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Abstract

The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recog-
nized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising precli-
nical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to
perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulat-
ing EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a
2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14
subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected
by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and
colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative
processes associated with mobilization of hematopoietic and endothelial progenitors.

Introduction
Autologous bone marrow derived stem cell therapy has
demonstrated benefit in early clinical trials for condi-
tions such as critical limb ischemia [1,2], post infarct
remodeling [3], stroke [4,5], and liver failure [6]. While
original mechanisms of action were believed to be asso-
ciated with transdifferentiation of progenitor cells to
injured tissues, more recent data supports the notion
that trophic/paracrine mechanisms may be involved. In
this scenario the primary therapeutic function of the
administered cells is production of growth factors/anti-
apoptotic factors that accelerate tissue healing [7-9].
Unfortunately, despite our more advanced mechanistic
understanding of cellular therapy, its widespread imple-
mentation is hindered by need for complex cell proces-
sing facilities that are only available at limited medical
institutions. A more simplistic strategy would involve
administration of agents capable of enhancing endogen-
ous stem cell activity, or alternatively mobilizing bone

marrow resident stem cells to increase concentration to
an area of need.
It is known that subsequent to a variety of tissue inju-

ries, such as myocardial infarction [10], stroke [11], and
long bone fractures [12,13], endogenous stem cells are
mobilized to the periphery, en route to the site of
damage. The cytokines stromal derived factor (SDF-1)
[10], vascular endothelial growth factor (VEGF) [14],
and hepatocyte growth factor (HGF-1) [15] appear to
act as homing signals generated by injured tissues for
reparative cells. Given that stem cell mobilization
appears to be associated with response to injury, one
therapeutic approach has been to artificially augment
mobilization subsequent to tissue damage by administra-
tion of mobilizing agents. In this manner the increased
number of circulating stem cells are more available to
respond to injury signals, hypothetically resulting in
enhanced healing.
Granulocyte colony stimulating factor (G-CSF) and

granulocyte-macrophage colony stimulating factor (GM-
CSF) have been used in hematology for over two dec-
ades to mobilize donor hematopoietic stem cells [16,17].* Correspondence: thomas.ichim@gmail.com
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These mobilizers have recently been used in non-hema-
tological clinical trials to stimulate post-injury healing
processes. For example, in a trial of post acute myocar-
dial infarct patients, administration of G-CSF for 5 days
resulted in significant inhibition of pathological remo-
deling and improvement in ejection fraction [18]. In the
chronic injury setting, a trial of 45 patients with periph-
eral artery disease demonstrated improvement in vascu-
lar reactivity and walking time 12-weeks after a 2 week
treatment with GM-CSF [19]. Improvements in
endothelial function have also been reported in cancer
patients post G-CSF mobilization [20]. Other studies
have demonstrated the feasibility of stem cell mobiliza-
tion as a possible therapy in diverse degenerative condi-
tions such as liver failure [21,22] and ALS [23].
Chronic stimulation of stem cell mobilization is not

possible using agents such as G-CSF, due to cost and
possible adverse effects such as thrombosis which would
be enhanced after long-term use [24]. Less invasive
interventions have been reported to augment circulating
stem cells such as smoking cessation or exercise [25,26].
In the current study we investigated whether a commer-
cially-available nutraceutical, Stem-Kine (Aidan Pro-
ducts, Chandler AZ), was capable of increasing the
number of circulating stem cells and progenitor cells.
This proprietary food supplement is produced by fer-
mentation of a combination of green tea, astralagus, goji
berry extracts, with food-derived lactobacillus Fermen-
tum together with ellagic acid, beta 1,3 glucan and vita-
min D3. In a previous study we reported preliminary
data on increased circulating endothelial progenitor cell
(EPC) levels subsequent to administration (Mikirova
et al. Journal of Translational Medicine in press). In the
current study we sought to assess kinetics of EPC and
stem cell mobilization in a larger population. Augmenta-
tion of both CD133 and CD34 cells in circulation was
observed, as well as KDR-1+/CD34+ EPC capable of
forming endothelial colonies. In contrast to pre-treat-
ment levels, circulating stem/EPC cells were observed to
undergo an approximate 2-fold increase as a result of
daily supplementation.

Materials and methods
Study population and treatment
The study was conducted under Institutional Review
Board Approval of The Center for Improvement of
Human Health International, Wichita, Kansas, USA,
IRB # 2009-02. Eighteen adults ages 20 -72 where
recruited into the study after understanding and signing
informed consent. Exclusion criteria included: systemic
immune-compromised state, ongoing infection or dis-
ease conditions, and significant abnormalities in bio-
chemistry or complete blood count panels. Subjects
ceased any nutritional supplementation such as vitamins

and minerals 4-5 days before trial initiation. Two 8 ml
blood draws in heparinized Vacutainer tubes were col-
lected by venipuncture before administration of Stem-
Kine supplementation (day 0) and at days 1, 2, 7, and
14. Study participants were required to ingest two cap-
sules of Stem-Kine in the morning and two in the eve-
ning for 14 days.

Phenotypic assessment of circulating stem cells
Peripheral blood mononuclear cells (PBMC) were iso-
lated by the Ficoll-Hypaque (Fisher Scientific, Ports-
mouth NH) method [27]. Briefly, blood samples were
diluted two-fold with PBS and layered onto Ficoll-
Hypaque in 50-ml conical tubes (Corning, Acton, MA).
Each tube was centrifuged at 400 g for 30 min and the
lymphocytes at the interface were collected. Cells were
washed twice with RPMI 1640 medium containing 100
U/ml penicillin, 100 μg/ml streptomycin, and 2 mM
L-glutamine, and subsequently resuspended in 100 ul
(0.5 M cells per 100 ul) of buffer (PBS+0.5% BSA).
Cells were stained with anti-CD45-FITC (BD Pharmin-
gen), antihuman-KDR-PE, anti-CD34-PE (BD Pharmi-
nogen), CD133/AC133-PE (Miltenyi Biotec), or isotype
controls recommended by manufacturer. Specifically,
10 ul of antibody was added per 100 ul of resuspended
cells and refrigerated in the dark for 15 min (4-8) C.
Cells were washed in 2 ml of PBS with 0.5% BSA and
resuspended in 100 ul of buffer for analysis. Flow cyto-
metry was performed using a Cell Lab Quant SC sys-
tem (Beckman Coulter) equipped with 22 mW argon
laser tuned at 488 nm, with the total number of cells
counted cells being 30,000 per sample. The percentage
of CD133 and CD34 positive cells was calculated based
on the measured number of leukocytes (CD45-positive
cells).

Quantification of EPC based on colony forming ability
EPC cultures were performed using a modification of
the previously described method [28-31]. Briefly, PBMC
were plated on 24-well fibronectin-coated plates in
Endocult liquid medium, comprised of EndoCult basal
Medium and EndoCult supplement with growth factors
and 2% fetal calf serum (Stem Cell Technologies, Van-
couver, Canada). Cells were plated at a concentration
1 million cells per well for 5 days. For each subject colo-
nies were plated in triplicate. Colonies represented clus-
ters of more than 50 cells circumscribed by spindle
shaped cells and were counted by microscope. As the
number of colonies depends on the number of plated
cells, normalization of colony number based amount of
cells plated was performed twice. The coefficient for
normalization was calculated from the level of ATP for
the same amount of plated cells after 5 days of plating
in medium without growth factors.
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HALO hematopoietic progenitor assay
The Hematopoietic/Hemotoxicity Assay via Lumines-
cent Output (HALO, HemoGenix, Inc) assay was per-
formed according to the manufacturer’s instructions
[32]. Briefly, PBMC were plated in a methylcellulose
media (HemoGenix) with and without the addition of a
growth factor cocktail consisting of erythropoietin (EPO,
3 U/mL), granulocyte-macrophage-colony-stimulating
factor (GM-CSF, 20 ng/mL), granulocyte colony-stimu-
lating factor (G-CSF, 20 ng/mL), interleukin-3 (IL-3,
10 ng/mL), interleukin-6 (IL-6, 20 ng/mL), stem cell fac-
tor (SCF, 50 ng/mL), thrombopoietin (TPO, 50 ng/mL),
and Flt-3 ligand (10 ng/mL). Cells were plated at a con-
centration of 20000 cells per well in 96 well plates.
After 5 days of culture, level of cellular ATP was quanti-
fied by bio-luminescence. The ratio of average values of
ATP in growth factor stimulated and not stimulated
cells was calculated and compared for different periods
before and after intervention.

Statistics
Differences between the groups were assessed using the
non-parametric Wilcoxon rank test and P < 0.05 was
considered to indicate statistical significance.

Results
Stem-Kine mobilizes CD34 and CD133 Cells
Quantification of peripheral blood cells expressing the
hematopoietic stem cell markers CD133 and CD34 was
performed at day 0 (pre-treatment) and on days 1, 2, 7
and 14 subsequent to initiation of Stem-Kine supple-
mentation. The average circulating CD133 cell numbers
from all treated subjects peaked at 90.35% of pretreat-
ment values (p = 0.01) on day 7 (Figure 1), whereas cir-
culating CD34 counts reached a maximal level of
53.13% (p = .04) increase on day 2 (Figure 2). These
data suggest that Stem-Kine administration is associated
with significant mobilization of cells expressing hemato-
poietic stem cell markers. Data is presented as percen-
tage of mononuclear cells in Additional File 1.

Analysis of the number of the progenitor cells in
circulation by HALO assay
Cells expressing the CD34 and CD133 markers are
associated with hematopoietic activity [33,34]. To
assess whether Stem-Kine supplementation altered
levels of functional hematopoietic progenitor cells in
peripheral blood, the HALO assay [32], a modified
form of the classical colony-forming assay, was used

Figure 1 Stem-Kine Supplementation Augments Circulating CD133 Expressing Cells. PBMC from 18 healthy volunteers were assessed by
flow cytometry for expression of CD133 at days 0, 1, 2, 7, and 14 after initiation of twice daily Stem-Kine administration. Data is presented as
percentage over control of average values from all 18 subjects. *P < 0.05 compared to pre-treatment group.
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[35,36]. This technique is based on augmentation of
ATP activity (indicating cellular metabolism) in cul-
tures treated with hematopoietic growth factors versus
control cultures. Increased hematopoietic cell growth
was microscopically observed in treated cultures as
seen in Figure 3. Data presented in Figure 4 represent
the average ATP content in growth factor treated ver-
sus control (mean ± SE) for cells extracted before
Stem-Kine supplementation and days 1, 2, 7, and 14.
The ratio of the average ATP was increased after 24
hrs of supplementation from a pre-treatment level of
2.13 ± 0.0.44 to 2.57 ± 0.47 (p = 0.02). After 48 hrs
and 7 days of supplementation, the ratio was 2.36 ±
0.5 (p = 0.05) and 2.35 ± 0.5 (p = 0.07). These data
suggest Stem-Kine supplementation increases circula-
tion of cells capable of giving rise to hematopoietic-
lineage cells in vitro.

Stem-Kine augments circulation of cells with
EPC phenotype
Agents such as G-CSF that induce HSC mobilization
have been reported to also promote EPC mobilization
[37]. Although similar molecular processes may be
involved, studies suggest unique cytokine cocktails

mobilize distinct stem cell populations [38,39]. Given
that CD34 and CD133 are also markers of EPC [25], we
sought to examine whether Stem-Kine affected EPC
levels in the periphery. EPC phenotypically have been
characterized by co-expression of CD34 and the kinase
insert domain receptor (KDR) [40,41]. Assessment of
cells bearing this phenotype was performed at similar
timepoints to CD34/C133 expression pre- and post-
Stem-Kine administration. Significant increases of circu-
lating cells expressing the EPC phenotype were observed
at days 2 (36.12% compared to pre-treatment control
p = 0.04) and 7 (95.35% compared to pretreatment
control, p = .001) as shown in Figure 5.

Stem-Kine increases circulating cells with EPC activity
Figure 6 illustrates morphology of a typical CFU-E. As
seen in Figure 7, significant (p < 0.05) increases in col-
ony formation were observed blood extracted on days 1
and 2. This was confirmed by visual colony counting as
well as using the AlphaEase image analysis system.
These data suggest Stem-Kine supplementation aug-
ments circulating levels of cells that not only bear the
EPC phenotype, but are capable of forming CFU-E
in vitro.

Figure 2 Stem-Kine Supplementation Augments Circulating CD34 Expressing Cells. PBMC from 18 healthy volunteers were assessed by
flow cytometry for expression of CD34 at days 0, 1, 2, 7, and 14 after initiation of twice daily Stem-Kine administration. Data is presented as
percentage over control of average values from all 18 subjects. *P < 0.05 compared to pre-treatment group.
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Figure 3 Stimulation of Hematopoietic Progeny from PBMC (HALO Assay): PBMC were plated at a concentration of 20,000 cells per well
and cultured on a methylcellulose matrix for 5 days supplemented with; (a) control media or (b) an optimized hematopoietic growth factor
cocktail as described in Materials and Methods.

Figure 4 Stem-Kine Supplementation Increases Hematopoietic Progenitor Cells in Circulation. PBMC from subjects supplement with
Stem-Kine were extracted at the indicated timepoints and cultured for 5 days in the presence of control media or hematopoietic cytokines.
Ratio of ATP between activated and control cells is illustrated on the y-axis. *P < 0.05 compared to pre-treatment groups.
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Figure 5 Augmentation of KDR/CD34 positive cell numbers in circulation after Stem-Kine administration. PBMC from 18 healthy
volunteers were assessed by flow cytometry for coexpression of CD34 and KDR at days 0, 1, 2, 7, and 14 after initiation of twice daily Stem-Kine
administration. *P < 0.05 compared to pre-treatment groups.

Figure 6 Colony Forming Unit Endothelium Assay: PBMC were plated on 24-well fibronectin-coated plates at a concentration of 10(6) cells
per well. After 5 days of culture cells were Giemsa stained and clusters of > 50 cells were quantified as colonies.
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Discussion
Hematopoietic stem cells at various stages of differentia-
tion are localized in the bone-marrow. At a basal rate
low levels of stem/progenitor cells are released from
their niche and circulate in the peripheral blood [42].
Initially, upregulation of peripheral blood hematopoietic
stem cell numbers was believed to be limited to post-
bone marrow injury conditions [43], subsequent studies
have expanded this finding to situations of inflammation
[44], and peripheral tissue injury [45-47]. Hematopoietic
stem cells are being increasingly recognized as having
diverse non-hematopoietic functions including produc-
tion of angiogenic cytokines [48], and acting as an
“innate” immune cell capable of rapidly differentiating
into dendritic cells for protection of the host against
infections [49]. Circulating EPC are derived from the
same lineage as hematopoietic cells [50], and are
believed to play a role in replenishing the vasculature
[51-53]. Numerous conditions including Alzheimer’s
Disease [54], migraine headaches [55], erectile dysfunc-
tion [56], diabetes, and peripheral vascular disease are
associated with decreases in circulating EPC, possibly as
a result of chronic inflammatory mediators associated

with these conditions [57,58]. In contrast, acute injury
such as myocardial infarction [59,60] and stroke [61],
are associated with upregulated levels of these cells.
Given the possibility that both hematopoietic stem cells
and EPC may serve as endogenous “repair cells”, we
sought to assess a relatively non-invasive means of mod-
ulating these cells.
Stem-Kine is a commercially available food supple-

ment whose intake has been associated with a variety of
anecdotal reports of health improvement such as
increased energy levels, enhanced skin quality, resistance
to infection, and accelerated post-infection recovery. We
found that administration of Stem-Kine over a 2-week
course was well tolerated with no adverse effects
reported. Supplementation was associated with a peak
increase of approximately 53% in the number of CD34
expressing cells and and a 90% increase in CD133 cells
in circulation. Furthermore, a significant augmentation
of cells possessing hematopoietic colony forming activity
was found in PBMC by the HALO assay. The levels of
mobilization associated with Stem-Kine administration
are closer to conditions that can be maintained over
long term use, which is not possible with currently

Figure 7 Stem-Kine Supplementation Augments Circulating Cells with CFU-E Generating Activity. CFU-E were generated by incubation of
PBMC isolated from healthy volunteers with EndoCult Media. Data is presented as ratio to pre-treatment values. Open squares represent
quantification by Alpha-Ease software, whereas closed symbols indicate quantification per viewing field by microscope. *P < 0.05 compared to
pre-treatment groups.
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available mobilizers. For example, G-CSF administration
at a conventionally used dose, 12 micrograms/kg for
6 days, results in a 58-fold increase in granulocytic pro-
genitors and 24-fold increase in erythroid progenitors
[62], which approximately correlated with CD34 counts
[63]. Maintaining such extreme levels of mobilization
over a long term increases the risk of extramedullary
hematopoiesis [64], bone marrow depletion [65], and
thrombosis as a result of chronic leukocytosis [24].
Indeed current indications for G-CSF recommend its
use be limited to no more than 7 days for purposes of
mobilization [66]. The recently approved drug AMD-
3100 stimulates CD34 and CFU-GM mobilization
approximately half of values obtained for G-CSF alone,
however has been demonstrated to synergize with
G-CSF [67]. The rapid onset and extent of mobilization
limits chronic administration. As with other mobilizing
agents, Stem-Kine peripheralization of CD34 and CD133
cells started to drop on day 14 of administration. This
may be a physiological response towards maintaining a
constant level of circulating progenitor cells. Indeed it
may be possible that Stem-Kine could be beneficial in
conditions associated with reduced progenitor cells such
as diabetes or in smokers which possess lower baseline
values as compared to controls [25,26,57,58].
While we correlated an increase in hematopoietic

colonies with Stem-Kine induced upregulation of per-
ipheral blood CD34 and CD133 cells, given that these
markers are also found on EPC [25], we evaluated the
possibility that circulating EPC numbers were also
increased. We observed maximal increases (almost dou-
bling) of CD34+ KDR+ cells in PBMC occurring at day
7 of supplementation, whereas peak CFU-E activity
occurred at day 2. The reason for this discrepancy is not
known, but potentially may be related to existence of
various subsets of cells with EPC potential residing out-
side of the CD34+ KDR+ fraction. Further studies are
required to elucidate functional importance of the vari-
able kinetics of mobilization, as well as possible differ-
ences on long-term versus short-term circulating EPC.
The mechanism of Stem-Kine mediated mobilization

remains unknown. One possibility is that a temporary
disruption of the SDF-1a/CXCR4 axis is occurring, in a
similar manner to mobilization induced by G-CSF or
cyclophosphamide [68]. Not mutually exclusive is the
possibility that Stem-Kine is activating bone marrow
resident macrophages, elaborating cytokines associated
with mobilization [69]. We are favoring this possibility
based on agents that induce mobilization in the relative
potency range associated with Stem-Kine. For example,
specific molecular weight ranges of hyaluronic acid
have been demonstrated to induce mild mobilization
[70,71], an effect that is associated with bone marrow

macrophage production of IL-1 and IL-6 [72]. Peptido-
glycan components which are found in Stem-Kine are
known to activate macrophages and stimulate produc-
tion of IL-6 [73].
To our knowledge, this is the first study demonstrat-

ing profound mobilization effect with possible clinical
significance by a food supplement-based approach. The
nutritional supplement StemEnhance, is an extract of
the cyanobacteria Aphanizomenon flos-aquae [74].
Jensen et al which demonstrated a 25% increase in cir-
culating CD34+ cells, which peaked at 60 minutes-post
administration and subsided at 120 minutes [75].
Another nutraceutical product, Nutra-Stem, is com-
posed of a combination of blueberries, green tea extract,
carnosine, and vitamin D3. In vitro activity on prolifera-
tion of human bone marrow cells was assessed, in which
a 60% enhancement of growth was reported [76]. Bone
marrow cells from mice supplemented with Nutra-Stem
were protected from in vitro exposure to hydrogen per-
oxide at up to approximately 40% [77]. These data sug-
gest the possibility of nutritional modulation of stem
cell compartments, but do not provide results on mobi-
lization. Further research is required to assess physiolo-
gical effects in humans.
In conclusion, the current study suggests feasibility of

significant mobilization of cells expressing hematopoietic
stem cell and EPC markers and properties. The area of
nutritional modulation of the stem cell compartment
offers significant benefit in treatment of a wide variety
of degenerative diseases. However given commercial
pressures associated with this largely unregulated field,
we propose detailed scientific investigations must be
made before disease-associated claims are made by the
scientific community.

Additional file 1: Progenitor Cell Numbers Expressed as a
Percentage of Peripheral Blood Mononuclear Cells. The data
provided represent number of progenitor cells (CD133, CD34, and cells
with EPC functional activity) as a percentage of peripheral blood
mononuclear cells.
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