1 regulated 
most of the immune‐related genes and occupied the 
dominant position. This transcriptional regulatory 
network revealed the regulatory relationships among 
these immune-related genes. 

Construction of immune‑related prognostic model for HCC
64 prognostic immune‐related genes were subjected to 
Lasso Cox analysis and 21 genes were filtered out. Then 
multivariate Cox analysis were performed and nine 
genes were finally selected to establish a prognostic 
model. The formula was shown as: risk score =  (0.2940 
* expression level of ANGPT1) +  (0.1753 * expression 
level of MAPT) +  (0.1066 * expression level of DCK) +  
(0.0706 * expression level of SEMA3F) +  (0.0703 * 

expression level of IL17D) +  (0.0311* expression level 
of HSPA4) +  (0.0204 * expression level of RBP2) +  
(0.0084 * expression level of NDRG1) +  (0.0052 * 
expression level of OSGIN1). All the nine genes were 
risky prognostic genes with hazard ratio > 1. Risk scores 
were based on genes expression levels multiplied its 
corresponding regression coefficients. Regression 
coefficients were calculated by multivariate Cox 
regression. The risk scores were not only related to 
the expression levels of these genes, but also related 
to the correlation coefficients. Then 337 HCC samples 
were classified into a high risk group (n = 168) and low 
risk group (n = 169) based on the median risk score 
(Fig.  5a). The survival overview and gene expression 
heatmap were presented in Fig. 5b–c. Survival analysis 

Fig. 3  Functional enrichment analysis of prognostic immune‐related genes. a Gene ontology analysis; The outer circle is a bar plot where the 
height of the bar indicates the significance of GO terms. The inner ring shows a scatter plot of the expression (logFC) of differentially expressed 
immune-related genes in each enriched gene ontology term. b Top 8 enriched KEGG pathways for the prognostic immune-related genes
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Table 2  General characteristics of prognostic TFs

Transcription factors logFC FDR HR P-value

ADNP 1.111342546 9.27E−19 1.058451885 0.002474062

ARID3A 3.256724811 1.13E−17 1.045574467 0.008276291

BATF 1.543612769 0.000474464 1.019593757 0.002497978

BRCA1 1.502983199 1.38E−11 1.29448955 0.002745177

CBX2 3.45997956 3.30E−23 1.186383883 8.38E−07

CBX3 1.221810833 4.97E−24 1.02933704 7.80E−05

CBX8 1.871864633 2.01E−25 1.198292974 0.000174928

CDK2 1.065195274 2.01E−11 1.095803202 4.91E−05

CDK7 1.195768424 8.52E−24 1.068973096 0.006247221

CENPA 4.889402591 1.35E−25 1.179109237 1.69E−09

DNMT1 1.906233242 5.00E−20 1.063445055 0.000751632

DNMT3A 1.996223959 1.03E−22 1.191390711 0.00019982

E2F3 1.418711623 6.75E−13 1.103109241 0.009036249

E2F4 1.206904224 1.21E−21 1.071429425 7.56E−05

E2F7 4.285471393 3.88E−23 1.493962132 0.003027944

EED 1.255516772 1.86E−23 1.273523516 0.006813691

EHMT2 2.012149818 5.91E−26 1.053983491 0.003998918

EP400 1.153527493 6.14E−18 1.389348084 0.000263802

EZH2 3.104108848 6.03E−26 1.174112818 2.35E−07

FOXK1 1.929438524 1.31E−23 1.273342188 8.24E−05

FOXM1 4.385308416 2.64E−25 1.063687255 9.77E−06

H2AFX 2.17270105 1.08E−22 1.020169766 5.70E−05

HCFC1 1.374622669 6.19E−23 1.098505344 5.22E−05

HDAC1 1.026001495 3.30E−18 1.034280566 6.51E−06

HSF2 1.292877962 1.21E−17 1.201940551 0.000270883

IRF5 1.245306971 1.70E−16 1.139673698 0.007186085

JMJD6 1.104572283 1.62E−16 1.147919917 5.09E−05

KDM1A 1.000926229 4.91E−21 1.069745907 1.04E−05

KDM5C 1.001989724 8.01E−15 1.061530094 0.004103255

LEF1 3.56711144 1.37E−16 1.117405004 0.009987013

LMNB1 2.014673486 1.11E−14 1.051211802 2.84E−05

MYBL2 5.305148325 2.29E−25 1.026913373 1.05E−06

NCAPG 4.548929596 8.18E−26 1.16392489 1.36E−08

NRF1 1.019899435 3.23E−21 1.272301351 0.002963181

POLR3A 1.047070233 7.33E−22 1.317574436 0.000100998

POLR3G 1.184477344 1.04E−12 1.99297179 4.39E−05

POU2F1 1.093590466 3.01E−18 1.735254091 0.000533304

PPARG​ 1.20822674 1.43E−10 1.075684273 0.000601202

PRKDC 1.5144719 1.73E−19 1.066891069 0.000167653

RBP2 4.984713661 5.87E−05 1.018064173 0.000257117

SAP30 1.292845644 4.27E−17 1.149649393 9.86E−07

SCML2 2.073651192 7.01E−18 1.293235072 0.001143596

SIRT6 1.273792186 1.95E−22 1.100603266 0.000366707

SMAD2 1.054220332 4.40E−21 1.551982434 0.001049848

SMARCA4 1.640491763 2.66E−25 1.048414219 0.006425207

SMARCB1 1.142844803 6.87E−21 1.019578446 0.003634163

SMARCC1 1.173821643 1.48E−18 1.066416216 0.00098243

SNAPC2 1.16836701 1.83E−22 1.13661385 1.34E−05

SOX4 2.015579447 5.09E−07 1.01963735 0.007903766
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indicated that patients in the high risk group showed 
markedly poorer overall survival than those in the 
low risk group (P < 0.0001; Fig. 5d). The area under the 
ROC curve for 1 year, 3 year, and 5 year OS were 0.811, 
0.711, 0.734, suggesting that this prognostic model 
exhibited a good sensitivity and specificity (Fig.  5e). 

The relationships between the risk score model and 
immune cell infiltration were investigated. As shown 
in Fig.  6, dendritic cells, neutrophil and macrophage 
were positive correlated with risk score. However, no 
significant correlations were observed between B cells, 
CD4+ T cells, CD8+ T cells and risk score.

Table 2  (continued)

Transcription factors logFC FDR HR P-value

SRC 1.862441994 4.49E−10 1.044117871 0.004570868

SSRP1 1.014534161 2.39E−20 1.038495674 2.58E−05

SUMO2 1.02926143 8.48E−22 1.022123756 0.003732059

TRIM28 1.405145621 7.40E−24 1.006131502 0.001669502

ZBTB17 1.051057022 9.98E−23 1.240907981 6.11E−06

Fig. 4  The main regulatory network constructed based on prognosis-related transcription factors and prognostic immune‐related genes. The red 
circular represent differentially expressed prognostic immune‐related genes and the green diamond represent prognosis-related transcription 
factors, respectively
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Independence of immune‑related prognostic signature 
from other clinical factors
207 HCC patients with clinical information containing 
gender, age, histological grade, pathologic stage 
and TNM stage were selected for further analysis. 
Univariate and multivariate Cox regression analyses were 
conducted to assess the independent predictive power 
of immune-related prognostic signature. Univariate 
analysis indicated that pathological stage (P < 0.0001), T 
classification (P < 0.0001) and immune-related prognostic 
model (P < 0.0001) were markedly correlated with overall 
survival. After the multivariate analysis, only immune-
related prognostic model remained as an independent 
prognostic factor associated with OS (P < 0.0001; Table 3).

Genetic alterations of nine immune‑related prognostic 
genes
The cBioPortal tool was employed to analyze genomic 
alternations and potential drugs of nine immune-
related prognostic genes. As shown in Fig. 7a, ANGPT1 
and NDRG1 were most commonly altered genes. 
Amplification was the main frequent genetic alterations 

and the nine immune‐related prognostic genes altered 
in 94 (25.2%) of 373 cases. Figure  7b illustrated the 
network built by nine immune-related prognostic genes 
and their 50 most frequently mutated neighbor genes. 
Anticancer drugs targeting these genes were exhibited. 
Among them, two genes (DCK and ANGPT1) were 
currently regarded as drugs targets. We considered that 
other genes might act as potential novel therapeutic 
targets.

Validation of the immune‑related prognostic signature 
by ICGC database
The ICGC database including 231 HCC samples were 
used for the validation of the immune-related signature. 
According to the median risk score, we divided patients 
into high risk (n = 115) and low risk groups (n = 116). In 
agreement with results of TCGA cohort, the Kaplan–
Meier curve demonstrated that patients in the high 
risk group exhibited markedly poorer overall survival 
than those in the low risk group (P < 0.001; Fig. 8a). The 
AUCs for 1  year and 3  year OS were 0.781 and 0.783, 

Fig. 5  Construction of an immune-related prognostic signature for hepatocellular carcinoma. a The risk score distribution of HCC patients in the 
The Cancer Genome Atlas (TCGA) database. b Survival status and duration of patients. c Heatmap of the nine immune‐related genes expression 
in HCC patients. d Survival curves for the low risk and high risk groups. e Receiver operating characteristic curve (ROC) analysis predicted overall 
survival using the risk score
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demonstrating good performance of the immune-
related signature in predicting OS (Fig.  8b). Because 
there was only one patient with a 5-year follow-up 
period, we did not plot a 5-year ROC curve.

Discussion
Hepatocellular carcinoma still remains a lethal 
malignancy with extremely unfavorable prognosis 
globally. Precise prediction of HCC overall survival is of 
great significance for the choice of therapeutic methods 

and amelioration of prognosis. To date, there are no 
reliable and effective biomarkers to accurately predict 
the survival of HCC patients. There is a critical demand 
to identify robust biomarkers and prediction model to 
forecast HCC outcomes.

In the current study, based on the analysis of TCGA 
dataset, 329 differentially expressed immune‐related 
genes were screened out from 374 cases of HCC and 
50 normal tissues. According to the results of the 
GO enrichment, the mentioned genes were primarily 

Fig. 6  Relationships between the risk score model and infiltration abundances of six types of immune cells

Table 3  Univariate and multivariate analyses of overall survival in hepatocellular carcinoma patients of TCGA​

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Age 1.007 (0.988–1.026) 0.495 1.010 (0.990–1.030) 0.322

Gender 0.755 (0.461–1.237) 0.264 1.168 (0.668–2.044) 0.586

Histologic grade 0.915 (0.660–1.269) 0.596 0.888 (0.624–1.264) 0.510

Pathologic stage 1.782 (1.388–2.288) 5.85E−06 0.893 (0.328–2.428) 0.825

T classification 1.725 (1.370–2.172) 3.50E−06 1.784 (0.732–4.348) 0.203

M classification 3.141 (0.984–10.021) 0.053 1.505 (0.387–5.852) 0.555

N classification 1.604 (0.391–6.576) 0.512 2.267 (0.353–14.556) 0.388

Prognostic model 1. 126 (1.089–1.165) 5.02E−12 1.120 (1.079–1.162) 1.88E−09
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associated with immune response. The KEGG pathways 
were mostly concentrated on several cancer-related 
pathways (e.g., MAPK signaling pathway and PI3K–Akt 
signaling pathway). In univariate regression analysis on 
the differentially expressed immune‐related genes, 64 
genes were detected to display significant association 
with OS. To delve into the regulatory mechanisms of 
the prognostic immune‐related genes, a TF-mediated 

network was built to reveal crucial TFs that are capable 
of regulating these immune‐related genes. The main 
network suggested that HCFC1 was the critical key 
regulator in the network. HCFC1 (host cell factor C1), 
belongs to the host cell factor family. It is noteworthy 
that a recent study reported HCFC1 as a clinically hub 
gene that was remarkably correlated with the survival 
time, grade and TNM stage of HCC patients [31]. To 

Fig. 7  Genetic alterations and biological function of nine prognostic immune‐related genes. a The genetic alteration of nine genes in HCC patients 
using the cBioPortal database. b The network contained 59 nodes, including nine query genes and the 50 most frequently altered neighbor genes 
(only five out of nine were correlated with the 50 genes). The relationship between key prognostic immune‐related and cancer drugs was illustrated
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date, the contribution of HCFC1 to the development of 
HCC remains unclear. Further experimental evidence is 
needed to explore the molecular mechanisms of HCFC1 
in HCC.

Recently, gene signatures according to aberrant 
mRNA have attracted wide attention and revealed the 
huge potential in prognosis prediction of HCC. For 
instance, Long et  al. built a four-gene prognostic model 
that showed a good performance for HCC prognosis 
prediction [32]. Another study also constructed a six-
gene prognostic signature for HCC overall survival 
prediction based on gene expression data from TCGA 
[33]. A recent study investigating the prognostic value of 
TP53-associated immune genes in HCC identified and 
validated a two-gene (TREM1 and EXO1) prognostic 
model [34]. However, these studies did not use a large 
number of samples to comprehensively explore the 
relationship between immune genes and prognosis of 
HCC. Compared with the previous researches, this study 
has several advantages: (1) we utilized the specialized 
immunology database, which allowed us to analyze as 
many immune genes as we can. To our knowledge, this 
is the first study to explore the relationships between a 
large number of immune-related genes and prognosis in 
HCC patients. (2) We obtained a number of prognostic 
immune-related genes and established a novel immune-
related prognostic model. This prognostic model 
exhibited a prominent performance for OS prediction 
based on TCGA database. According to the in-depth 

analysis, the immune-related prognostic model was 
demonstrated to be an independent prognostic indicator 
after adjusting to other clinical factors. Subsequently, 
such model that consists of nine immune‐related genes 
was then successfully validated as a prognostic factor in 
an independent ICGC dataset. All the mentioned results 
revealed that immune-related prognostic model could 
act as an effective marker for HCC prognosis prediction.

To characterize the tumor immune microenvironment 
status, the relationships between immune-related 
prognostic model and immune cell infiltration were 
investigated. The data here indicated that higher 
infiltration levels of dendritic cells, neutrophil and 
macrophage may be observed in high risk patients. 
Dendritic cells, neutrophil and macrophage displayed 
positive correlation with immune-related prognostic 
model, revealing that the model may serve as predictor 
for increased immune cells infiltration. A recent study 
reported that intratumoral infiltration by dendritic 
cells had a close relation to the poor prognosis in HCC 
patients [35], which is consistent with our findings. 
An existing study reported that neutrophil infiltration 
within HCC might display an association with a poor 
clinical outcome [36]. Neutrophils contribute to the 
activation, regulation and effector function of  immune 
cells [37]; they are also capable of HCC progression 
by secreting a wide range of cytokines [38], thereby 
demonstrating their crucial role in the pathogenesis 
of HCC. A number of studies have reported that 

Fig. 8  ROC and Kaplan–Meier analysis of the nine-gene signature in International Cancer Genome Consortium (ICGC) datase. a The Kaplan–Meier 
curve of the overall survival between the high risk and low risk groups stratified by the median risk score in ICGC. b ROC analysis of the predictive 
efficiency of the nine-gene prognostic model on overall survival based on risk score
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increased macrophages were related to poor prognosis 
in HCC [39]. Macrophages infiltration within the 
tumor microenvironment could facilitate tumor 
growth, angiogenesis, invasion, as well as metastasis 
[40]. Targeting macrophages have been considered a 
promising adjuvant immunotherapy for HCC patients 
[41, 42]. The role of immune cells in HCC has not been 
fully elucidated. It may be a promising way to cure 
HCC by broadening the relationship between immune 
cells and tumor progression.

Nine immune-related genes that constituted the 
prognostic model were identified as potential biomarkers 
in HCC. Out of the nine genes, RBP2, NDRG1 and 
HSPA have been well studied in HCC compared to other 
immune-related genes. RBP2 (retinol binding protein 2), 
belongs to the Fatty-acid binding protein (FABP) family, 
was reported to be involved in the pathogenesis of diverse 
types of cancer [43]. It has been previously evidenced that 
RBP2 was overexpressed in HCC and was associated with 
unfavorable prognosis of HCC [44]. Overexpressed RBP2 
was markedly correlated with AFP and TNM stage. RBP2 
might be critical to the angiogenesis and progression of 
HCC. Elevated NDRG1 expression was observed in HCC 
and dramatically related to overall survival and tumor 
stage [45]. NDRG1 was suggested to play significant 
roles in the metastasis, recurrence and and prognosis of 
HCC [46]. Moreover, overexpressed NDRG1 displayed 
a significant association with hepatocarcinogenesis [47]. 
Accordingly, targeting NDRG1 might act as an attractive 
therapeutic strategy for HCC. HSPA4, also known as 
hsp70, was demonstrated to enhance the  proliferation, 
invasion and metastasis of various cancers [48]. High 
Expression of HSPA4 was significantly correlated 
with worse overall survival of HCC; it was aslo an 
independent prognostic parameter for OS [49]. Given the 
findings here, HSPA4 demonstrated huge potential as a 
therapeutic target in HCC treatment. In the HCC tissues, 
up-regulated expression of ANGPT1 was detected as 
compared with normal liver tissues [50], whereas the 
prognostic implication in HCC was not studied. A 
previously study showed IL17D had a diagnostic value 
for HCC and the DNA methylation status of IL17D was 
related to OS [51]. Nevertheless, the specific role of 
IL17D in HCC has been rarely known. Only one study 
has reported OSGIN1 may be a tumor suppressor that 
was downregulated in HCC, which contradicted our 
findings [52]. Its exact role in HCC is as yet unclear. 
Thus far, no relevant research reported MAPT, DCK and 
SEMA3F in HCC. Further researches are required to 
elucidate the function of these potential immune-related 
genes in HCC.

Some shortcomings of this study should be addressed. 
First, this study was completely based on public databases 

and the results should be external validated by further 
experiments. Second, the efficiency of the immune-
related prognostic model should be identified in a large 
number of HCC samples using experimental methods. 
Third, the biological functions of nine immune-related 
genes in HCC require further examined by a series of 
experiments.

Conclusion
In conclusion, for the first time, numerous immune-
related genes were detected to be significantly related to 
HCC prognosis by comprehensive analyses. Moreover, 
we constructed a novel immune-related prognostic 
model as an independent prognostic predictor for 
HCC. Validation in an external ICGC database further 
confirmed the prognostic value of this model. This 
prognostic model may also serve as predictor for 
increased immune cells infiltration, proving its key 
role in tumor immune microenvironment. The current 
study deepens our understanding of immune-related 
genes in HCC and provides new potential prognostic 
and therapeutic biomarkers.
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