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Abstract 

Background:  Renal transplant patients are mandated to have continuous assessment of their kidney function over 
time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and 
estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differ-
ential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the 
application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients 
and presenting a comparison of their performance through a pseudo-simulation study. The objective of this compari-
son is to identify the model with best performance and to determine whether accuracy compensates for complexity 
in the different multivariate joint models.

Methods and results:  We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to 
analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplanta-
tion patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient’s gender, 
age and race on these markers was determined holistically using different mGLMMs. The performance of the vari-
ous mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate 
random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has 
the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff 
between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of 
the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application 
of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI 
provided most accurate estimates and did not exhibit any computational or convergence problem.

Conclusion:  Higher accuracy was demonstrated when the level of complexity increased from shared random coeffi-
cient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate 
estimates.

Keywords:  Joint modeling, Multivariate longitudinal outcomes, Random coefficients

© 2015 Jaffa et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Monitoring kidney function is a necessity for patients 
who underwent kidney transplantation to assess pro-
gression of renal disease. Typically three markers are 

measured repeatedly over time after transplantation 
to ensure that no signs of kidney problems or risk of 
renal failure due to graft rejection are present and these 
include blood urea nitrogen (BUN), serum creatinine 
(Cr) and estimated glomerular filtration rate (eGFR). 
These markers are correlated and needed to ensure an 
accurate evaluation of the kidney function since each has 
its own limitations and could be influenced by demo-
graphical and physiological characteristics of the patient 
[1–5]. Once a patient experiences graft rejection then 
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measurements on the kidney markers won’t be recorded 
and patients will no longer be monitored for kidney func-
tion resulting in missing data. Given the interdependence 
of these outcomes in determining kidney function, it is 
important to evaluate the factors that affect the rate of 
change in these outcomes in a joint manner. The moti-
vation of this study is to assess the association between 
the three outcomes (BUN, creatinine and eGFR) and key 
demographic and clinical factors accounting for the cor-
relation between these markers in a multivariate fashion.

Analysis of multiple outcomes is given special attention 
in the literature. For example, multivariate linear mixed 
models (MLMM) were proposed to analyze multiple out-
comes to assess and test for global exposure effect across 
outcomes while assuming flexible correlation structure 
for the multiple outcomes [6]. The idea was to provide 
robust estimates for the mean by separating it from the 
correlation parameters. This MLMM model was lim-
ited to Gaussian outcomes and did incorporate longitu-
dinal data. Joint modeling was also used in the context 
of jointly studying time to clinical event and repeated 
measures on surrogate outcomes [7]. Others included 
joint modeling of the multilevel item response theory 
(MLIRT) and Cox’s proportional hazard model for time 
to dependent terminal event with shared random effects 
to link the two models [8]. A modeling framework for 
MLIRT also referred to as latent regression was widely 
considered and was based on the idea that the observed 
measurements are a result of some imperfect interac-
tion between subject-specific latent variables and meas-
urement-specific parameters [9–13]. The latent traits are 
considered as response variables and are regressed on a 
set of covariates, hence the name of latent regression. The 
advantage of the MLIRT models resides in the separation 
of the measurement-specific parameters and subject-spe-
cific covariates from manifest data and simultaneous esti-
mation of these parameters and covariate effects [14–16]. 
However, deviation from the normality assumption could 
affect the accuracy of the estimates and the inferences 
for the high-level outcomes [17]. Multivariate joint mod-
eling was also an alternative wherein a joint distribution 
is specified to jointly model all random effect [18–20]. 
Despite that data transformation solved the issue of non-
normality it still had its imbedded disadvantages such as 
difficulty in the interpretation of the estimated param-
eters on transformed scale. In addition, joint normality 
may not be always achieved especially if transformation 
was conducted on a component basis, and lack of uni-
versal transformation that could be appropriate for the 
majority of datasets [21]. An alternative approach that 
is not constrained by the issue of non-normality is the 
joint modeling of multivariate longitudinal outcomes 
discussed in [22]. In this approach the interdependence 

among outcomes is captured by using shared latent 
variable(s) or the correlation between random coeffi-
cients corresponding to each outcome and the non-nor-
mality is solved using distributions and link functions 
from the list of general linear models. They describe the 
following four approaches, (1) shared random intercept 
(SHRI); (2) shared random intercept and slope (SHRIS); 
(3) separate random intercepts (SPRI); (4) separate ran-
dom intercepts and slopes (SPRIS). The application and 
assessment of performance for these models were limited 
to health services outcomes in extremely large datasets 
and were not applied on clinical outcomes from a rela-
tively small sample size.

The goals of our study were

1.	 To identify the best fitting joint model from the four 
approaches listed in terms of the tradeoff between 
the complexity of the model and precision of the esti-
mates including convergence related complexities 
that could be due to small sample size.

2.	 To demonstrate the application of these models 
on a cohort of renal transplant patients assuming 
that the three correlated kidney markers follow 
the lognormal distribution. Hence in this research 
work we are proposing a novel application of the 
joint modeling approaches, and we are conducting 
an innovative thorough assessment of the perfor-
mance of each approach in a clinical setting char-
acterized by its small sample size. Studies with 
small sample sizes are commonly encountered in 
clinical settings of high cost, or where focus is on 
rare diseases, pilot studies as well as basic science 
research. Hence demonstrating the application and 
understanding the performance of these models in 
a dataset characterized by its small sample size, and 
multiple outcomes with non-normal distribution 
and high correlation is the key novel feature of this 
study.

Methods
The joint modeling approach investigated in this study 
is the multivariate generalized linear mixed models 
(mGLMM) which is a generalization of the linear mixed 
models. Fixed and random effects are both included 
and are referred to as β and bi respectively in the below 
equations of the joint models. Fixed effects represent 
the average rate of change in the outcome attributed to 
specific covariates at a population level; however, the 
random effects represent subject specific rate of change. 
The correlation between repeated measures on a cer-
tain outcome pertaining to the same individual subject 
is accounted for through the random effects. The cor-
relations between the different multiple outcomes are 
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incorporated through the variance–covariance matrix 
of the shared or separate random effects depending on 
the specific mGLMM. While linear mixed models are 
limited to normally distributed outcomes, mGLMM are 
extended to multiple correlated outcomes with other dis-
tributions, not necessarily normal, each of which is deter-
mined by its corresponding link function. The mGLMM 
is comprised of a set of generalized linear mixed models 
(GLMM) linked together by a SHRI, SHRIS, SPRI or sep-
arate random intercept and slope (SPRIS).

Let Yij1, Yij2,…, Yijk be the multivariate outcomes for 
subject i, measured at times j = 1 to ti, for outcomes 1 to 
k, the different joint models can be described as such:

SHRI
For three outcomes, SHRI model can be described as 
follows:

where b0i ∼ MVN
(

0, σ 2
b

)

, σ 2
b  is the variance for the 

intercept, xi is the covariate of interest and g−1 is the 
link function. The model can accommodate more than 
one covariate. The correlation between the outcomes is 
assumed to be captured by the shared-common intercept.

SHRIS

bi =

(

b0i
b1i

)

∼ MVN (0,D2×2) where D is the vari-

ance–covariance matrix of the shared intercept and slope 
so intuitively it includes the variances of the intercept and 
slope and their covariance. The correlation between the 
outcomes is assumed to be captured by the shared-com-
mon intercept and slope.

SPRI
The concept of capturing the correlation between the 
outcomes through intercept only, still applies here as in 
SHRI but the difference is in relaxing the shared intercept 
theory and assuming separate intercept associated with 
every outcome. Relaxing this assumption adds a layer of 
complexity by increasing the number of parameters to be 
estimated in the variance–covariance matrix. SPRI can 
be described as such

E
(

Yij1|b0i
)

= g−1(β01 + b0i + β11ti + β21xi)

E
(

Yij2|b0i
)

= g−1(β02 + b0i + β12ti + β22xi)

E
(

Yij3|b0i
)

= g−1(β03 + b0i + β13ti + β23xi)

E
(

Yij1|bi
)

= g−1(β01 + b0i + (b1i + β11)ti + β21xi)

E
(

Yij2|bi
)

= g−1(β02 + b0i + (b1i + β12)ti + β22xi)

E
(

Yij3|bi
)

= g−1(β03 + b0i + (b1i + β13)ti + β23xi)

b0i =





b0i1
b0i2
b0i3



 ∼ MVN (0,D3×3) where the number of 

parameters to be estimated increases to 6 attributed to 
the 3 variances and 3 covariances between the intercepts. 
The correlation between the 3 outcomes is assumed to 
be captured by the correlation between the separate 
intercepts.

SPRIS
The concept of capturing the correlation between the 
outcomes as in SHRIS is applied here with the difference 
in assuming separate intercept and slope for every out-
come which adds another level of complexity on SPRI. 
SPRIS can be described as such:

bi =





bi1
bi2
bi3



 =

















�

b0i1
b1i1

�

�

b0i2
b1i2

�

�

b0i3
b1i3

�

















∼ MVN (0,D6×6) where 

D is the variance–covariance matrix for the 3 intercepts 
and 3 slopes associated with every outcome resulting in 
an increase of the number of parameters to be estimated 
to 21. For all the models, the dependence between and 
within outcomes is captured by the structure of the vari-
ance–covariance matrix that can be determined by the 
measures of model fitting AIC, BIC and −2log l.

The univariate counterpart of these models can be 
reduced to GLMM with random intercept only (RI) and 
with random intercept and slope (RIS).

Pseudo‑simulation bootstrap study
To assess the performance of each model a pseudo sim-
ulation bootstrap study was conducted using a renal 
dataset and assuming that the three kidney outcomes 
(BUN, Cr and eGFR) follow the lognormal distribu-
tion. The covariates were limited to time and square of 
time since SPRIS exhibited convergence problems when 
other covariates were included. The square of time was 
included in the analysis to account for the curvilinear 

E
(

Yij1|b0i
)

= g−1(β01 + b0i1 + β11ti + β21xi)

E
(

Yij2|b0i
)

= g−1(β02 + b0i2 + β12ti + β22xi)

E
(

Yij3|b0i
)

= g−1(β03 + b0i3 + β13ti + β23xi)

E
(

Yij1|bi1
)

= g−1(β01 + b0i1 + (b1i1 + β11)ti + β21xi)

E
(

Yij2|bi2
)

= g−1(β02 + b0i2 + (b1i2 + β12)ti + β22xi)

E
(

Yij3|bi3
)

= g−1(β03 + b0i3 + (b1i3 + β13)ti + β23xi)
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relationship between time and each of the outcomes. 
We implemented 2,000 replications each with a sample 
size of 110 individuals boot strapped from the cohort 
of renal patients. The performance of the 4 multivari-
ate models (SHRI, SHRIS, SPRI, SPRIS) and that of the 
univariate random intercept model (RI), and random 
intercept and slope model (RIS) was examined. The per-
formance was determined in terms of accuracy assessed 
by two measures; the mean of the differences between 
the estimates of the bootstrapped datasets and the true 
beta obtained from the application of each model on 
the renal dataset, and the mean of the square of these 
differences. Specifically, true betas are the fixed effects 
(β11,β12,β13,β21,β22,β23) in the models’ equations. 
These parameters are estimated by applying the general-
ized linear mixed models on the renal transplant data-
set to reflect the estimated effects of the corresponding 
covariates on the changes in kidney outcomes. In Table 1, 
the differences between the estimates generated in the 
simulation studies and these betas are computed to deter-
mine the accuracy of the various models, noting that the 
smaller the difference the more accurate the model. For 
simplicity, we refer to these measures as mean difference, 
and mean squared difference respectively. This compari-
son helped us achieve the following objectives:

1.	 Identify the multivariate models that exhibited better 
performance than the other models.

2.	 Determine whether the complex separate random 
models (SPRI and SPRIS) had any advantage in terms 
of accuracy of the estimates over the simpler shared 
random effect models (SHRI and SHRIS). Accord-
ingly, we can gauge complexity versus precision.

3.	 Examine whether including the slope as random 
effect along with the intercept as in the SHRIS and 
SPRIS models has any respective advantage over the 
models that assume solely random intercept as in 
SHRI and SPRI.

4.	 Evaluate whether there was a gain in accuracy under 
the multivariate modeling versus the univariate sepa-
rate analysis implemented on every outcome.

The bootstrap results are presented in Tables 1, 2, and 
3 for the multivariate and univariate implementation of 
the models with 2,000 replications. In Table 1 we present 
the mean difference and mean squared difference for the 
estimates under every model while in Table 2 we provide 
percent reductions in these measures for a specific mul-
tivariate model versus the others. In Table 3 the percent 
reductions in these measures between univariate and 
multivariate models are presented.

Objective 1 As evidenced in Tables  1 and 2 (see also 
2nd footnote labeled as b in Table 2, and Table 2 columns 

a, b, and c), we notice that 6 out of 12 estimates i.e. 50% 
of the estimates generated under SPRI had the smallest 
mean difference, and mean squared difference compared 
to those generated under the other models that include 
SHRI, SHRIS, and SPRIS. Specifically, 50% of the esti-
mates generated under SPRI had an associated mean 
difference, and mean squared difference that are respec-
tively 58.7% and 12% smaller on average than those gen-
erated under the other models. Hence, this leads to the 
conclusion that SPRI demonstrated the best performance 
compared to the other 3 models.

Objective 2 Compared to SHRI, 83% of the estimates 
generated under SPRI had associated mean difference 
that is 40% smaller on average, and mean squared dif-
ference that are close in value (15% reduction in mean 
squared differences under SPRI in 50% of the estimates) 
(see Table 2 column d, and footnote Table 2). In this con-
text, we denote that the eGFR outcome had a significant 
32% reduction in mean squared difference under SPRI 
compared to SHRI. When we compared SPRIS to SHRIS 
(see Table 2 column e, and footnote Table 2), we realized 
that about 50% of the estimates generated under SPRIS 
exhibited an approximate average reduction of 73% in 
mean difference compared to SHRIS; meanwhile, an 
observed reduction of 19% in mean squared difference 
was captured in only 33% of the estimates under SPRIS. 
Hence, mean squared difference did not greatly differ 
between SHRIS and SPRIS. Accordingly, one can con-
clude that separate modeling of the random effect had 
it be solely intercept (SPRI), or both intercept and slope 
(SPRIS) had an advantage specifically in mean difference 
reduction over the simpler models that assume shared 
random effects (SHRI and SHRIS).

Objective 3 To assess whether the increase in com-
plexity when going from the simpler model (SPRI) to 
the more complex one (SPRIS) generates more accurate 
results, we observed that 66% of the estimates under 
SPRI had an associated mean difference that is 72% 
smaller on average than those generated under SPRIS, 
and 100% of the estimates under SPRI had smaller 
mean squared difference (9% average reduction in mean 
squared difference) than those generated under SPRIS 
(see Table 2 column f, and footnote Table 2). Hence, the 
simpler model (SPRI) appeared to generate more accu-
rate estimates than the complex model (SPRIS). This 
conclusion supports the finding established in objective 
1. However, this was not the case with SHRI and SHRIS. 
Specifically, when the performance of the simpler model 
(SHRI) was compared to that of the more complex one 
(SHRIS), similar overall performance was observed for 
both models wherein both models had close mean differ-
ence and mean squared difference (see Table 1 SHRI and 
SHRIS models).
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Hence SPRI appeared to have better performance 
than the other models and increasing the level of com-
plexity by going from SPRI to SPRIS did not improve on 
the accuracy of the estimates that were generated under 
SPRI. Hence, these results lead to the conclusion that 
modeling the slope as a random effect along with the 
intercept did not improve the performance of the associ-
ated models (SHRIS and SPRIS) compared to the simpler 
models that assume solely random intercept (SHRI and 
SPRI).

Objective 4 Our bootstrap pseudo simulation study also 
aimed at investigating the effect of multivariate modeling 
versus the univariate implementation of the models that 
assume that the outcomes are independent. In this regard 
a comparison was undertaken between the performance 
of the RI model and that of SHRI and SPRI, and between 
RIS and that of SHRIS and SPRIS (Tables 1, 3). The per-
formance of SHRI and RI did not significantly differ since 
their associated mean difference and mean squared dif-
ferences were close (see Table  1). Hence, this observa-
tion indicates that under models with random intercept, 
the multivariate shared model (SHRI) did not improve 
the accuracy of the estimates compared to those gener-
ated under the univariate random intercept model (RI). 
However, this conclusion did not hold when we com-
pared SPRI and RI. Specifically, we noticed that 66% of 
the estimates generated under SPRI had a 42% average 
reduction in mean difference compared to those esti-
mates generated under RI (see Table  3 column a, and 
footnote Table 3). For instance, 77 and 73% reductions in 
mean difference were observed for the slope estimates of 
the outcomes creatinine and eGFR generated under SPRI 
compared to those generated under RI. Nonetheless, the 
mean squared differences did not greatly differ in the 
estimates of these two models.

When SHRIS and RIS were compared, a minimal 
reduction (only 4%) was denoted for the mean squared 
differences in the majority of the estimates (about 80%) 
that were generated under SHRIS compared to RIS; but 
the mean differences did not differ between the 2 mod-
els. Hence SHRIS and RIS exhibited similar performance. 
Compared to RIS, about 50% of the estimates generated 
under SPRIS exhibited an observed reduction in the 
mean difference by about 41% on average (see Table  3 
column b, and footnote Table 3), while the mean squared 
difference did not greatly differ between the 2 models. 
These results suggest that multivariate modeling specifi-
cally SPRI and SPRIS had an advantage in performance 
specifically in Mean Difference compared to the univari-
ate models RI and RIS respectively (Table  3). However, 
this conclusion did not hold for the shared multivariate 
models SHRI and SHRIS wherein their associated mean 
difference and mean squared difference did not greatly Ta
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differ from those under the univariate RI and RIS respec-
tively. Hence only the separate multivariate models (SPRI 
and SPRIS) exhibited improved performance over their 
univariate counterpart models RI and RIS. This result 
also endorses our conclusion in objective 2 which stated 
that separate random effect models (SPRI and SPRIS) 

had better performance compared to the shared random 
effect models (SHRI and SHRIS).

Motivating example: renal transplant application
The current study was motivated by the cohort of renal 
transplant patients. The dataset consisted of 110 patients 
who underwent renal transplantation in the year 2000 
and were followed for 3 years (till year 2003) post-trans-
plant until they experience graft rejection or end of study 
period. After the scheduled termination date of the 
study in year 2003, patients were no longer followed and 
assessment of their kidney function was not undertaken 
afterwards.

In case of graft rejection, patients had to revert back to 
the dialysis regimen and were not monitored afterwards. 
About 19% of the patients in this cohort experienced graft 
rejection. Renal function and progression of renal disease 
is assessed by 3 correlated markers, BUN, serum Cr, and 
eGFR. These outcomes follow the lognormal distribu-
tion. In this study BUN and Cr had a positive correlation 
of 0.624 (P value <0.0001), while BUN and eGFR had a 
negative correlation of −0.63 (P value <0.0001) and that 
of Cr and eGFR was −0.71 (P value <0.0001). Changes 
in the levels of markers are what usually determine the 
progression of renal disease. In this regard, decrease in 

Table 2  Percent reduction in mean difference and mean squared difference that correspond to: SPRI compared to all 
other multivariate models (a, b, and c)b; SPRI compared to SHRI (d); SPRIS compared to SHRIS (e); SPRI compared to 
SPRIS(f)

a  SPRI did not generate the smallest mean difference and/or mean squared difference compared to all multivariate models.
b  50% of the estimates under SPRI had the smallest mean difference and mean squared difference compared to all other models with 58.7% and 12% average overall 
reduction respectively.
c  No reduction was observed under SPRI or SPRIS.
d  83% of the estimates under SPRI had smaller mean difference compared to SHRI with average overall reduction of 40%, and 50% had smaller mean squared differ-
ence with average reduction of 15%.
e  50% of the estimates under SPRIS had smaller mean difference compared to SHRIS with average overall reduction of 73%, and 33% had smaller mean squared dif-
ference with average reduction of 19%.
f  66% of the estimates under SPRI had smaller mean difference compared to SPRIS with average overall reduction of 72%, and 100% had smaller mean squared differ-
ence with average reduction of 9%.

Estimate Outcome (a) SPRI vs SHRI (b) SPRI vs 
SHRIS

(c) SPRI vs 
SPRIS

(d) SPRI vs 
SHRld

(e) SPRIS vs 
SHRISe

(f) SPRI  
vs SPRISf

Mean difference Intercept BUN 4% 15% 33% 4% (–)c 33%

Creatinine (–)a (–) (–) 14% 89% (–)c

eGFR (–) (–) (–) 12% 63% (–)

Time BUN (–) (–) (–) (–)c (–) 96%

Creatinine 84% 82% 86% 84% (–) 86%

eGFR 85% 85% 54% 85% 67% 74%

Mean squared dif-
ference

Intercept BUN (–) (–) (–) (–) (–) 5%

Creatinine (–) (–) (–) (–) (–) 1%

eGFR (–) (–) (–) (–) (–) 28%

Time BUN 2% 2% 11% 2% (–) 11%

Creatinine 10% 9% 2% 10% 7% 2%

eGFR 32% 35% 6% 32% 31% 6%

Table 3  Percent reduction in mean difference that corre‑
spond to: SPRI Compared to RI (a); SPRIS compared to RIS 
(b)

a  No reduction was observed in mean difference under SPRI compared to RI or 
SPRIS compared to RIS.
b  66% of the estimates under SPRI had smaller mean difference compared to RI 
with average overall reduction of 42%.
c  50% of the estimates under SPRIS had smaller mean difference compared to 
RIS with average overall reduction of 41%.

Estimate Outcome Mean difference

(a) SPRI vs RIb (b) SPRIS vs RISc

Intercept BUN (–)a (–)a

Creatinine 16% 84%

eGFR 2% 14%

Time BUN (–) (–)

Creatinine 77% (–)

eGFR 73% 25%
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the level of BUN and Cr indicates an improvement in the 
kidney function over time. However, the opposite is true 
for eGFR where an increase in the levels of this marker 
indicates improved kidney function. This explains the 
positive correlation between BUN and Cr, and the nega-
tive ones between these markers and eGFR. The normal 
values for BUN are between 8 and 25 mg per 100 mL of 
blood, for Cr the normal range is between 0.7 and 1.3 mg 
per 100 mL of blood, and for eGFR this range is approxi-
mately between 90 and 120  mL/min/1.73  m2 for men 
and women respectively. Measurements on the three 
markers were taken on every patient for a 3-year period 
starting with the baseline measure pre-transplant regis-
tered as month 0, then at months 1, 3, 6, 12, 24, and 36 
post-transplant.

The four models examined in this study were applied 
on this cohort of patients and the objective was to esti-
mate the slope for every outcome over time along with 
some associated key covariates that include patient’s age, 
gender, and race and the vital status (deceased or living) 

of the respective donor along with some basic demo-
graphics such as donor’s gender and race (see Table  4). 
Applying the mGLMM on this cohort of patients enabled 
us to assess the effect of these various covariates on all 
the renal markers (BUN, creatinine and eGFR) collec-
tively through the joint modeling approach. Moreover, 
the random effects term in the mGLMM accounts for 
the correlations between the repeated measures for every 
patient and the different markers respectively, and for the 
between-patients variation in the length of stay and com-
pleteness of measurements of renal outcomes. This vari-
ation emerges between patients who may dropout before 
the intended termination date of the study. In addition, 
the link functions and the generalized approach available 
in mGLMM make it feasible to model the renal outcomes 
measured in this study and which were found to follow 
the lognormal distribution without necessitating any 
transformation to achieve normality.

By applying the four models we were able to identify 
the one(s) that had the best fit determined by measures 

Table 4  Application of the four multivariate models on the renal transplant dataset with all covariates

a  SPRIS converged for time and time squared covariates only.

Model Outcome Slope African_America

Intercept (SE) Slope time (SE) Slope male (SE) n (SE) Slope age (SE) Slope donor male (SE)

P-value P-value P-value P-value P-value P-value

SHRI BUN 3.08890 (0.08067) −0.01995 (0.00203) 0.17280 (0.04095) 0.08899 (0.04102) 0.004602 (0.00147) −0.07432 (0.04300)

<0.0001 <0.0001 <0.0001 0.0301 0.0018 0.0841

Creatinine 0.85950 (0.11300) −0.04514 (0.00339) 0.24650 (0.05708) 0.23420 (0.05718) −0.001980 (0.00205) −0.15420 (0.05993)

<0.0001 <0.0001 <0.0001 <0.0001 0.3336 0.0102

eGFR 3.38800 (0.13700) 0.05333 (0.00431) 0.01762 (0.06910) −0.05963 (0.06923) −0.00249 (0.00248) 0.16960 (0.07255)

<0.0001 <0.0001 0.7988 0.3891 0.3163 0.0195

SHRIS BUN 3.09780 (0.07982) −0.01986 (0.00204) 0.16890 (0.04069) 0.07361 (0.04073) 0.00461 (0.00146) −0.07389 (0.04272)

<0.0001 <0.0001 <0.0001 0.0709 0.0017 0.0838

Creatinine 0.86840 (0.11250) −0.04505 (0.00340) 0.24270 (0.05697) 0.21880 (0.05707) −0.00198 (0.00204) −0.15380 (0.05982)

<0.0001 <0.0001 <0.0001 0.0001 0.3347 0.0102

eGFR 3.39690 (0.13820) 0.05342 (0.00438) 0.01375 (0.06979) −0.07501 (0.06992) −0.00248 (0.00250) 0.17010 (0.07328)

<0.0001 <0.0001 0.8438 0.2834 0.3226 0.0204

SPRI BUN 3.08030 (0.10790) −0.01904 (0.00194) 0.17130 (0.05497) 0.10870 (0.05506) 0.00486 (0.00198) −0.08662 (0.05774)

<0.0001 <0.0001 0.0019 0.0486 0.0142 0.1337

Creatinine 0.85050 (0.12430) −0.04406 (0.00333) 0.24560 (0.06278) 0.25580 (0.06288) −0.00172 (0.00226) −0.16780 (0.06594)

<0.0001 <0.0001 <0.0001 <0.0001 0.4478 0.011

eGFR 3.41330 (0.14630) 0.05085 (0.00384) 0.01952 (0.07389) −0.10570 (0.07401) −0.00329 (0.00266) 0.20460 (0.07761)

<0.0001 <0.0001 0.7917 0.1533 0.216 0.0084

SPRISa BUN 3.38950 (0.03001) −0.01857 (0.00215)

<0.0001 <0.0001

Creatinine 0.94220 (0.04326) −0.04421 (0.00342)

<0.0001 <0.0001

eGFR 3.36560 (0.04724) 0.05049 (0.00388)

<0.0001 <0.0001
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such as AIC, BIC and −2 log likelihood (see Table 5), and 
compare the associated standard errors for each model. 
In addition we applied the univariate random intercept 
model (RI) and univariate random intercept and slope 
(RIS) on every outcome separately (see Table 6) to com-
pare the estimates obtained under the multivariate appli-
cation versus the univariate ones. The multivariate model 
SPRIS did not converge when all these covariates were 
included concurrently but just with the covariates time 
and time square. The relation between time and the three 
markers appeared to be curvilinear; hence, time squared 
was also included in the model to account for this non-
linear relationship. The fitting measures when the 4 mod-
els were applied on the renal dataset with only time and 
time squared as covariates are also presented in Table 5. 
The variance–covariance matrices of the multivariate 
and univariate models are reported in Appendix 1 and 
Appendix 2, respectively.

As an overall discussion of the estimates we can deduce 
that for all multivariate models (see Table  4) patients 
appear to have improved kidney function over time as 
evidenced by the negative slopes of BUN and Cr, and 
positive ones for eGFR. This improvement was demon-
strated by the estimated decrease of 1.02 mg per 100 mL 
of blood in BUN on average across all multivariate mod-
els and 1.1  mg per 100  mL of blood for Cr. Along the 
same line, eGFR levels were estimated to increase by 
an average across all multivariate models of 1.1  mL/
min/1.73  m2. This significant improvement in the pro-
gression of renal disease over time detected in the multi-
variate models was also established in univariate models 
(see Table 6). Gender appeared to be significantly associ-
ated with the changes in BUN and Cr but not with eGFR, 
and males patients were shown to have inferior kidney 
function compared to females. This conclusion was dem-
onstrated in the multivariate models with the attributed 
increase in BUN levels for males versus females of 1.2 mg 
per 100 mL of blood and of 1.3 mg per 100 mL of blood 
for Cr (see Table  4). A similar conclusion was reached 
under the univariate models (see Table 6). This detected 
increase in the levels of these markers in males compared 
to females led to the conclusion that female patients have 
better prognosis of kidney disease compared to males 
that could be attributed to the protective effect of estro-
gen [23].

Race was found to be associated with BUN and Cr in 
the SHRI and SPRI models and only Cr in SHRIS. In the 
univariate models (see Table  6), race was found to be 
associated only with Cr and, unlike the multivariate mod-
els, no association was detected with BUN. Specifically, 
non-African American patients appeared to be at a dis-
advantage compared to other races due to their 1.1  mg 

Table 5  Measures of fit for the multivariate models 
applied on renal transplant dataset with (a) all covariates 
(b) time and time squared

a  SPRIS model converged for only Time and Time Squared covariates.

Model AIC BIC −2logl

(a) All covariates SHRI 4,000.21 4,010.98 3,992.21

SHRIS 3,999 4,015.14 3,987

SPRI 3,358.24 3,382.46 3,340.24

SPRISa (–) (–) (–)

(b) Time and time squared SHRI 4,040.59 4,051.39 4,032.59

SHRIS 4,036.7 4,052.91 4,024.7

SPRI 3,732 3,756.64 3,714.34

SPRISa 3,749.12 3,808.53 3,705.12

Table 6  Application of the two univariate models on the renal transplant dataset with all covariates

Model Outcome Intercept (SE) Slope time (SE) Slope male (SE) Slope AA (SE) Slope age (SE) Slope donor male (SE)
P-value P-value P-value P-value P-value P-value

RI BUN 3.08470 (0.10610) −0.01942 (0.00195) 0.17290 (0.05408) 0.09597 (0.05416) 0.00475 (0.00195) −0.08116 (0.05679)

<0.0001 <0.0001 0.0015 0.0768 0.0148 0.1534

Creatinine 0.85850 (0.11920) −0.04527 (0.00341) 0.24620 (0.06037) 0.23670 (0.06047) −0.00199 (0.00217) −0.15380 (0.06338)

<0.0001 <0.0001 <0.0001 <0.0001 0.3582 0.0155

eGFR 3.40210 (0.13990) 0.05221 (0.00394) 0.01729 (0.07089) −0.08284 (0.07101) −0.00289 (0.00255) 0.18690 (0.07443)

<0.0001 <0.0001 0.8074 0.2438 0.2568 0.0123

RIS BUN 3.09910 (0.10370) −0.01936 (0.00213) 0.16680 (0.05290) 0.07354 (0.05297) 0.00468 (0.00191) −0.07877 (0.05556)

<0.0001 <0.0001 0.0017 0.1655 0.0141 0.1567

Creatinine 0.83970 (0.11780) −0.04528 (0.00342) 0.24670 (0.06001) 0.23940 (0.06007) −0.00163 (0.00216) −0.15450 (0.06298)

<0.0001 <0.0001 <0.0001 <0.0001 0.4501 0.0144

eGFR 3.42390 (0.13840) 0.05222 (0.00395) 0.01660 (0.07050) −0.08582 (0.07058) −0.00332 (0.00253) 0.18760 (0.07401)

<0.0001 <0.0001 0.8139 0.2244 0.1906 0.0115
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per 100 mL of blood increase in BUN levels on average 
and 1.3 mg per 100 mL of blood increase on average in 
Cr (see Table 4). This conclusion was also valid under the 
univariate models; nevertheless, it was just demonstrated 
with Cr.

Age appeared to be positively correlated with BUN in 
all models and with every 1 year increase in age of trans-
plantation corresponds to an increase in BUN levels of 
approximately 1.6  mg per 100  mL of blood on average. 
Hence those patients who had their renal transplanta-
tion at older ages were at a disadvantage in terms of renal 
function and progression of kidney disease compared to 
those patients who had the transplant at younger ages. 
This conclusion holds for all models had it be multivari-
ate or univariate.

Males were better donors than females since patients 
who received their kidneys from male donors exhibited a 
decrease of approximately 1.2 mg per 100 mL of blood in 
their Cr levels, and an increase of approximately 1.2 mL/
min/1.73  m2 in eGFR levels compared to patients who 
had female donors (Tables 4, 6). This result is in line with 
other studies that showed females to be poorer donors 
than males, an observation attributed to nephron under-
dosing and hence nephron overload in females [23–25]. 
No association was detected between the donor’s race 
and BUN in all models. The other covariates such as 
donor’s gender and vital status were found to be not asso-
ciated with any of the outcomes and as a result were not 
included in any of the models.

Comparison of models fit
SPRI exhibited the best fit as demonstrated by its low-
est associated pseudo AIC, BIC and −2log l (see Table 5) 
wherein average decreases of 641, 631 and 650 in these 
measures were denoted between SPRI compared to the 
other models SHRI and SHRIS. Compared to the uni-
variate model RI, the standard errors generated under 
SPRI were mostly slightly larger than the ones generated 
under RI. However, this was not the case when we com-
pared the standard errors under SHRI and those under 
the univariate model RI wherein all the estimates under 
SHRI had smaller SE than those under RI. The same 
conclusion was observed when we compared SHRIS to 
RIS and we denoted that all estimates under SHRIS had 
smaller standard errors than those with RIS. This conclu-
sion was anticipated since only one additional parameter 
(variance of the intercept) needed to be estimated under 
SHRI as indicated in the variance–covariance matrix (see 
Appendix 1). The same case was denoted for RI where 
also one additional parameter (variance of the intercept) 
needed to be estimated for every outcome (see Appendix 
2) leading to three additional parameters that pertain to 
the three outcomes. The same can be said for SHRIS and 

RIS models. However SPRI had additional six parameters 
in the variance–covariance matrix (see Appendix 1). A 
comparison of the four multivariate models based on the 
application to the renal data with time and time squared 
as covariates (see Table 5), SPRI still exhibited the best fit 
and its associated AIC, BIC and −2log l were the smallest 
compared to SHRI, SHRIS and SPRIS.

Discussion
In this study we demonstrate a novel application of the 
different mGLMM approaches to a renal transplant data-
set characterized by its small sample size of 110 patients 
and correlated multiple outcomes with lognormal distri-
bution. While mGLMM is based on multivariate mod-
eling of the correlated outcomes via joint modeling of 
latent variables, other approaches have also been used. 
For example, earlier analysis of the same renal trans-
plant data [26] was based on a Two-stage likelihood-
based approach wherein the individual observations for 
every patient are reduced into slopes computed in stage 
1. A jointly modeling of individual slopes and their cor-
relations along with the number of visits for every patient 
is conducted in stage 2. Maximization of the likelihood 
function that is integrated over the random effects results 
in maximum likelihood estimates of the population 
slopes and empirical Bayes estimates for the individual 
slopes. Since individual observations for every patient 
are reduced to the individual slopes then this required 
imposing an assumption that only patients with two vis-
its or more can be included in the study. Moreover, it 
was assumed that all sufficient information is contained 
in the slopes and that the intercept could be discarded 
and excluded from the likelihood function. These two 
assumptions are no longer required in the mGLMM 
approaches presented in this study since intercepts were 
incorporated as a shared random effect or separate ones 
and individual observations are modeled rather than 
their corresponding slopes, hence the restriction of eli-
gibility for those with two observations and more was 
relaxed here. In this study we gave additional insight into 
the assessment of shared versus separate models in clini-
cal settings of small sample size. Our current assessment 
also includes the level of computational complexity and 
accuracy of the different models. As expected, there has 
been some discrepancy in the computational burden to 
fit each of the models. For example, the SPRIS model did 
not converge when multiple covariates were included 
along with time and time squared. A natural explana-
tion for this phenomenon is having a large number of 21 
parameters in the variance–covariance matrix of SPRIS 
that needed estimation (Appendix 1) and a small sample 
size of 110 did not help achieve convergence. This obser-
vation highlights a drawback with SPRIS and suggests 
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that SPRIS should be used with caution in settings of 
small sample size. SPRI had the best fit when applied to 
the renal dataset and generated the most accurate esti-
mates with minimum mean difference and mean squared 
differences. This advantage could be due to the fact that 
the number of parameters in the variance–covariance 
matrix for SPRI (6 parameters) is midway between the 
SHRI’s (1 parameter) and SHRIS’ (3 parameters) and that 
for SPRIS (21 parameters). This result is in agreement 
with what has been shown in studies with large sample 
size [22] where SPRI also demonstrated the best fit in 
terms of smallest AIC, BIC and −2log l. To validate these 
models using another independent dataset, the mGLMM 
approach was applied on a longitudinal study of type 1 
diabetic patients with large sample size and multiple car-
diovascular disease outcomes that have mixed non-nor-
mal distributions [27, 28]. Our results showed that SPRI 
had the best fit in terms of smallest AIC, BIC, and -2log 
l compared to the other models and had the minimum 
mean difference and mean difference squared in the 
majority of the estimates. This confirms again that SPRI 
had the best performance and best fit in the context of 
large datasets as was the case with the small dataset.

Models with separate random effects exhibited bet-
ter performance in terms of mean difference and mean 

squared differences compared to those with shared ones 
and also demonstrated superior performance than the 
univariate RI and RIS models. Nonetheless, increasing 
the level of complexity from SPRI to SPRIS by adding the 
slope as a random effect along with the intercept did not 
increase the level of accuracy; on the contrary conver-
gence problems were encountered. Hence it appears that 
the SPRI model that is midway in complexity was favored 
by the renal dataset and the bootstrap study.

Conclusion
In the context of a relatively small sample size study, we 
were able to demonstrate that the mGLLMs with SPRIs 
and separate random intercepts and slopes (SPRIS) gen-
erated more accurate estimates compared to the SHRI 
and SHRIS models. Similar conclusion was reached when 
we compared SPRI and SPRIS to their univariate alterna-
tives RI and RIS. Convergence issues were encountered 
with SPRIS when the number of covariates increased, 
however, SPRI had the best fit and most accurate perfor-
mance compared to the other models and its successful 
convergence was consistently achieved.

Appendix 1
See Tables 7, 8, 9.

Table 7  Variance–covariance matrix of SHRI and SHRIS when applied on renal transplant dataset with all covariates

Model Outcome Variance intercept (SE) Covariance intercept, slope Variance slope (SE) Variance  
residuals (SE)

SHRI 0.02077 (0.005809)

BUN 0.1494 (0.009515)

Creatinine 0.4197 (0.02320)

eGFR 0.6791 (0.03934)

SHRIS 0.01562 (0.007302) 0.000242 (0.000277) 0.000016 (0.00002)

BUN 0.1431 (0.0114)

Creatinine 0.4151 (0.02342)

eGFR 0.6929 (0.04286)

Table 8  Variance–covariance matrix of SPRI when applied on renal transplant dataset with all covariates

Outcome Variance  
intercept (SE)

Covariance intercepts 
BUN, Cr (SE)

Covariance intercepts 
BUN, eGFR (SE)

Covariance  
intercepts Cr, eGFR (SE)

Variance 
Residuals (SE)

SPRI BUN 0.05856 (0.01151) 0.0666 (0.01145) −0.07767 (0.01343) −0.1188 (0.01764) 0.1345 (0.007824)

Creatinine 0.04257 (0.01542) 0.4102 (0.02357)

eGFR 0.06204 (0.02132) 0.5464 (0.0314)
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Appe�ndix 2
See Table 10.
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Table 9  Variance–covariance matrix of SPRIS when applied on renal transplant dataset with covariates time and time 
squared

a  SPRIS converged for only time and time squared covariates.

SPRISa Intercept Intercerpt Intercept Slope Slope Slope
BUN (SE) Cr (SE) eGFR (SE) BUN (SE) Cr (SE) eGFR (SE)

Intercept 0.2606

BUN (SE) (0.02609)

Intercerpt 0.2932 0.1229

Cr (SE) (0.04267) (0.05179)

Intercept −0.3064 −0.1173 <0.000001
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Slope −0.0047 0.003245 −0.00905 0.005992 <0.000001

Cr (SE) (0.002801) (0.004418) (0.118) (0.1781) (0.002482)

Slope 0.005316 −0.00378 0.009299 −0.00616 <0.000001 <0.000001
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Table 10  Variance–covariance matrix of RI and RIS when applied on renal transplant dataset with all covariates

Model Outcome Variance intercept (SE) Covariance intercept, slope (SE) Variance slope (SE) Variance residuals (SE)

RI BUN 0.05553 (0.01111) 0.1352 (0.007904)

Creatinine 0.03038 (0.01423) 0.4205 (0.02455)

eGFR 0.04494 (0.01956) 0.5599 (0.03268)

RIS BUN 0.0543 (0.01257) −0.00049 (0.000564) 0.00012 (0.000038) 0.1166 (0.007530)

Creatinine 0.01192 (0.02067) 0.000865 (0.000829) <0.000001 (–) 0.4211 (0.02463)

eGFR 0.02113 (0.02826) 0.001116 (0.001122) <0.000001 (–) 0.5605 (0.03278)
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filtration rate; mGLMM: multivariate generalized linear mixed model; MLIRT: 
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