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Abstract 

Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized 
as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during estab-
lishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell 
subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of 
administration and specific combinations of compounds to be administered during HIV eradication therapy. Over-
coming these challenges will improve our understanding of HIV persistence and move the field closer to achiev-
ing eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous 
control of experimental conditions, these models have been used extensively as in vivo research platforms for directly 
addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these 
recent translational advances made in animal models of HIV persistence.
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Background
Key to the development of an HIV cure strategy is gaining 
a comprehensive understanding of the reservoir of repli-
cation-competent virus that persists despite suppressive 
antiretroviral therapy (ART) [1–10]. In vivo studies con-
ducted both in humans and in animal models of HIV per-
sistence provide critical insights regarding establishment 
of the reservoir, maintenance of HIV persistence and the 
efficacy of combination strategies for the eradication of 
persistent virus. Because there is inherent difficulty asso-
ciated with evaluating these particular aspects of HIV 
persistence in clinical trials, preclinical studies in animal 
models of HIV disease are important guides to clinical 
trial designs. Reviewed here are preclinical studies in 
humanized mouse and non-human primate (NHP) HIV 
models that seek to overcome temporal, spatial or com-
binatorial research challenges to gain new insights into 

the establishment, maintenance and eradication of HIV 
reservoirs (Fig. 1).

Humanized mice and NHP HIV models
Preclinical animal studies permit systematic characteri-
zations of multiple aspects of HIV infection and viral 
persistence under defined conditions including demar-
cated infection parameters, such as time of infection, 
and assured compliance with therapeutic regimens. The 
vast majority of HIV persistence research in animal mod-
els has been performed using either humanized mice or 
NHP HIV models. Feline immunodeficiency virus (FIV) 
is the only non-primate lentivirus that causes immu-
nodeficiency and FIV infection models have also been 
used in HIV persistence research [11, 12]. However, two 
critical challenges associated with translating FIV out-
comes to the clinic (i.e., the infected cells are not primate 
derived and the virus is not human tropic) are overcome 
by humanized mouse and NHP HIV models. Conse-
quently, this review is focused on the latter two models of 
HIV persistence.
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Under the umbrella terms “NHP” and “humanized 
mice” are a myriad of noteworthy model characteristics. 
Regarding NHP, three species have been used in HIV 
persistence research to date: rhesus macaques (Macaca 
mulatta), pig-tailed macaques (M. nemestrina) and 
cynomolgus macaques (M. fascicularis) [13–42]. These 
macaques were infected with simian immunodeficiency 
virus (SIV) or SIV/HIV chimeric viruses (SHIV) (Fig. 2). 
While the macaque species and immunodeficiency virus 
combinations may differ between studies, these NHP 
models all involve infecting animals that are among 
humans’ closest living relatives with virus that is phylo-
genetically linked to the human tropic virus [43]. NHP 
in these experiments are outbred with normal anatomy 

and physiology (e.g., immuno-competence); impor-
tant parallels to the clinical trials that are performed in 
humans. For humanized mice, varieties of humanized 
mice and their research applications have been exhaus-
tively reviewed previously [44–57]. The current review 
focuses solely on humanized mouse models utilized in 
HIV persistence research. Common to these models is 
the presence of human cells in immunodeficient mice 
that are infected by human-tropic virus which can be 
targeted by human drugs. When humanized mice are 
bioengineered, multiple animals with the same human 
genetics are created. Also, multiple human donors can 
be used to make cohorts of mice which allow researchers 
to recapitulate the diversity found in clinical trials. The 
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eradication of HIV reservoirs. The purpose of “Kick” agents is to reactivate latent virus while “kill” agents enhance the destruction of cells producing 
reactivated virus [129]
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Fig. 2  Non-human primate species and viruses utilized in HIV persistence research. NHP and SIV/SHIV combinations are indicated with references 
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individual studies using the indicated combination
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general aim during the generation of humanized mice is 
to produce animals where a functioning human immune 
system is present in  vivo, nevertheless the human-cell/
human-virus/human-drug interactions will necessarily 
occur within the context of mouse anatomy and physi-
ology during the relatively short experimental window 
of a mouse’s lifespan. Thus, NHP and humanized mice 
have defined characteristics which relate to advantages 
and disadvantages for each model. These characteristics 
must be considered when determining which experimen-
tal applications are suitable for each model. Examples 
of experimental applications that are essentially model 
specific include: (1) NHP live much longer than human-
ized mice which means that a persistence study that 
involves long-term therapy would best be conducted in 
a NHP system. (2) It is possible to bioengineer “personal-
ized humanized mice” that reproduce a specific human’s 
immune system in multiple rodents. Experiments that 
require such a defined genetic background for the human 
immune cells can only be performed in humanized mice.

As humanized mice are individually bioengineered and 
not bred, some notes on the various approaches used for 
generating mice used in HIV persistence research are 
provided here. The production of humanized mice occurs 
during four general phases (Fig. 3). Phase A is the choos-
ing of an immunodeficient mouse strain based on their 
ability to engraft human cells and tissues [44–57]. Factors 

that may dictate this choice include the level of immuno-
deficiency exhibited [58], propensity for specific tissue 
engraftment with human immune cells (e.g., humaniza-
tion of intestinal tissues [59, 60]) and transgenic expres-
sion of human cytokines and growth factors to improve 
human chimerization [54]. Phase B is choosing whether 
to precondition the animals with gamma radiation or 
chemotherapy. Preconditioning becomes particularly 
beneficial when there is a human hematopoietic stem 
cell (hHSC) transplantation component to Phase C—the 
implantation and/or transplantation of human cells/tis-
sues into the immunodeficient mouse. Phase D is allow-
ing the optimal time for proper chimerization. In the case 
of hHSC transplantation, there is typically robust human 
immune system chimerization in peripheral blood by 
8–12 weeks following transplant. Figure 3 highlights key 
variables specific to distinct humanized mice used in HIV 
persistence research (i.e., SCID-hu thy/liv; TOM; NSG-
BLT; NSG-hu; DKO-hu; MoM; NRG-hu and Patient-
derived) [61–84].

Humanized mice and NHP HIV models have been 
used extensively as in  vivo systems for characterizing 
aspects of virus persistence. These studies are discussed 
below within the context of three categories: (1) studies 
that examined temporal aspects of persistence by maxi-
mizing the use of precision experimental timing (e.g., 
virus exposure and ART initiation); (2) studies focused 
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Fig. 3  Chimerization strategies for bioengineering humanized mice utilized in HIV persistence research. a Immunodeficient mouse strains used for 
humanization in HIV persistence studies. b Lightning symbols indicate that mice received gamma radiation preconditioning. c The humanization 
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on the spatial aspects of persistence where specific ana-
tomical locations and cell types as viral reservoirs have 
been emphasized; and (3) studies that provided preclini-
cal efficacy measures for interventions that could become 
components of a combination strategy to cure HIV.

Temporal research challenges
The identification of infected individuals during the first 
days of infection requires extraordinary surveillance in 
communities of “at risk” individuals [85]. The difficulties 
associated with the assembly of a clinical trial cohort of 
individuals at the earliest stages of infection, combined 
with the fact that the eclipse phase of HIV infection lasts 
nearly 2  weeks [86], limit clinical studies evaluating the 
very earliest events in the establishment of HIV persis-
tence to extraordinary circumstances (e.g., the case of 
the “Mississippi Baby” where ART was initiated in an in 
utero infected infant within 30  h of birth [87]). In con-
trast, animal models are readily amenable to precision 
coordination of experimental variables (e.g., timing of 
virus exposure, ART initiation and ART interruptions) 
in order to overcome temporal challenges in HIV persis-
tence research.

Several research groups have made important obser-
vations about the earliest events involved in the estab-
lishment of the persistent HIV reservoir [26, 30, 39, 
80]. Two of these groups initiated very early ART for 
short-term treatment following parenteral infection: 
Bourry et al. at 4 h (NHP) and Li et al. at 6 h (human-
ized mice) [39, 80]. Both groups continued the ART 
for 2 weeks, during which plasma viremia was very low 
in the NHP and remained undetected in the limited 
amount of blood than can be serially harvested from 
humanized mice. In the NHP study, the animals were 
harvested at the 2 week time point and multiple tissues 
(i.e., spleen, peripheral LN, mesenteric LN, ileum and 
colon) were evaluated for the presence of viral DNA and 
RNA. Both nucleic acid species were detected in the 
spleen and mesenteric LN of multiple animals that initi-
ated ART 4 h post infection. The protocol was different 
in the humanized mouse study where a 3 week analyti-
cal treatment interruption (ATI) was begun following 
the initial 2  weeks of ART and then the animals were 
treated with a CD8+ T cell-depleting antibody every 
third day for ~2  months. During the ATI and CD8+ T 
cell-depletion period, some animals exhibited intermit-
tent low level plasma viremia. Post-mortem analyses 
revealed the presence of viral DNA by PCR, but not 
viral RNA by in  situ hybridization in the humanized 
mice that initiated ART 6 h post infection. These stud-
ies that used the initiation of ART within a few hours of 
infection highlight that HIV persistence is established 
within the first hours following infection.

A separate pair of studies examined NHP which ini-
tiated extended ART regimens within days of infec-
tion. Okoye et al. initiated ART on Day 7 post infection. 
Plasma viremia was reduced during the first weeks of 
therapy after which plasma viremia remained undetect-
able for the >200  days the animals were maintained on 
therapy [30]. This study used the quantitative viral out-
growth assay (qVOA) to quantitate the number of rest-
ing memory CD4+ T cells harboring latent, replication 
competent HIV proviruses (considered to be the great-
est obstacle in the search for an HIV cure [3, 8–10]). The 
qVOA results are reported as infectious units per million 
resting memory CD4+ T cells (IUPM). When Okoye et al. 
employed this assay in their study, they failed to detect 
the presence of replication competent, persistent virus. 
This result indicates that early, prolonged ART severely 
limits the size of the persistent viral reservoir. However, 
the study by Whitney et al. showed that even when ini-
tiating ART on day 3 post infection the persistent viral 
reservoir does maintain the capacity to lead to rapid 
viremia during ATI [26]. The choice to perform an ATI 
after 160 days of ART rather than utilize the qVOA as an 
outcome measure revealed that animals treated on day 
3 did exhibit viremia soon after cessation of ART even 
though they had not exhibited plasma viremia at any 
point during the study prior to the ATI. Thus, a func-
tional relevant persistent reservoir was established within 
3  days of infection, but not eliminated by 160  days of 
ART. Together, these studies reiterate that by the time an 
individual can be diagnosed as HIV positive, the persis-
tent viral reservoir has already been established.

The qVOA utilized by Okoye et al. is generally consid-
ered to be the current best ex  vivo assay for character-
izing the replication competent, persistent HIV reservoir 
[9, 10] and this assay has been used extensively to meas-
ure the size of the latent viral reservoir in patients on 
long-term ART that exhibit suppressed viremia [88–97]. 
Yet several lines of evidence suggest that this resource 
intensive assay is not sufficiently sensitive and dynamic 
to accurately predict ATI outcomes in HIV eradication 
clinical trials. The translational nature of this animal 
study-based conclusion is confirmed by clinical data. 
Chun et al. reported that an individual with a profoundly 
low HIV burden experienced viral rebound following 
ATI [98]. Similar clinical outcomes were reported for 
the “Boston Patients” and the “Mississippi Baby” where 
qVOA was unable to detect the replication competent, 
persistent HIV reservoir and ATI were accompanied by 
delayed viral rebound in all three individuals [99, 100].

There are three critical challenges associated with 
qVOA that could explain why this assay has failed to 
accurately predict ATI outcomes in animal models and 
in patients [9, 101]. First, cell input dictates the qVOA 
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sensitivity. This means that lower IUPM values (the goal 
in eradication therapy) necessitate more cells for accu-
rate quantification. Cell yields from NHP and human-
ized mice are small relative to patient-derived samples 
which results in lower assay sensitivity in animal stud-
ies. Second, the qVOA will detect both integrated and 
unintegrated virus in samples where ART has not yet 
exceeded 6  months [9]. This time-on-ART restriction 
has major implications for both animal studies which 
have relatively short ART duration and eradication stud-
ies where qVOA cannot reliably generate baseline IUPM 
values for ART-naive participants or for patients experi-
encing viral rebound following an ATI. Third, the stim-
ulatory culture conditions in qVOA are not suitable to 
reactivate all latent viral genomes present (i.e., the qVOA 
conservatively underestimates the size of the latent viral 
reservoir by ~60-fold because of the stochastic nature of 
virus reactivation even under maximum stimulatory con-
ditions) [93]. The net effect of this underestimation is a 
potentially large, yet undefined gap between the recorded 
and actual IUPM values [93] that is coupled to a wide 
assay confidence interval (~±0.7 log10 IUPM) [102, 103]. 
Together, these mean that changes in IUPM from base-
line during eradication therapy should be greater than 
0.7 log10 before changes can be ascribed to the interven-
tion and not to random virus reactivation events during 
the conduct of the assay. Gaining this level of resolution 
requires high cell numbers which leads back to the first 
challenge mentioned in this paragraph. Thus, while the 
qVOA may be a suitable binary marker for reduction in 
the size of the latent reservoir to below detection, the 
qVOA is unable to serve as a reliable dynamic biomarker 
for moderate changes in the size of the latent reservoir 
caused by eradication therapy. ATI is a more sensitive 
and informative outcome when curative strategies are 
being investigated.

Spatial research challenges
The principle anatomical site examined in clinical stud-
ies is the peripheral blood because it is relatively easily 
accessed for clinical analyses. The intestines and lymph 
nodes are the next most frequently examined anatomi-
cal location in patients [93, 95, 104–107]. Importantly, 
each of these sites has been characterized as impor-
tant in HIV persistence. Knowing that the anatomical 
sites examined so far harbor persistent virus provides 
strong rationale for the examination of additional ana-
tomic sites which may also provide refuge for the virus. 
Comprehensive characterization of all putative reser-
voir sites is important because a clear understanding of 
the distinct anatomical locations, as well as the specific 
cell types within these locations that harbor persistent 
virus, is essential to ensure appropriate penetration of 

drugs during eradication therapy. Animal models facili-
tate analyses that overcome spatial challenges in HIV 
persistence research as they make it feasible to simul-
taneously examine many anatomical compartments, as 
well as specific cell subsets at these sites, for the presence 
of persistent virus. The efforts of many research groups 
working to overcome spatial challenges in HIV persis-
tence research have been stratified into categories by 
general topic of investigation and then discussed.

Resting memory CD4+ T cells as persistent virus reservoirs
A limited number of animal research studies have 
employed the qVOA to quantitate the latent viral res-
ervoir. These include a pair of NHP studies and a trio of 
humanized mouse studies that defined the viral reser-
voir during ART. In the NHP studies by Shen et al. and 
Dinoso et al., either 2- or 3-drug ART was administered 
for 5–6  months during which low level plasma viremia 
remained detectable in most animals [17, 23]. Replica-
tion competent persistent virus was detected in cells 
isolated from peripheral blood and lymph nodes at very 
low IUPM in both studies. In the three humanized mouse 
studies, the qVOA was performed on resting memory 
CD4+ T cells that were pooled from multiple organ sys-
tems within the same animal [65, 67, 69]. The humanized 
mice utilized by Choudhary et al. and Denton et al. har-
bored a full complement of human hematopoietic cells 
while the mice used by Honeycutt et  al. were reconsti-
tuted solely with human T cells [T-cell only mice (TOM)] 
(Fig.  3). In all 5 studies, resting memory CD4+ T cells 
harboring replication competent virus were recovered at 
IUPM levels analogous to patients on ART. As no animal 
study to date has continued ART beyond 6 months, and 
some of the NHP data was generated in untreated ani-
mals, the published IUPM values in these models include 
both stably integrated persistent virus as well as uninte-
grated virus [9].

Myeloid‑lineage cells as persistent virus reservoirs
While several NHP studies have focused on neuro-
logical tissues and the potential role of myeloid-lineage 
cells as viral reservoirs, the presence of T cells in the 
animals increases the challenges associated with defin-
ing the cell lineage(s) harboring persistent virus [13, 
22, 27, 28]. To address this, a novel use of humanized 
mice has been recently described by Honeycutt et  al. 
[77]. The mice used in this study are NOD/SCID ani-
mals that received a bone marrow transplant of hHSCs 
(Fig.  2) such that the animals are systemically reconsti-
tuted with human monocytes/macrophages, B cells and 
dendritic cells [108]. Notably, these mice lack human T 
cells [109]. These mice, referred to as myeloid-only mice 
(MoM), exhibit a general lack of detectable viral DNA in 
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their peripheral blood cells during HIV infection. This is 
reversible by the administration of granulocyte colony 
stimulating factor (G-CSF) which leads to blood cell viral 
DNA becoming detectable within 6  days of administra-
tion. This finding could mean that circulating monocytes 
are generally not infected in this model, but mobilization 
of the tissue macrophages with G-CSF leads to the pres-
ence of infected cells in the blood [77]. MoM have only 
been presented in a conference abstract to date. The pub-
lication of comprehensive data from this model is likely 
to increase our understanding of the role played by the 
myeloid lineages in HIV persistence.

Hematopoietic stem cells, splenocytes and thymocytes 
as persistent virus reservoirs
Hematopoietic stem cells are long-lived, self-renewing 
cells that have the potential to perpetuate integrated HIV 
DNA for a very long time. Carter et al. showed that hHSC 
infected with CXCR4-tropic HIV and then transplanted 
into immunodeficient mice are capable of multi-lineage 
engraftment of these animals [79]. Subsequently, Nixon 
et  al. showed that CXCR4-tropic HIV can infect hHSC 
in  vivo in humanized mice [78]. However, the bulk of 
HIV variants do not use CXCR4 as a co-receptor for viral 
entry which should limit the contribution of HSC in virus 
persistence. This conclusion is consistent with the obser-
vation that HIV DNA was not detected in highly purified 
CD34+ HSC from patients on long-term ART [110].

In addition to hHSC, the Zack Laboratory has also 
examined the role of splenocytes [71] and thymocytes 
[61–64, 70, 72] in HIV persistence in humanized mice. 
Viral persistence in splenocytes infected with a murine 
heat-stable antigen (HSA)-reporter virus was studied 
by Marsden et  al. in the absence of ART because this 
reporter system allowed them to evaluate viral persis-
tence in the context of ongoing virus replication in the 
untreated animals [71]. To identify persistently infected 
cells ex vivo, HSA+ splenocytes were immuno-depleted. 
The HSAneg splenocytes were then stimulated in culture 
in the presence of raltegravir to inhibit virus spread and 
to limit unintegrated viral DNA from confounding the 
data interpretation. Culture supernatants were examined 
for Gagp24 by ELISA and it was determined that spleno-
cytes did harbor latent HIV in vivo but the specific cell 
lineage(s) that harbored persistent virus were not eluci-
dated in this study. Years earlier, this same reporter virus 
was used by Brooks et al. to demonstrate that thymocytes 
also could harbor persistent HIV [61]. The mice used 
in the earlier study were engrafted with a human thy-
mus, but did not exhibit systemic human engraftment, 
such that the only anatomical compartment examined 
in this report was the thymus. A subsequent study on 
HIV persistence in thymocytes showed that harboring 

a transcriptionally silent HIV provirus did not alter cell 
surface phenotypes during differentiation and matura-
tion of T cells [62]. In contrast to the humanized mouse 
studies, however, Shen et  al. reported that thymocytes 
were not the source of persistent virus in a NHP model 
when the animals were undergoing ART [23].

Together, these studies indicate that hematopoietic 
stem cells, splenocytes and thymocytes all have the 
potential to serve as cellular reservoirs of persistent virus, 
although these cell types likely do not harbor the bulk of 
virus that persists during long-term ART in patients. In 
addition, the replication competence of persistent virus 
in these cell lineages remains an open question.

Anatomical location of persistent virus
Multiple research groups have sought to characterize 
the anatomical distribution of persistent virus during 
ART in NHP models. Three groups performed extensive 
survey studies and reported on the levels of persistent 
virus present in tissues throughout the body [20, 21, 29, 
35]. In these papers, viral DNA and RNA quantitations 
from lymphoid, gastrointestinal, neurological and repro-
ductive tissues as well as other tissues from the urinary, 
respiratory and circulatory tracts showed that the bulk 
of persistent viral nucleic acids were present in lymphoid 
and gastrointestinal tissues during ART. In a more tissue 
specific study, Matusali et  al. found that virus persisted 
at higher levels throughout the male genital tract and in 
the semen of adult cynomolgus macaques on ART than 
was observed by North et al. in juvenile rhesus macaques 
[21, 33]. Matusali et al. also found that virus shedding in 
semen during ART was reduced in some animals follow-
ing ART intensification with raltegravir. Viral persistence 
in the central nervous system of NHP was the focus of 
a series of manuscripts from the Clements Laboratory 
[13, 22, 27, 28]. Beyond the importance of identifying 
persistent virus in this anatomical location, a key finding 
in these works was the observation that virus coding for 
cytotoxic T lymphocytes (CTL) escape mutations were 
archived in the central nervous system during ART [22]. 
Surprisingly, given the intense focus on the intestines as 
a major anatomical site harboring persistent virus [20, 
21, 29, 35, 111–124], there is no published evidence from 
humans or animal models that replication competent, 
latent HIV proviruses persist in the intestines during 
ART.

Common to these anatomical location analyses were 
their reliance upon nucleic acid measures of viral per-
sistence. The HIV DNA measures do not distinguish 
between defective archived virus and replication com-
petent virus. Thus, these nucleic acid measures overes-
timate the amount of replication competent virus that 
must be targeted by any successful HIV eradication 



Page 7 of 13Denton et al. J Transl Med  (2016) 14:44 

strategy [9]. The presence of HIV RNA indicates that 
expression has occurred recently, but neither nucleic acid 
determination can measure the level of replication com-
petent, transcriptionally silent proviruses [88].

Lymphoid tissues, particularly lymph nodes, were 
the focus of several other virus persistence studies [17, 
18, 23]. These studies reiterated the importance of lym-
phoid tissues as anatomical locations that harbor per-
sistent virus during ART. Fukazawa et  al. examined the 
architecture of lymph nodes as a means to gain mecha-
nistic insights into the reason that viruses persist in these 
organs [18]. They noted that virus producing CD4+ T fol-
licular helper cells in the B cell follicles were not suscepti-
ble to immune clearance. They identified B cell follicles as 
regions of the lymph nodes that experience very limited 
infiltration by CTL. CTL exclusion from B cell follicles 
was described in elite controller NHP although this phe-
notype would also be expected during ART. In addition 
to nucleic acid measures of viral persistence, this study 
included the use the qVOA to demonstrate that the per-
sistent viral reservoirs in the lymph nodes include repli-
cation competent virus.

Novel strategy for the non‑invasive detection of persistent 
HIV in vivo
Santangelo et al. recently described a novel immunoPET 
scan technique that they were able to use for non-inva-
sive identification of the anatomical locations with ongo-
ing virus production during ART in NHP [41]. This study 
showed that cells in lymphoid tissues and the intestines 
continue to exhibit virus protein expression during ART 
which is in keeping with other studies in animal mod-
els and patient biopsy data. The key contribution of this 
study is its description of a technique for the detection 
of virus production in multiple anatomical sites simulta-
neously that has the potential to be refined and applied 
broadly in HIV cure research.

Combinatorial research challenges
The success of ART hinges on the combination of mul-
tiple antiretroviral agents [125]. It has been suggested 
that an effective HIV eradication therapy will also com-
bine multiple interventions [126–128]. Potential classes 
of interventions that may be included in an eradication 
cocktail are: HIV reactivating compounds, immune mod-
ulatory compounds and virus suppressive compounds 
[1–8]. Specific drug combinations as well as the order, 
timing and frequency of drug administration can all be 
validated preclinically in animal models prior to design-
ing clinical studies. Such an approach will improve the 
rational design of clinical studies to increase their prob-
ability of successfully achieving trial endpoints. Most 
animal studies have evaluated the impact of ART plus a 

single intervention on virus persistence with the expec-
tation that combinations will be evaluated in NHP or 
humanized mice subsequently. These studies are dis-
cussed in the following paragraphs according to topic.

Strategies to reactivate latent virus
The concept of viral reactivation in the context of a “kick 
and kill” eradication strategy is being pursued aggres-
sively in clinical trials [129] and most agents in testing 
for HIV therapy are being developed for or are already 
in clinical use for oncology interventions [104, 130–133]. 
Animal models are ideal in vivo experimental platforms 
for the efficacy evaluation of not-yet-approved pharma-
ceuticals for their capacity to reactivate latent viruses. In 
a series of papers from the Zack laboratory, humanized 
mice were used to generate latently infected cells which 
were subjected to a range of stimulatory agents ex  vivo 
(e.g., prostratin, PMA, PHA, and cytokines) to identify 
T cell signaling pathways involved in latency reversal 
[63, 64, 70, 72]. In a separate ex  vivo study, Shen et  al. 
determined that reactivation conditions for SIV in NHP 
cells (from animals described in Ref. [23]) did not over-
lap fully with conditions used for reactivating HIV from 
human cells in the context of the qVOA [24]. This out-
come indicates that caution should be exercised when 
translating latency reactivation in  vivo in NHP to clini-
cal expectations; however, similarities between NHP and 
human reactivation data have been recently reported. 
Specifically, vorinostat given to patients [104, 130, 133] 
and NHP [37, 38] during ART caused modest increases 
in cell-associated viral RNA. The similar results in both 
in  vivo systems are encouraging, but the characteriza-
tion of latency reversal efficacy in NHP and patients dur-
ing more potent latency reversal therapy will provide 
stronger confirmation of the translational nature of the 
NHP to clinical outcomes in such studies.

A robust example of the utility of animal models in 
overcoming combinatorial research challenges is the 
work of Halper-Stromberg et  al. in humanized mice. 
This group combined multiple strategies to reactivate 
latent virus with strategies to improve antiviral immu-
nity and killing of infected cells [74]. A key experiment in 
their study was to serially dose (five times) HIV-infected 
humanized mice with a mix of three broadly neutraliz-
ing antibodies (i.e., 3BNC117, 10-1074 and PG16) which 
suppressed plasma viremia. Then the animals received 
three separate doses of a combination of three virus reac-
tivating agents. The three virus inducers used in the com-
bination were vorinostat, an HDAC inhibitor; I-BET151, 
a BET protein inhibitor; and anti-CTLA-4 antibody, a T 
cell inhibitory pathway blocker. The remarkable obser-
vation made during this experiment was: even in the 
absence of ART, the combinatorial eradication strategy 
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employed prevented viral rebound in 57  % of animals. 
Even though the dosing and timing of dosing were not 
yet optimized in this study, these observations strongly 
suggest that combinations of viral inducers appear to be 
synergistic in vivo.

Strategies to improve antiviral immunity and the killing 
of infected cells
Active immunization, as well as passive immunization, 
are strategies being investigated for improving antivi-
ral immunity during virus eradication therapy. Hansen 
et al. performed an active immunization of NHP using a 
cytomegalovirus (CMV) vector expressing SIV proteins 
[19]. This study generated excitement because long-term 
control of viremia was observed in the vaccine arm of 
the study. Amazingly, a cohort of eight vaccinated ani-
mals ceased to exhibit any plasma viremia by ~70  days 
post immunization and remained viremia free until nec-
ropsy (>160  days post immunization). This effect has 
been attributed to atypical CD8+ T cell targeting by the 
CMV vector [42]. At harvest the qVOA was utilized to 
demonstrate that no replication competent virus could 
be recovered from multiple tissues in the immunized ani-
mals. This outcome is very encouraging and the hurdles 
to implementing this strategy in clinical trials are being 
addressed.

Passive immunization with broadly neutralizing anti-
bodies has been evaluated for its therapeutic potential in 
humanized mouse and NHP HIV models. The antibod-
ies were administered either in combination with [75] 
or in the absence of [16, 73, 76] ART. In all cases, sig-
nificant reductions in viremia were associated with anti-
body administration. Furthermore, broadly neutralizing 
antibodies combined with ART also led to a reduction 
in cell-associated viral DNA. Immunotoxins are a form 
of passive immunization where Fab fragments of anti-
bodies are fused with a toxin to deliver the deadly pay-
load to virus expressing cells [134]. Brooks et al. showed 
that an immunotoxin that specifically targets HIV enve-
lope-expressing cells kills virus expressing cells follow-
ing latency reversal ex  vivo [63]. Subsequently, Denton 
et al. used this immunotoxin to reduce viral persistence 
in  vivo. The immunotoxin was administered to human-
ized mice over a 2 week period in conjunction with con-
tinued ART [68]. The outcome of this relatively short 
immunotoxin therapy in  vivo was an additional 1 log10 
reduction in tissue viral RNA levels beyond the impact of 
ART alone.

In addition to immunization, immunomodulatory 
strategies also have the potential to boost antiviral immu-
nity against cells where latent virus has recently been 
reactivated. When toll-like receptors (TLR) recognize 
distinct foreign molecular patterns, they activate innate 

and adaptive immune cells. Whitney et al. recently pub-
lished a conference report describing the effect of a TLR7 
agonist given to ART-suppressed NHP [31]. In their 
study, they observed both reduced viral DNA in blood 
and tissues and a marked induction of plasma viremia 
following multiple oral administrations of the inhibi-
tor. Furthermore, the viral set point in these animals was 
lower during ATI versus animals that did not receive 
the TLR7 agonist. The surprising outcome of this study 
suggests that it may be possible for a single molecule to 
function as both the “kick” and the “kill” component of a 
virus eradication strategy. At the least, such a TLR ago-
nist could augment the reactivation of latent virus while 
simultaneously functioning as an immune enhancer.

Recently, Deng et al. showed that it is not sufficient to 
simply boost antiviral immunity, especially in patients 
who initiated ART during chronic infection [66]. The 
experimental conditions were highly controlled in this 
study as three key experimental components were inde-
pendently derived from a single human donor who 
initiated ART during chronic infection. The three com-
ponents were: (1) virus grown out from the latent reser-
voir using the qVOA; (2) ex vivo stimulated CD8+ T cells; 
and (3) humanized mice generated from bone marrow-
derived HSC. The humanized mice were infected with 
virus from the patient’s latent viral reservoir and then 
received an adoptive transfer of the ex  vivo stimulated 
CD8+ T cells. The key variable was the reagent used for 
the ex vivo CD8+ T cell stimulation. When the stimula-
tion included immune-dominant gag-epitopes based 
upon the patient’s HLA genotype, the adoptively trans-
ferred cells were unable to control viremia in the recipi-
ent humanized mice. However, when the stimulation did 
not include epitopes for which escape mutations were 
pre-existing, the adoptively transferred cells were capable 
of controlling viremia in the recipient humanized mice. 
This study yielded two very valuable contributions. First, 
when ART is initiated during chronic infection, the latent 
virus reservoir harbors CTL escape variants. Second, 
vaccination strategies in patients may need to be tailored 
for individual HLA genotypes to avoid stimulating inef-
fective antiviral immunity.

Strategies to suppress virus activity
Different strategies to suppress residual virus replica-
tion during ART have been tested in animal models. 
North et  al. evaluated ART intensification regimens in 
NHP [32]. Animals received either 3-, 4-, or 5-drug ART 
regimens, but no major differences in viral decay kinetics 
were observed and all animals experienced viral rebound 
during ATI. Using a complicated delivery strategy, Shy-
taj et  al. combined ART intensification in NHP with 
auranofin and buthionine sulfoximine [14, 15, 25]. The 
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net effect of this regimen was a substantial alteration in 
the natural course of infection that appeared to limit dis-
ease progression to AIDS, but did not limit viral rebound 
during ATI. Dunham et  al. coupled an indoleamine 
2,3-dioxygenase inhibitor with ART in NHP, but did not 
observe any alteration of the inflammatory environment 
in vivo, as hypothesized, nor did they observe an impact 
on persistent infection [36]. Moniuszko et al. performed 
a similar study with glucocorticoid to reduce the num-
ber of proinflammatory CD16+ monocytes present in 
NHP on ART [40]. This regimen did reduce the target 
cell population, but did not alter the persistent viral DNA 
levels relative to ART alone. Mavigner et  al. performed 
HSC transplants in NHP during ART using autologous 
cells to determine the impact of myeloablative total body 
irradiation plus stem cell transplant on viral persistence 
[34]. One to two months following the transplant, ART 
was discontinued in the experimental and control arms 
of the study. Rapid viral rebound and similar tissue viral 
nucleic levels characterized in the animals from both 
groups at necropsy indicated that neither the act of con-
ditioning for a stem cell transplant nor the transplant 
itself were sufficient to significantly impact viral persis-
tence. Holt et al., Neff et al., Kitchen et al. and Shimizu 
et  al. employed various gene editing strategies to suc-
cessfully reduce viral burden by reducing the number of 
human T cells susceptible to viral entry in HIV infected 
humanized mice in the absence of ART [81–84]. While 
these pioneering studies did not achieve the ultimate 
therapeutic goal of virus eradication, they confirm the 
feasibility of performing preclinical combinatorial trials 
in animal models. Regarding future animal model studies 
in HIV persistence, it is noteworthy that high costs and 
animal availability are major concerns for researchers 
conducting HIV persistence studies in animal models—
particularly for investigators utilizing NHP. The creation 
of a core facility that supplies ART-suppressed animals 
to HIV persistence researchers could address these con-
cerns, accelerate the work and lower the costs associated 
with these lines of research.

Conclusions
Given that experimental conditions are more readily 
controlled in animal studies, humanized mice and NHP 
are ideal experimental platforms for overcoming tempo-
ral, spatial and combinatorial challenges in HIV persis-
tence research. Importantly, since certain studies such 
as patient-specific humanized mice and long-term ART 
administration in NHP [26, 66] can only be performed in 
the respective model utilized, these in vivo HIV models 

have complementing advantages for HIV persistence 
researchers. Beyond model specific contributions to 
the field of HIV persistence research, both humanized 
mice and NHP models have been used independently 
to generate correlative data sets regarding viral persis-
tence in anatomical regions outside the typically assayed 
primary and secondary lymphoid tissues. Both types of 
models have been used to show that the persistent viral 
reservoir is established within the very first hours and 
days of infection and early ART is insufficient to eradi-
cate the persistent virus. Both types of models have also 
been used to perform preclinical efficacy evaluations of 
novel combinations of eradication interventions which 
will likely be required to achieve a cure for this disease. 
Both humanized mice and NHP HIV models should be 
utilized to evaluate potential biomarkers of viral rebound 
following ATI (e.g., PD-1, TIM-3, and LAG-3 [135]) as 
the validation of such markers will simplify clinical cure 
trial designs. The generation of these and other transla-
tional data in animal HIV models will continue to move 
the field closer to a cure for HIV disease.
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