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Abstract 

Background  Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intrave-
nous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmenta-
tion contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft 
tissues and construct a better prediction model.

Methods  In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had 
complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all sub-
jects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), 
and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned struc-
tures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model 
and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms.

Results  The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The 
MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR 
on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of dif-
ferent ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led 
to different conclusions.
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Background
Thyroid eye disease (TED), also known as thyroid-asso-
ciated ophthalmopathy (TAO) or Graves’ orbitopathy 
(GO), is the most common autoimmune orbital disease 
that affects 25–40% of patients with Graves’ disease and 
other thyroid disorders [1, 2].Based on the immune sta-
tus and disease duration, the pathogenesis of TED can 
be divided into two phases: an active phase and an inac-
tive phase [1, 2]. With TED progression, lesions develop 
in all orbital soft tissues [3]. Additionally, TED could be 
classified into mild, moderate-to-severe, or sight-threat-
ening, based on the evaluation of its clinical manifesta-
tions, such as visual acuity, proptosis, and upper eyelid 
retraction [1]. Intravenous glucocorticoid (IVGC) ther-
apy is the routinely recommended first-line treatment 
for active and moderate-to-severe TED, offering potent 
anti-inflammatory effects that could alleviate extraocu-
lar muscles (EOMs) edema and orbital lipid hyperplasia 
[1, 4, 5]. However, the therapy inevitably brings about 
risks and can result in side effects, such as hypertension, 
hyperglycemia, and osteoporosis [6–8]. Therefore, proper 
implementation of IVGC therapy is crucial to achieve 
maximum benefit and avoid ineffectiveness.

The clinical activity score (CAS) has been used to clas-
sify the activity of TED in patients and prescribe IVGC 
therapy in those with an active status (CAS ≥ 3) [1, 2, 4]. 
However, CAS does not provide precise prediction, since 
it is only the record of an ocular inflammatory manifes-
tation and the conceived painfulness, but the pathologic 
lesions in the posterior orbit are overlooked. In a previ-
ous study, based on the application of CAS as a criterion, 
38·46% active TED patients (CAS ≥ 3) were determined 
to be unresponsive to IVGC, whereas 45·45% of the inac-
tive patients (CAS < 3) turned out responsive [9]. Due 
to its ability to reveal alterations throughout the orbital 
soft tissues, magnetic resonance imaging (MRI) has been 
increasingly utilized for TED examination, which effec-
tively contributes markedly to disease activity assessment 
and therapy response prediction [10, 11]. T2-weighted 
imaging (T2WI) is a commonly used MRI sequence in 
clinical applications that provides anatomical and meta-
bolic information of soft tissues [12, 13]. The pathogen-
esis of the orbital tissues in TED could be clearly revealed 
on T2WI, characterized by inflammatory edema, chronic 
fibrosis, and fatty degeneration [12, 13]. Despite the 

certain predictive value of signal intensity ratio (SIR) 
or other simple metrics on T2WI for IVGC therapy 
response, its effectiveness was found to be limited due to 
insufficient exploitation of images [14]. Therefore, con-
ventional semiquantitative measurements may not ide-
ally meet the requirement of therapy response prediction.

In recent years, radiomics analysis has emerged as 
a promising solution to this issue by extracting high-
throughput quantitative features for further analysis 
and model construction [15]. It is widely utilized in the 
field of oncology for the prediction of macrovascular 
invasion and recurrence [16, 17]. It was first applied 
in orbital disease by Duron et  al. [18] in 2021 to con-
struct an MRI-derived radiomics model in differentiat-
ing benign from malignant orbital lesions. Hu et al. [14] 
have constructed a radiomics model for IVGC response 
prediction based on the features extracted from EOMs 
bellies on T2WI, which behaved better than conven-
tional semiquantitative imaging model (AUC = 0·916 
vs. 0·745). However, the potential of radiomics for TED 
therapy response prediction could be further enhanced. 
Despite EOMs, other vital structures in the orbit, such 
as lacrimal gland (LG) [19], orbital fat (OF) [20], and 
optic nerve (ON) [21], also undergo distinct changes in 
the pathogenesis of TED. The predictive value of these 
structures has been confirmed in several imaging stud-
ies [22–24]. Therefore, our investigation takes a step 
further in orbital radiomics analysis by integrating all 
orbital soft tissues to construct a more accurate and 
robust radiomics prediction model.

Interestingly, similar strategies, namely multi-regional 
radiomics, have been explored in other human struc-
tures and diseases, which performed superior to single-
regional radiomics [25, 26]. To the best of our knowledge, 
no such techniques have been applied for investigations 
of the ocular orbit. Indeed, fine segmentation of orbital 
structures on MRI imaging is a challenging task due to 
its complicacy and considerable time cost. Hence, our 
study pioneered in this attempt. In order to process high-
throughput data from complex segmentation, various 
machine learning (ML) algorithms were adopted in our 
study. Ultimately, we established whole-orbit radiom-
ics (WOR) models for the prediction of IVGC response 
of patients with active, moderate-to-severe TED and 
attained satisfactory prediction results.

Conclusions  The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be benefi-
cial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selec-
tion of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.

Keywords  Thyroid eye disease, MRI, Radiomics analysis, Intravenous glucocorticoid, Response prediction, Multi-
organ segmentation
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Methods
Patients and clinical evaluations
This manuscript adheres to STROBE guidelines. This 
retrospective study was approved by our Institutional 
Review Board (SH9H-2021-T246-2), and the require-
ment for informed consent was waived. Clinical and 
radiological data of 127 patients with clinically con-
firmed active and moderate-to-severe TED who had 
undergone MRI scans before IVGC treatment were col-
lected from the hospital between June 2017 and June 
2021. The inclusion criteria were as follows: (1) Patients 
aged 18–75  years, without complex systemic disease or 
other orbital disease; (2) High quality of MRI adequate 
for radiomics analysis; (3) Bilateral manifestation of TED; 
(4) Disease duration less than 18  months; (5) No previ-
ous orbital decompression surgery or radiotherapy, or 
administration of IVGC ≥ 1·0  g before MRI scans; (6) 
Patients received IVGC schedule according to standard 
EUGOGO guidelines (4·5 g, 12 weeks).

The disease activity was evaluated by seven-point CAS, 
including: (1) Spontaneous retrobulbar pain; (2) pain on 
attempted up or down gaze; (3) redness of the eyelids; 
(4) redness of the conjunctiva; (5) swelling of the eye-
lids; (6) inflammation of the caruncle and/or plica; and 
(7) conjunctival edema. Patients with CAS < 3 and inac-
tive orbital MRI were categorized as inactive TED, and 
those with CAS ≥ 3 and active orbital MRI were cat-
egorized as active TED. If the indicated activity of CAS 
and MRI contradicted, an orbital disease specialist with 
20 years of experience made a final judgment. The disease 
severity was assessed according to EUGOGO guidelines. 
Moderate-to-severe refers to those who met two or more 
of the following criteria: (1) lid retraction ≥ 2  mm; (2) 
moderate or severe soft-tissue involvement; (3) exoph-
thalmos ≥ 3  mm above normal for race and gender; (4) 
inconstant or constant diplopia; without signs of sight-
threatening conditions. Ophthalmic assessments for 
each eye were performed prior to and after the IVGC 
treatment schedule, including: (1) evaluation of CAS; 
(2) lid aperture; (3) exophthalmos assessment with a 
Hertel exophthalmometer; (4) best corrected visual acu-
ity (BCVA); (5) intraocular pressure (IOP); (6) diplopia 
score. Thyroid-stimulating hormone receptor antibodies 
(TRAb) was measured before IVGC treatment. Restora-
tion of euthyroidism was recorded if the thyroid-stimu-
lating hormone, free triiodothyronine, and free thyroxine 
were within the normal range.

Therapy response of IVGC treatment was assessed 
within three months after the last administration of 
IVGC. The definition of “responsive” and “unrespon-
sive” was based on the standard proposed by Bartalena 
et  al. [1] The responsive group included those with an 
improvement of at least two of the following in one eye 

after treatment: (1) Reduction of lid aperture ≥ 2  mm; 
(2) Reduction of exophthalmos ≥ 3 mm; (3) Eye motility 
with an increase of ≥ 8°; (4) Reduction in five-item CAS 
(not including spontaneous or gaze-evoked pain) of ≥ 1 
point; without concomitant deterioration in the other 
eye. Deterioration was defined by the occurrence of dys-
thyroid optic neuropathy (DON) or worsening of at least 
two of the four components mentioned above. The unre-
sponsive group was composed of those who did not meet 
the aforementioned criteria.

All patients included were allocated to a training cohort 
and a test cohort with a proportion of 8:2 using a strati-
fied random splitting method. The flowchart of patient 
enrollment and the scheme for analysis is presented in 
Additional file 1 Fig. S1.

Orbital MRI acquisition
Before the IVGC treatment schedule began, patients were 
examined using a 3·0 T MRI system (Ingenia CX, Philips 
Medical Systems) with a 32-channel head coil. During 
the scan, the patients were placed in the supine position 
with their eyes closed. Coronal T2-weighted Turbo Spin-
Echo with 90° Flip-Back Pulse (T2-DRIVE) imaging was 
acquired, with the following parameters: repetition time/
echo time, 3000/90  ms; field of view, 133·3 133·3  mm2; 
slice thickness, 3·5 mm; slices, 20; gap, 3·85 mm; acquisi-
tion matrix, 320 224. Figure 1 depicts the workflow of the 
radiomics procedure.

Radiomics analysis
ROI segmentation
Regions of interest (ROIs) were manually segmented 
on coronal T2WI using the ITK-SNAP software (v. 
3.6.0; www.​itksn​ap.​org). Two methods of ROI seg-
mentation were employed (Fig. 2). The first approach, 
multi-organ segmentation (MOS) was applied to eight 
orbital structures, including LG, OF, ON, and sepa-
rate EOMs: superior rectus (SR), inferior rectus (IR), 
medial rectus (MR), lateral rectus (LR), and supe-
rior oblique (SO). These ROIs were individually con-
toured using different labels. The contours of each 
ROIs were drawn slice-by-slice from the emergence 
of OF in the anterior orbit to the vanish of EOMs in 
the posterior orbit. Subsequently, four single-regional 
radiomics (SRR) models were constructed based on 
different structures (EOMs, LG, OF, and ON), and 
the dataset comprising all eight labels was later used 
to develop the multi-regional radiomics (MRR) model. 
The second approach, namely fused-organ segmen-
tation (FOS) strategy using one single label was also 
implemented, which regarded all structures including 
EOMs, LG, OF, and ON as a cohesive unit. A fused-
regional radiomics (FRR) model was later built on this 

http://www.itksnap.org
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basis. For all manual segmentation work, an experi-
enced orbital radiologist (reader 1) viewed each MRI 
and conducted ROIs segmentations without knowing 
the disease status of the participants. Each segmented 
contour was further reviewed by an orbital radiology 

expert for accuracy. Discussions were held for any dis-
agreement until a consensus on the final decision was 
reached.

Fig. 1  Radiomics workflow

Fig. 2  Illustration of the two segmentation strategies on the T2WI. The MOS strategy for the construction of multiple SRR and MRR models 
is presented in plot a, and the FOS strategy for the construction of FRR model is depicted in plot b 
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Feature extraction
Radiomics features were extracted from ROIs using an 
in-house feature analysis program implemented in Pyra-
diomics (http://​pyrad​iomics.​readt​hedocs.​io) for all radi-
omics models (SRR, MRR, and FRR models). Orbital 
structures from bilateral orbits of the same patient were 
considered as a unit, and the features were extracted in 
the meantime. All features were categorized into three 
groups: (1) geometry features, which described the 
three-dimensional shape characteristics of the ROIs; (2) 
intensity features, which described the first-order statisti-
cal distribution of the voxel intensities within the ROIs; 
and (3) texture features, which described the patterns or 
the second- and higher-order spatial distributions of the 
intensities. Specifically, to extract texture features, vari-
ous methods were employed, including the gray-level co-
occurrence matrix (GLCM), gray-level run length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and 
neighborhood gray-tone difference matrix (NGTDM) 
methods.

Feature selection
After feature extraction, reproducibility analysis, Mann–
Whitney U-test, Spearman’s rank correlation, max-rel-
evance, min-redundancy (mRMR), and least absolute 
shrinkage and selection operator (LASSO) regression 
were consecutively performed to reduce the feature 
dimension for the different radiomics models. Initially, 
40 cases were randomly chosen (20 of responsive and 20 
of unresponsive), and their orbital MRI were segmented 
by reader 2 in the same manner as reader 1. Inter-reader 
variation of radiomics features was evaluated by calculat-
ing intraclass correlation coefficients (ICC) between the 
results from reader 1 and reader 2. Only features with 
ICC > 0·75 were subjected to further analysis. After-
wards, a Mann–Whitney U-test was then employed 
to identify significant features between responsive and 

unresponsive groups, only those with a p-value < 0·05 
were kept. Then, the Spearman’s rank correlation coef-
ficient was used to identify highly correlated features 
(Spearman’s correlation coefficient > 0·9), with one of 
them randomly retained to avoid redundancy. To depict 
features to the greatest extent, greedy recursive deletion 
was applied for feature filtering, where the feature with 
the most redundancy in the current set was deleted each 
time. Subsequently, to avoid over-fitting and maximiz-
ing the correlation between features and target variables, 
the mRMR algorithm was implemented to select the 
top eight features for each label. Eventually, the LASSO 
regression model with tenfold cross test supported by 
Onekey AI platform was used for signature construc-
tion (Fig.  3a, b). The retained features with nonzero 
coefficients were used for regression model fitting and 
combined into a radiomics signature (Fig.  3c). The 
detailed rad score formulae of the models are provided in 
Additional file 1: Table S1.

Radiomics signature construction
SRR, MRR, and FRR models were individually con-
structed based on the datasets derived from correspond-
ing ROIs as stated above. For all radiomics models, the 
final selected features were inputted into six robust clas-
sification algorithms supported by Onekey AI platform, 
including logistic regression (LR), NaiveBayes, support 
vector machines (SVM), extremely randomized trees 
(ExtraTrees), extreme gradient boosting (XGBoost), and 
light gradient boosting machine (LightGBM). A five-fold 
cross-validation was implemented to obtain the final 
radiomics signatures.

Semiquantitative measurements and model construction
Semiquantitative measurements on T2WI involved 
all eight orbital structures, including EOMs, LG, OF, 
and ON. Two radiologists (reader 1 and reader 2) 

Fig. 3  Feature screening for MRR model. Plot shows the coefficients a and MSE b of LASSO regression model and features selected for model 
construction c 

http://pyradiomics.readthedocs.io
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independently implemented measurements without 
knowing the disease status of study participants. The sig-
nal intensity (SI) of EOMs, LG, and OF was measured 
by placing polygonal ROIs separately on EOM bellies, 
LG, and OF, locating the maximum cross-section on the 
coronal T2WI. The corresponding SI on the anterior and 
posterior layers of the selected layer of each region of 
these seven structures were also measured. For measure-
ment of the SI of ON, ROIs were manually segmented on 
three consecutive layers behind the eyeball, and the sur-
rounding cerebrospinal fluid signal was carefully avoided. 
For each orbital structure, the maximum, mean, and 
minimum of SI over the ROI were all extracted, and the 
final SImax, SImean, SImin were recorded as the mean value 
of SI derived from three consecutive layers. Later, they 
were normalized to SIRmax, SIRmean, and SIRmin using the 
formula SIR = SIEOM/SIbrain white matter.

Inter-observer variation of measurements between 
the two observers was assessed by ICC. Then univari-
ate analysis was adopted to test the difference of SIRmax, 
SIRmean, and SIRmin between the responsive and the unre-
sponsive groups. After screening features with P < 0·05, 
identical six ML algorithms were employed to construct 
semiquantitative imaging models (SIR models) through 
five-fold cross-validation.

Assessment and comparison of different prediction models
The diagnostic performances of the radiomics and semi-
quantitative imaging models based on different ML 
algorithms were assessed using their receiver operating 
characteristic (ROC) curves. For each model, metrics 
including area under curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were calculated. Internal valida-
tion of the prediction models was performed using an 
independent set. To compare the largest prediction 
capacity of different models, the ML algorithm with the 
highest AUC was finally selected for each model subset 
for further assessment and comparisons. DeLong’s test 
was applied to test the difference of diagnostic perfor-
mance among different models. The calibration curves 
were depicted to assess the calibration of the prediction 
models. Decision curve analysis (DCA) was performed 
to evaluate the clinical usefulness of different mod-
els by calculating the net benefits at different threshold 
probabilities.

Statistical analyses
All statistical analyses were conducted using Python pro-
gramming language (version 3.7.6) with the use of SciPy 
library (1.4.1) and Statsmodels module (v0.11.1). Statisti-
cal significance was set at a two-tailed P-value < 0·05. For 
categorical data, the chi-squared test or Fisher’s exact 

test was applied to compare the difference between two 
groups. For numeric data, independent-sample t-test or 
Mann–Whitney U-test was implemented. Other statisti-
cal tools employed for analysis are specified above.

Results
Clinical characteristics
Of the 127 enrolled patients, 56 were identified as respon-
sive to IVGC treatment, whereas 71 patients were unre-
sponsive. The clinical characteristics of both groups are 
presented in Table  1, showing no significant differences 
in sex, age, or duration time. Univariate analysis revealed 
significant differences in smoking (P-value = 0·016), 
diplopia score (P-value = 0·031), CAS (P-value = 0·002), 
and lid aperture (P-value = 0·031) between the two 
groups.

Radiomics model construction
Single‑regional radiomics (SRR) models
Through MOS strategy, 1906 features were respectively 
extracted from the ROIs of EOMs, LG, OF, and ON. After 
feature selection, five, eight, five, and seven were finally 
retained, respectively. For each structure, the corre-
sponding SRR models based on different ML algorithms 
performed diversely (Fig.  4). For each ML algorithm, 
EOM radiomics model and OF radiomics model had the 

Table 1  Demographic and clinical characteristics of TED patients 
and controls

Continuous variables are presented as the mean (± standard deviation) or as the 
median (interquartile range). Categorical variables are presented as the number 
(%) and counts

*P-value < 0.05

Characteristics Responsive Unresponsive P-value

Sex 0.093

 Male 28 (22.4%) 25 (20.0%)

 Female 28 (22.4%) 46 (36.8%)

 Age (year) 47.10 ± 10.32 44.89 ± 11.24 0.891

Disease duration (month) 6.00 (3.00, 12.00) 6.00 (3.50, 14.50) 0.140

Smoking 0.016*

 Yes 21 (16.8%) 13 (10.4%)

 No 33 (26.4%) 55 (44.0%)

Restoration of euthyroidism 0.542

 Yes 30 (24.0%) 41 (32.8%)

 No 23 (18.4%) 25 (20.0%)

 TRAb (IU/L) 10.41 ± 12.73 10.82 ± 11.16 0.460

 CAS 2.50 (1.50, 3.00) 1.00 (1.00, 3.00) 0.002*

 Diplopia score 1.59 ± 1.14 1.30 ± 1.12 0.034*

 Exophthalmos (mm) 19.10 ± 2.53 18.24 ± 2.80 0.066

 Lid aperture (mm) 10.04 ± 1.46 9.36 ± 1.61 0.031*

 IOP (mmHg) 18.41 ± 3.55 18.25 ± 3.18 0.612

 BCVA 0.86 ± 0.24 0.87 ± 0.23 0.849
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best performance. The highest AUC of individual SRR 
models were achieved by XGBoost on the EOM radiom-
ics model (AUC = 0·766), NaiveBayes on the LG radiom-
ics model (AUC = 0·727), LR on the OF radiomics model 
(AUC = 0·766), and NaiveBayes on the ON radiomics 
model (AUC = 0·669), respectively. Details of diagnostic 
performance of SRR models can be found in Additional 
file 1: Table S2.

Multi‑regional radiomics (MRR) models
For the construction of MRR models based on MOS 
strategy, 15,248 features were extracted from eight inde-
pendent structures, and 35 were finally retained. Nota-
bly, the SVM model achieved remarkable performance, 
with the highest AUC value of 0·961 in the test cohort. 
The other models achieved good to excellent AUC values, 
with LR achieving 0·916, NaiveBayes achieving 0·893, and 
LightGBM achieving 0·883 (Fig. 5a, b).

Fused‑regional radiomics (FRR) models
Through FOS strategy, 1906 features were extracted from 
the cohesive unit of orbital soft tissues and eight were 
included in the FRR models. All models achieved moder-
ate to good AUC values, with LR achieving 0·916, Naive-
Bayes achieving 0·896, SVM achieving 0·903 (Fig. 5c, d).

Semiquantitative model construction
The inter-reader variation of semiquantitative SIRs was 
found to be good to excellent, with ICCs ranging from 
0·766 to 0·893. Results of semiquantitative measurement 
were shown in Table 2. Models yielded moderate to good 

results, with most AUC values ranging from below 0·7 to 
a maximum of 0·760 achieved by the NaiveBayes algo-
rithm (Additional file 1: Fig. S2).

Comparison of different prediction models
As is shown in Fig.  6a, radiomics models significantly 
outperformed semiquantitative imaging model. The 
WOR models in this study, including MRR (high-
est AUC = 0·961, SVM) and FRR models (highest 
AUC = 0·916, LR), had superior performance over all 
the SRR models, including the formally reported EOM 
radiomics model (AUC = 0.766) (Fig.  6a). The calibra-
tion curves and DCA provided additional supporting 
evidence to such conclusion (Fig. 6b, c). The MRR model 
based on SVM had the best performance as regards 
AUC, calibration, and net benefit. However, further anal-
ysis using Delong’s test showed that the best performing 
MRR model based on SVM, and the best performing FRR 
model based on LR, did not have a significant difference 
in diagnostic performance (Fig.  6d). Considering the 
influence of ML algorithms, the comparison of multiple 
parameters of MRR models and FRR models utilizing the 
same ML algorithm is shown in Fig. 7. In most cases, the 
area of the radar chart of MRR is slightly larger than FRR. 
However, when utilizing NaiveBayes or ExtraTrees, the 
AUC of FRR is larger than that of MRR.

Discussion
The preliminary application of radiomics analysis in 
orbital MRI offers a promising solution to the predic-
tion of IVGC therapy response in TED. Nevertheless, 

Fig. 4  Color maps demonstrating the diagnostic performance of different SRR models (EOM, OF, LG, or ON radiomic models) when utilizing 
different ML algorithms a–f. Colors depicted on each structure represent the AUC of corresponding SRR model based on a specific ML algorithm
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radiomics is still underdeveloped in orbital diseases like 
TED with deficiency in methodology and practice. In 
this work, we established the WOR models as a cred-
ible and efficient tool to predict IVGC therapy response. 
The MOS strategy was applied to orbital MRI processing, 
which included all structures potentially affected in TED. 
An MRR model (AUC = 0·961) was constructed based 
on this strategy, reaching a predictive value much supe-
rior to SRR models (highest AUC = 0·766) and a conven-
tional semiquantitative imaging model (AUC = 0·760). 
Besides, we proposed a FOS strategy and constructed an 
FRR model, as a feasible alternative mode of the WOR 
models and also achieved a satisfactory result (highest 
AUC = 0·916). To process high-throughput data, a series 
of ML algorithms were employed to construct different 
prediction models and the best was finally chosen. It is 
highly probable that WOR models will substantially ben-
efit clinical decision-making of TED patients, and that 

MOS and FOS strategies might bring a new prospect for 
radiomics research for orbital disease and other disease 
models.

The MOS strategy has emerged as a highly effective 
approach in radiomics analysis, as evidenced by a large 
number of previous studies. For instance, a recent inves-
tigation utilized the similar strategy to construct an MRR 
model that accurately assessed muscle invasion in blad-
der cancer, with an impressive AUC of 0·931 [25]. Simi-
larly, in cervical cancer, Shi et al. [26] partitioned tumors 
into two intratumoral subregions to create an MRR 
model, which were confirmed to be superior to the model 
based on the whole tumor (AUC = 0·817 vs. 0·562). How-
ever, the MOS segmentation is challenging, particularly 
in the orbital region due to the anatomical complexity. In 
our study, we incorporated the whole orbital soft tissues 
associated with the pathogenesis of TED on T2WI. By 
employing MOS strategy, the MRR model outperformed 

Fig. 5  Predictive performance of the MRR (Multi-regional radiomics) and FRR (Fused-regional radiomics) models in the training and test cohorts. 
The ROC curves of MRR model in training cohort a and test cohort b; the ROC curves of FRR model in training cohort c and test cohort d 
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SRR models that solely relied on a single orbital struc-
ture. It serves as another promising application of MOS 
strategy in radiomics analysis, and the first attempt in 
orbital setting.

Of the different SRR models, the EOM radiomics 
model and the OF radiomics model showed relatively 
good predictive performance, with the highest AUC 
values of 0·766 for both. As previous studies have sug-
gested, the mechanism of TED pathogenesis is com-
plicated since it affects multiple orbital structures [2]. 
The pathogenesis of TED is primarily characterized by 
enlarged and edematous EOMs, making them the major 
affected structure. Multiple studies revealed that patients 
who respond well to IVGC have more homogeneous 
edema within their EOMs, while unresponsive patients 
exhibit greater tissue complexity and more fibrotic com-
pounds [14, 24, 27, 28]. Similarly, a previous TED radi-
omics study also constructed the model based on EOMs 
to predict IVGC therapy response [14]. It is also worth 
noting that significant differences existed in SIR value of 
MR and IR between responsive and unresponsive groups 

in our study. These results prove again that MR and IR 
are the two primary rectus muscles altered during TED 
pathogenesis. Nevertheless, they fail to alter the fact 
that SIR models performed poorly in response predic-
tion compared to MRR and SRR models. Despite EOMs, 
OF is also a vital morbid structure in the orbits of TED. 
The majority of patients have enlargement of EOMs or 
OF, with predominance of one or the other in some [2]. 
The expansion of OF volume is caused by the accumula-
tion of glycosaminoglycans and adipocytes, which is also 
the main therapeutic target of IVGC [29, 30]. Previous 
MRI studies of TED had focused relatively less attention 
on OF, whereas our earlier studies added evidence to its 
predictive value in IVGC therapy response [22]. Interest-
ingly, SIR of OF showed no significant difference between 
the responsive and unresponsive groups, but it is under 
the premise that the SIR value concentrated on the value 
determined from a specific point on the structure. How-
ever, radiomics model took into account a wider spec-
trum of features, encompassing geometry, intensity, and 
texture features. With deeper investigation, detailed 
information of OF can be extracted and exploited for 
IVGC response prediction of TED, which was proved to 
be powerful.

Apart from EOMs and OF, other structures including 
LG and ON were also of certain predictive value. The 
highest AUC value of the ON radiomics model was 0·727, 
while that of the LG radiomics model was 0·675, which 
was inferior to EOMs and OF. In TED, LG is also affected 
by immunological disorders in the orbit, characterized 
by multifocal infiltration of lymphocytes and hyperplasia 
of adipose tissue [31]. These typical alterations of LG in 
TED are manifested on T2WI as increased volume and 
hyperintensity [32]. The herniation of LG has been estab-
lished to be associated with therapy response of IVGC, 
demonstrating its contribution to the predictive models 
[24]. ON is mainly related to visual acuity, concerning the 
emergence of DON. Interestingly, a retrospective study 
detected an increased ON T2 value in TED compared 
with healthy controls [33]. Other studies also indicated 
a potential correlation between ON and the severity and 
prognosis of TED. In this investigation, ON was also evi-
denced to be of predictive value of the IVGC response. 
Currently, the majority of the studies on activity assess-
ment and response prediction have been focused on 
EOMs solely, neglecting other affected orbital soft tis-
sues. This has probably attributed to the cognitive defi-
cit, measurability limitations, and time cost. Although 
the orbital pathologies of different structures are not fully 
elucidated, and their correlation with radiomics features 
are scarcely uncovered, we revealed that involving mul-
tiple morbid structures in the orbit greatly enhanced the 
performance of our radiomics models.

Table 2  Semiquantitative SIR values of different orbital soft 
tissues in TED patients

Continuous variables are presented as the mean (± standard deviation)

*P-value < 0.05

Characteristics Responsive Unresponsive P-value

LG-SIRmean 1.66 ± 0.27 1.61 ± 0.3 0.30

LG-SIRmax 2.03 ± 0.39 1.93 ± 0.44 0.22

LG-SIRmin 1.34 ± 0.25 1.31 ± 0.26 0.57

LR-SIRmean 1.21 ± 0.29 1.19 ± 0.23 0.43

LR-SIRmax 1.45 ± 0.30 1.43 ± 0.29 0.59

LR-SIRmin 0.97 ± 0.22 0.95 ± 0.19 0.47

SR-SIRmean 1.37 ± 0.41 1.39 ± 0.37 0.91

SR-SIRmax 1.70 ± 0.44 1.70 ± 0.44 0.82

SR-SIRmin 1.05 ± 0.40 1.06 ± 0.35 0.93

MR-SIRmean 1.42 ± 0.40 1.28 ± 0.28 0.01*

MR-SIRmax 1.66 ± 0.44 1.52 ± 0.31 0.02*

MR-SIRmin 1.20 ± 0.39 1.06 ± 0.29 0.01*

IR-SIRmean 1.51 ± 0.39 1.39 ± 0.33 0.03*

IR-SIRmax 1.80 ± 0.45 1.66 ± 0.39 0.05

IR-SIRmin 1.22 ± 0.37 1.12 ± 0.29 0.04*

SO-SIRmean 1.35 ± 0.28 1.36 ± 0.31 0.74

SO-SIRmax 1.81 ± 1.29 1.72 ± 0.39 0.42

SO-SIRmin 0.97 ± 0.26 0.99 ± 0.29 0.06

ON-SIRmean 1.25 ± 0.21 1.20 ± 0.21 0.13

ON-SIRmax 1.69 ± 1.08 1.59 ± 0.8 0.86

ON-SIRmin 0.96 ± 0.20 0.91 ± 0.18 0.08

OF-SIRmean 2.61 ± 0.35 2.60 ± 0.43 0.92

OF-SIRmax 2.95 ± 0.54 2.96 ± 0.50 0.48

OF-SIRmin 2.27 ± 0.36 2.27 ± 0.45 0.95
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By including multiple structures, the MRR model 
achieved excellent predictive results, but its consider-
able segmentation efforts may limit the universal applica-
tion due to the significant time cost. Compared with the 
EOM radiomics model (total average time, 15·8 min), the 
performance of the MRR model took much longer (total 
average time, 25·4  min) for each MRI sample. With the 
relatively low time cost (total average time, 10·2 min), the 
semiquantitative imaging model had a moderate predic-
tive value, which was better than those of the ON and 
LG radiomics models (AUC = 0·760 vs. 0·727 and 0·675, 
respectively). This outcome was presumably attribut-
able to the incorporation of the whole orbital soft tissue 
offering more conducive information compared with the 
single structures. However, the AUC value of semiquan-
titative imaging model was much inferior to MRR model, 
which cannot satisfy the requirement of accurate pre-
diction. Therefore, we put forward an alternative WOR 

model, namely FRR model, which was based on the FOS 
strategy. When utilizing the same ML algorithms, the 
performance of FRR model and MRR model was approxi-
mate and MRR seemed slightly superior, with the high-
est AUC value of 0·916 and 0·961 (P-value = 0·468 on 
DeLong’s test) (Figs. 4a–f, 6d). It is reasonable that MRR 
outperformed FRR, in that fine segmentation accord-
ing to priori knowledge is beneficial to image analysis. A 
recent radiomics investigation revealed that without seg-
mentation masks, feature descriptors encompassed the 
entire image, which limited their effectiveness in focusing 
on ROI and leveraging the available prognostic informa-
tion [34]. This limitation, compounded by noise and the 
loss of local information regarding size, shape, and loca-
tion, may have contributed to the slightly lower perfor-
mance observed in the FRR models. Nevertheless, due to 
the limited sample size applied in this research, further 
validation with larger samples is necessary to determine 

Fig. 6  The result and evaluation of prediction models in the test cohort. a The ROC curves of different radiomics models and SIR model based 
on the machine learning algorithms that achieved the highest AUC value. b DeLong’s test comparing the diagnostic performance (AUC) of different 
models. Calibration curves c and DCA d of different models. MRR Multi-regional radiomics, FRR Fused-regional radiomics
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whether the MRR model outperforms the FRR model. 
However, it is worth noting that the segmentation time 
cost of the FRR model (total average time of 9·6 min) was 
only 37·8% of that of the MRR model. This shows the 
potential of applying the FRR model for IVGC response 
prediction with higher efficiency. Future explorations of 
the automatic segmentation of different orbital structures 
might be of great value to resolving this issue.

In the construction of the prediction models, the ML 
algorithms played a crucial role for achieving high accu-
racy and efficiency. However, it is important to consider 
the suitability of ML algorithms for the input dataset. 
Our research revealed a shift in the best performing 
algorithm types from SRR to MRR models. Simpler algo-
rithms such as LR and NaiveBayes worked better in cases 
of straightforward mapping relationships in ON (High-
est AUC = 0·669, NaiveBayes), OF (Highest AUC = 0·766, 
LR), and LG (Highest AUC = 0·675, NaiveBayes). On the 
other hand, the XGBoost algorithm showed the highest 
performance in the EOM dataset (AUC = 0·766) due to 
its ability to prevent overfitting through shrinkage and 
generalization features in datasets with multiple labels 
[35]. Notably, the SVM algorithm attained remarkable 
results with the highest AUC value of 0·961 in the MRR 
model. This was due to the fact that SVM was able to rec-
ognize and fit valuable underlying mapping effectively 

when more information was included in the feature data-
sets [36]. However, the high learning capacity of SVM 
also made it susceptible to overfitting, leading to poor 
performance in the semiquantitative imaging model and 
moderate performance in several SRR models. A deeper 
investigation of the application of ML algorithms in 
orbital MRI would provide more solid evidence by using 
larger datasets, which shall be explored in the future.

Compared with other reported prediction models for 
IVGC response in TED, the accuracy of our models still 
needs to be improved. In addition to the potential draw-
backs of radiomics analysis, this issue might be attributed 
to the disunity of the standards for patient enrollment 
and therapy response evaluations among different stud-
ies. The management of TED involves multidisciplinary 
effort, while many aspects of the diagnosis and treatment 
are unclear and controversial. For example, the patients 
in our cohorts met the comprehensive criteria of activ-
ity assessment considering CAS and orbital MRI. That is 
to say, patients with CAS lower than 3 but with actively 
altered orbital MRI were advised to receive IVGC ther-
apy in our center but were excluded in other centers. This 
significantly affected the treatment outcome. In addition, 
the determination of “responsive” or “unresponsive” to 
anti-inflammatory treatment in TED varied markedly 
from one study to another. In the present investigation, 

Fig. 7  Radar chart of the performance of MRR (Multi-regional radiomics) models and FRR (Fused-regional radiomics) models by using different 
machine learning algorithms (a–f)
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we adopted a well-recognized evaluation standard pro-
posed by Bartalena et al. [1], integrating four important 
items of clinical presentations in a composite index. In 
former studies, usually an eye is perceived as a research 
object, while in our study, a patient with bilateral eyes 
were perceived as a research object. This makes our 
results more feasible for clinical practice. TED clinical 
management and research work urgently need standardi-
zation of evaluation, diagnosis, and treatment.

The present study is a novel attempt to implement the 
concept of MOS/FOS and MRR/FRR in orbital MRI pro-
cessing. However, it is only a preliminary exploration and 
further improvements are needed. First, the sample size 
of this retrospective study was relatively small, despite 
being the maximum in TED radiomics research works 
published to date. Thus, a larger sample size is expected 
to augment the reliability. Second, our models lack 
external validation. As TED management is highly com-
plicated, the judgement of the activity of patients var-
ies widely among centers, with different parameters for 
clinical measurements and MRI data acquisition, which 
makes it extremely challenging to integrate. This could 
potentially be tackled in the future by conducting a mul-
ticenter prospective study with unified metrics. While 
our study provides a new strategy for future research in 
this area, it is important to consider these limitations 
when interpreting our results.

Conclusions
The results of this study revealed that radiomics models 
based on the whole orbital structures can accurately pre-
dict the response to IVGC in TED patients with the high-
est AUC of 0·961. Therefore, the MRR model is a reliable 
and effective tool for outcome prediction. The FRR model 
performed very well in reducing the time consumption of 
segmentation while preserving a rather satisfactory pre-
diction value; thus, it can be applied as an alternative. The 
findings of our study could considerably contribute to the 
accurate prediction of responsive or unresponsive TED 
patients and allow for individualized management and 
therapy decisions, leading to improved patient progno-
sis and quality of life. In the meantime, the WOR strat-
egy can be generalized to the application of other orbital 
diseases.
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