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Abstract
Biomarkers are pivotal for cancer detection, diagnosis, prognosis and therapeutic monitoring.
However, currently available cancer biomarkers have the disadvantage of lacking specificity and/or
sensitivity. Developing effective cancer biomarkers becomes a pressing and permanent need. The
cancer secretome, the totality of proteins released by cancer cells or tissues, provides useful tools
for the discovery of novel biomarkers. The focus of this article is to review the recent advances in
cancer secretome analysis. We aim to elaborate the approaches currently employed for cancer
secretome studies, as well as its applications in the identification of biomarkers and the clarification
of carcinogenesis mechanisms. Challenges encountered in this newly emerging field, including
sample preparation, in vivo secretome analysis and biomarker validation, are also discussed.
Further improvements on strategies and technologies will continue to drive forward cancer
secretome research and enable development of a wealth of clinically valuable cancer biomarkers.

Introduction
Cancer remains the major devastating disease throughout
the world. It is estimated that cancers are responsible for
over 6 million lives per year worldwide with an annual 10
million or more new cases. In developing countries, can-
cers are the second most common cause of death, which
comprise 23–25% of total mortality. Despite advances in
diagnostic imaging technologies, surgical management,
and therapeutic modalities, the long-term survival is poor
in most cancers. For example, the five-year survival rate is
only 14% in lung cancer and 4% in pancreatic cancer
[1,2]. Obviously, the frustrating therapeutic effects in can-
cer lie in the fact that the majority of cancers are detected
in their advanced stages and some have distant metas-
tases, rendering the current treatment ineffective. It is
widely accepted that early diagnosis and intervention are
the best way to cure cancer patients [3,4]. Cancer biomar-
kers provide diagnostic, prognostic and therapeutic infor-

mation about a particular cancer and show their ever-
increasing importance in early detection and diagnosis of
cancer [5-8].

Over the past several decades, enormous efforts have been
made to screen and characterize useful cancer biomarkers.
Some important molecules including carcinoembryonic
antigen (CEA), prostate specific antigen (PSA), alpha-feto-
protein (AFP), CA 125, CA 15-3 and CA 19-9, have been
identified. They are commonly employed in clinical diag-
nosis. Unfortunately, most biomarkers are not satisfactory
because of their limited specificity and/or sensitivity
[9,10]. Therefore, there is an urgent need to discover bet-
ter potential biomarkers in clinical practice.

Currently, we are in an era of molecular biology and bio-
informatics. Many novel approaches have been intro-
duced to identify markers associated with cancer.
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Proteomic profiling is one of the most commonly applied
strategies for cancer biomarker discovery. There are two
general differential proteomic strategies: comparing pro-
tein patterns in cancer tissue with their normal counter-
parts, and comparing plasma/serum from cancer patients
with those from normal controls. As suggested by Liotta
[11]: "the blood contains a treasure trove of previously
unstudied biomarkers that could reflect the ongoing phys-
iologic state of all tissues", and the latter, therefore,
appears to be more attractive. However, the prospects of
blood proteomics are challenged by the fact that blood is
a very complex body fluid, comprising an enormous
diversity of proteins and protein isoforms with a large
dynamic range of at least 9–10 orders of magnitude [12].
The abundant blood proteins, such as albumin immu-
noglobulin, fibrinogen, transferrin, haptoglobin and lipo-
proteins, may mask the less abundant proteins, which are
usually potential markers [13]. Several procedures have
been made to remove these more abundant proteins
before proteomic analysis: for instance, the Cibacron blue
dye method is used for removing albumin, Protein G res-
ins or columns for IgG, and immunoaffinity for several
abundant proteins including IgG and albumin [14-18].
Nevertheless, these methods may sacrifice other proteins
by nonspecific binding, thus lowering the screen effi-
ciency [19].

Given the above-mentioned major limitations in blood
proteomics, scientists are seeking other methods for can-
cer biomarker discovery. The term "secretome" was first
proposed by Tjalsma et al. [20] in a genome-based global
survey on secreted proteins of Bacillus subtilis. In a
broader sense, the secretome harbors proteins released by
a cell, tissue or organism through classical and nonclassi-
cal secretion [21]. These secreted proteins may be growth
factors, extracellular matrix-degrading proteinases, cell
motility factors and immunoregulatory cytokines or other
bioactive molecules. They are essential in the processes of
differentiation, invasion, metastasis and angiogenesis of
cancers by regulating cell-to-cell and cell-to-extracellular
matrix interactions. More importantly, these cancer
secreted proteins always enter body fluids such as blood
or urine and can be measured by non-invasive assays.
Thus, cancer secretome analysis is a promising tool sup-
porting the identification of cancer biomarkers. The cur-
rent review will focus on the technical aspects,
applications and challenges in cancer secretome research.

Approaches for cancer secretome analysis
In recent years, the emerging technologies in life science,
especially that of proteomic research, have greatly acceler-
ated studies on the cancer secretome. Generally, these
methods can be categorized into two groups, namely
genome-based computational prediction and proteomic
approaches.

The genome-based computational prediction
These approaches are characterized by a combined
method of transcript profiling and computational analy-
sis. Computational analysis depends on the prediction of
signal peptides, which is viewed as a hallmark of classi-
cally secreted proteins. According to the famous signal
hypothesis [20], the majority of secreted proteins have an
N-terminal signal peptide sequence that helps proteins to
enter the endoplasmic reticulum (ER) lumen via the sec-
dependent protein translocation complex. Welsh et al
[22] used a combined method of controlled vocabulary
terms and sequence-based algorithms to predict genes
encoding secreted proteins from 12,500 sequences on oli-
gonucleotide microarrays in common human carcino-
mas. They successfully identified 2,300 genes, of which 74
were over-expressed in one or more carcinomas. Another
similar study found a total of 133 statistically significant
secretome genes correlating to breast cancer progression
[23].

These genome-based methods can provide a comprehen-
sive list of potentially secreted proteins quickly. However,
there are two major inherent problems that restrain the
broad use of these approaches. First, this approach relies
on prediction of signal peptides or cell retention signals,
thus making some genuine secreted proteins lacking sig-
nal peptide or presenting cell retention signals unpredict-
able. About 50% of secreted proteins can be predicted by
signal peptides or other specific cell retention signals [24].
Second, secreted proteins are frequently regulated at the
post-transcriptional level. Accordingly, the real level of
expression of secreted proteins does not always correlate
with mRNA expression [25,26]. The inconsistent expres-
sion pattern between mRNA and protein will inevitably
hamper the clinical application of biomarkers from these
genome-based prediction methods.

Proteomic approaches
Nowadays, proteomic technologies are the mainstay of
cancer secretome studies. With the massive progress in
mass spectrometry (MS), bioinformatics and analytical
techniques, proteomic approaches greatly promote the
cancer secretome analysis and biomarker discovery. Cur-
rently, there are roughly three major proteomic technolo-
gies in secretome researches: gel-based methods, gel-free
MS-based methods and surface-enhanced laser desorp-
tion/ionization time-of-flight mass spectrometric (SELDI-
TOF-MS).

Gel-based proteomic technologies
Two-dimensional gel electrophoresis (2-DE) coupling MS
is the most classic and well-established proteomic
approach. This method allows the separation of complex
mixtures of intact proteins at high resolution. These pro-
tein mixtures are first separated according to their charge
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in the first dimension by isoelectric focusing (IEF) and
size in the second dimension by SDS-PAGE, and then ana-
lyzed by peptide mass fingerprinting using MS or MS/MS
after in-gel trypsin digestion. It has been widely used in
secretome studies of cancers, such as malignant glioma
[26], lung cancer [27-29], hepatocellular carcinoma [30],
fibrosarcoma [31], breast cancer [32] and oral squamous
cell carcinoma [33]. Using 2-DE coupled to matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF-MS), Huang [27] et al. identi-
fied 14 human proteins from the conditioned media of a
non-small cell lung cancer cell line A549. With the same
technique, Lou et al [28] identified 47 proteins from the
conditioned media of M-BE, an SV40T-transformed
human bronchial epithelial cell line with the phenotypic
features of early tumorigenesis at high passage.

Although 2-DE currently remains the most efficient
method for separation of complex protein mixtures, it is
clear that this technique has several disadvantages, includ-
ing poor reproducibility between gels, low sensitivity in
the detection of proteins in low concentrations and
hydrophobic membrane proteins, limited sample capac-
ity and low linear range of visualization procedures [34].
In addition, the technique is time-consuming, labor-
intensive and has a low efficiency in protein detection due
to limited amenability to automation.

To circumvent some of these inherent problems of the
standard 2-DE procedure, a modified method, differential
in-gel electrophoresis (DIGE) has been developed by GE
Healthcare [35]. This technology utilizes three spectrally
distinct, charge and mass-matched fluorescent dyes (Cy2,
Cy3 or Cy5), which can primarily combine covalently
with lysine. Protein samples are differently labeled by
these fluorescent dyes before electrophoresis, and then
mixed and separated on one single gel. By enabling two
protein samples to run on the same gel, DIGE significantly
reduces the experimental variations and ensures that the
biological difference becomes the predominant contribu-
tion to the total variance. Fluorescent labeling also
enhances the linear dynamic range and detection sensitiv-
ity in DIGE [36]. Volmer et al [21] performed a differen-
tial secretome analysis between the smad-4 deficient and
smad-4 re-expressing SW480 human colon carcinoma
cells by both DIGE and traditional 2-DE technologies.
After systematically comparing the protein patterns and
the performance of the two methods, they convincingly
demonstrated that DIGE was more reliable and powerful
than traditional 2-DE. Despite DIGE being envisaged as a
more powerful technique than conventional 2-DE for
proteomic studies, it still has a number of shortcomings.
First, the technique is not applicable to those proteins
without lysine (when labeling with the minimal dyes) or
cysteine (when labeling with the saturation dyes). Second,

DIGE still suffers from some problems inherent to 2-DE,
such as low throughput and difficulties in the identifica-
tion of proteins with extreme isoelectric points or molec-
ular weight. This fact has necessitated the development of
alternative proteomic strategies to achieve information
not accessible through 2D gel separation.

Gel-free MS-based technologies
To overcome the inherent drawbacks of gel-based
approaches, great efforts have been made recently on gel-
free MS-based or shotgun proteomics. In these newly
emerging approaches, instead of depending on gels to
separate and analyze proteins, complex mixtures of pro-
teins are first digested into peptides or peptide fragments,
then separated by one or several steps of capillary chroma-
tography, and finally analyzed by MS/MS. Multidimen-
sional protein identification technology (MudPIT), which
was introduced and termed by Yates and colleague [37], is
one of the most typical approaches in gel-free technology.
In MudPIT, strong cation exchange (SCX) and reversed-
phase (RP) liquid chromatography (LC) are coupled with
automated MS/MS to adequately separate peptides from
the peptide mixtures by charge and subsequent hydro-
phobicity. Thousands of peptides were quickly identified
for a given sample by using the SEQUEST algorithm to
analyze the MS/MS data. Because of its high-resolution
separation of peptides and the significantly enhanced pro-
tein coverage, MudPIT is powerful in the analysis of mem-
brane proteins or low-abundance proteins/peptides
which are undetectable in gel-based approaches [38,39].
Thus, MudPIT has now become the popular technology in
the investigation of the cancer secretome [40-43]. How-
ever, essentially, MudPIT is not a quantitative proteomic
approach. Hence, it is not regarded as optimal for differ-
ential proteome analysis [44]. Bioinformatics algorithms
were recently developed to overcome this limitation by
showing its promising application in differential pro-
teomic analysis. These methods were simply based on
mass spectral signal intensity or peptide hits, and thus
were categorized as LC-MS/MS based non-labeled quanti-
tative proteomic quantification [45,46]. However, much
work needs to be done if these algorithms are to be
broadly accepted in the future.

The major progress in proteome/secretome study is the
technology of quantitative proteomics which introduced
isotopes or other molecular labeling methods in pro-
teomic analysis [47-49]. In these methods, proteins or
peptides from different samples are first labeled with dif-
ferent stable isotopes or chemicals, then mixed, separated
and identified by single dimension or multidimensional
LC coupling MS/MS. By having the same chemical prop-
erties, a peptide in a mixed pool detected by MS appears
as peak pairs (peptides existing distinctly in one sample
are detected as single peaks). The measurement of either
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the MS peak intensities or areas can infer relative abun-
dance between protein samples [48]. One of the most
extensively applied approaches in stable isotope labeling
technologies is isotope-coded affinity tag (ICAT), which
was introduced by Gygi and colleagues in 1999 [50]. The
ICAT reagent consists of three parts: a reactive group spe-
cific for free thiol functionality of cysteine residues, a
linker and a biotin tag that makes possible affinity chro-
matography purification using immobilized avidin. By
labeling with isotopically light- or heavy-ICAT reagent,
the amount of two protein samples can be compared with
the MS data. Being specific for cysteine residues, ICAT rea-
gents can neglect the sample complexity and allow detec-
tion of low-abundance peptides [51]. Martin and
colleagues [52] comprehensively analyzed androgen-reg-
ulated secreted proteins from neoplastic prostate tissue by
the ICAT approach. They successfully identified 52 andro-
genic hormone regulated proteins including PSA,
neuropilin-1, amyloid-like protein 2, and prostate differ-
entiation factor. Recently, a second-generation ICAT rea-
gent called cleavable isotope-coded affinity tag (cICAT)
has been developed. Differing from the original reagents,
the cICAT reagent uses an acid-cleavable linker and13C or
12C isotopes [53,54]. This approach shows enormous
potential for quantitative proteomic analysis, and a
cICAT-based secretome study in human glioma cells
found 47 proteins with significant expression changes in
response to p53 expression [26]. However, this technique
is not very efficient for proteins with few or no cysteines
[55].

Stable isotope labeling by amino acids in cell culture
(SILAC) is another common stable isotope labeling tech-
nique. In SILAC, stable isotope-labeled essential amino
acids are added to amino acid deficient cell culture media,
and then are absorbed and secreted by cells in the synthe-
sis of proteins in vitro. Thus the proteome from different
cell cultures can be compared as being grown in media
with carbon-isotopically modified amino acids. A differ-
ential SILAC secretome study between pancreatic cancer
cells and non-neoplastic pancreatic ductal cells identified
145 differentially secreted proteins (> 1.5-fold change),
including several common biomarkers of pancreatic can-
cer and novel proteins that have not been reported previ-
ously [25]. Nearly all peptides can be isotopically labeled
by SILAC, hence significantly improving the sequence
coverage of proteins. SILAC might be the best method for
secretome study in vitro at present; however, this
approach is impractical for clinical protein samples in
vivo.

Isobaric tag for relative and absolute quantization
(iTRAQ) is a recently developed isotope labeling
approach that is increasingly accepted in secretome anal-
ysis [56]. This new method can label nearly all peptides in

a digested mixture from either cell lines or clinical sam-
ples. It also allows for multiplexing the analysis of up to
four samples in a single experiment by employing a 4-plex
set of amine reactive isobaric tags, and the mass spectra of
peptides generated are relatively easy to interpret [57].
iTRAQ has been applied to investigate the secretome dif-
ferences between Pseudoalteromonas tunicata wild-type
(wt) and the white mutant (wmpD-), and identified 182
proteins with > 95% confidence [58]. Nevertheless, to our
knowledge, applications of this new technique are not as
yet reported in cancer secretome studies.

SELDI-TOF-MS
SELDI-TOF-MS is an exciting approach in cancer proteom-
ics, particularly plasma proteomics [59-61]. The paradigm
of this method is the protein chip arrays, which have spe-
cific chromatographic features. After an on-surface chro-
matographic protein separation, the chip-immobilized
proteins are co-crystallised with a matrix and the MS spec-
tral profiles are captured by an analyzer. By analyzing
these spectral profiles, a cancer-specific finger-print can be
obtained. SELDI-TOF-MS has several advantages, includ-
ing relatively high tolerance for salts and other impurities,
improved sensitivity for lower-abundance proteins, no
requirement for off-line protein isolation and compatibil-
ity with automation [62]. However, its major disadvan-
tage lies in the fact that it is difficult to identify the
potential biomarkers from the differential spectral pro-
files, and thus was suspected by some investigators
[63,64]. Fortunately, recent studies seemed to overcome
this obstacle [65,66]. Moscova et al [66] successfully sep-
arated five PI3K-regulated secreted proteins (CXCL1, IL-8,
and variant forms) in ovarian cancer cells from SELDI-
TOF-MS spectral profiles by proteomic and immunologic
methods. These molecules might be used either as diag-
nostic markers or as targets for the pathway-specific
molecular therapies. The high-throughput nature and
simplicity in its experimental procedures hold out SELDI-
TOF-MS to be a promising technology for future secre-
tome analysis and biomarker discovery.

Applications of cancer secretome analysis
Identification of cancer biomarkers
The major application of cancer secretome analysis is to
search for cancer biomarkers. As mentioned above, the
cancer secretome contains a treasure trove of novel
biomarkers, which make cancer diagnosis using secre-
tome markers attractive. Recently, investigation of secre-
tomes from a variety of cancers has led to the
identification of a number of potential cancer biomarkers
(Table 1). It is known that renal cell carcinoma (RCC) is
the sixth leading cause of cancer-related deaths, and
metastasis is found in 15%–25% of RCC patients at the
time of diagnosis. To date, no validated RCC marker is
available to detect asymptomatic RCC [67]. Aiming to
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explore novel circulating RCC markers, Sarkissian et al
[68] analyzed the secretome of CAL 54, a human RCC cell
line and identified pro-matrix metalloproteinase-7 (pro-
MMP-7) as a candidate serum marker. By employing a
homogeneous, fluorescent, dual-monoclonal immu-
noassay, the concentrations of pro-MMP-7 in serum sam-
ples were examined. The concentrations of pro-MMP-7
were found to be increased in serum of RCC patients com-
pared with healthy controls, and serum pro-MMP-7 had a
sensitivity of 93% (95% CI 78–99%) at a specificity of
75% (59–87%) for RCC, indicating pro-MMP-7 might be
a promising RCC marker. Biomarkers for nasopharyngeal
carcinoma are also urgently needed. Wu et al [69] com-
bined SDS-PAGE with MALDI-TOF-MS to systematically

investigate the nasopharyngeal carcinoma secretome.
From the cultured media of nasopharyngeal carcinoma
cell lines, they identified 23 proteins and found that 3
metastasis-related proteins, fibronectin, Mac-2 binding
protein (Mac-2 BP), and plasminogen activator inhibitor
1 (PAI-1), were overexpressed in nasopharyngeal carci-
noma tissues. ELISA-based detection further indicated
that the serum levels of these proteins were significantly
elevated in nasopharyngeal carcinoma patients than in
healthy controls, highlighting their potential for nasopha-
ryngeal carcinoma detection.

As shown in table 1, several putative biomarkers
unraveled in cancer secretomes are commonly shared

Table 1: Candidate biomarkers for human cancers discovered by cancer secretome analysis

Cancer Screening methods Verification methods Candidate biomarkers References

Lung SDS-PAGE/nano-ESI-MS/MS ELISA CD98, fascin, 14-3-3 η, polymeric 
immunoglobulin receptor/secretory 
component

[73]

2-DE/MALDI-TOF/TOF-MS Western blot/ELISA/IHC Cathepsin D [28]
2-DE/MALDI-TOF-MS RT-PCR/western blot/ELISA/

IHC
Dihydrodiol dehydrogenase [27]

SDS-PAGE/MALDI-TOF-MS ELISA L-lactate dehydrogenase B [90]
2-DE/MALDI-TOF-MS RT-PCR/enzyme activity 

detection
Mn-SOD [29]

Liver LC-MS/MS Western blot Apolipoprotein E, DJ-1, apolipoprotein H, 
galectin-3, cathepsin L, cyclophilin A, cystatin C

[41]

Pancreatic NuPAGE/LC-MS/MS/SILAC Western blot/IHC CD9, perlecan, SDF4, apolipoprotein E, 
fibronectin receptor, Mac-2 binding protein, 
cathepsin D, cathepsin B, MCP-1, L1CAM

[25]

LC-MS/MS RT-PCR/western blot/IHC CSPG2/versican, Mac25/angiomodulin [43]
Bladder SDS-PAGE/MALDI-TOF-MS Western blot Pro-u-plasminogen activator [91]

LC-MS/MS CXCL1 [92]
Nasopharyngeal SDS-PAGE/MALDI-TOF-MS Western blot/ELISA/IHC Fibronectin, Mac-2 binding protein, 

plasminogen activator inhibitor 1
[69]

Prostate LC-MS/MS Western blot/ELISA Mac-2 binding protein [40]
Oligonucleotide microarray/
genome-based computational 
prediction

RT-PCR/ELISA/IHC Macrophage inhibitory cytokine 1 [22]

LC-MS/MS ELISA follistatin, chemokine (C-X-C motif) ligand 16, 
pentraxin 3, spondin 2

[93]

Melanoma NuPAGE/LC-Q-TOF-MS/MS Western blot Cathepsin D, gp100 [79]
Breast LC-MS/MS Western blot Galectin-3-binding protein, alpha-1-

antichymotrypsin
[94]

LC-MS/MS ELISA Elafin [95]
Colorectal SDS-PAGE/MALDI-TOF-MS Q-PCR/Western blot/IHC/

ELISA
Collapsing response mediator protein-2 [72]

2-DE/DIGE/MALDI-TOF-MS Northern blot/western blot Cathepsin D, stratifin, calumenin [21]
Renal 2-DE/MALDI-TOF-MS/

immunoblotting
Western blot/homogeneous 
fluorescent immunoassay

Pro-MMP-7 [68]

Oral SDS-PAGE/MALDI-TOF-MS Western blot/IHC/ELISA Mac-2 binding protein [70]
Fibrosarcoma Capillary ultrafiltration probe/2-

DE/MALDI-TOF-MS
Cyclophilin A, S100A4, profiling-1, thymosin 
beta 4, thymosin beta 10, fetuin-A, alpha-1 
antitrypsin 1–6, contrapsin, apolipoprotein A-1, 
apolipoprotein C-1

[31]

Ovarian SELDI-TOF MS Immunodepletion CXC chemokine ligand 1, intact and truncated 
interleukin 8

[66]

HPLC fractionation/LC-MS/MS Immunoblot/
immunofluorescence

14-3-3 zeta [96]
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among different cancers, such as Mac-2 binding protein
[25,40,43,69,70], cathepsin D [21,25,28,71] and apolipo-
protein E [25,41]. To identify unique markers for colorec-
tal cancer, the secretomes of 21 cancer cell lines derived
from 12 cancer types (colon cancer, leukemia, bladder
cancer, lung cancer, NPC, hepatocellular carcinoma, cervi-
cal carcinoma, epidermoid carcinoma, ovary adenocarci-
noma, uterus carcinoma, pancreatic carcinoma and breast
cancer) were compared. Based on its selective secretion in
the colorectal cell line secretome but not in the other
tested cell lines, collapsin response mediator protein-2
(CRMP-2) was selected for further evaluation. Q-PCR and
immunohistochemical (IHC) staining confirmed the high
expression of CRMP-2 mRNA and protein in colorectal
tissues. Fluorimetric competitive ELISA was performed to
examine the levels of CRMP-2 and CEA in plasma samples
from colorectal patients and healthy controls. The sensi-
tivities of plasma CRMP-2 and CEA were found to be
60.5% and 42.9%, respectively, indicating that CRMP-2
could be a colorectal marker superior to CEA. Addition-
ally, the combination of CEA and CRMP-2 for CRC
screening showed a higher capacity than either marker
alone by enhancing the sensitivity and specificity from
42.9 to 76.8% and 86.6 to 95.1%, respectively [72].

There is a growing consensus that no single cancer
biomarker is sensitive and specific enough to meet strin-
gent diagnostic criteria given the substantial heterogene-
ity among cancers. A feasible strategy to circumvent the
drawbacks of individual markers is to measure a combi-
nation of proteomic biomarkers. To get panels of serum
biomarkers for lung cancer detection, Xiao et al [73]
compared the secretome of lung cancer primary cell or
organ cultures with that of the adjacent normal bronchus
using one-dimensional PAGE and nano-ESI MS/MS.
They totally identified 299 proteins, in which 13 inter-
esting proteins were selected for investigation in 628
plasma samples with ELISA. Eleven of these 13 proteins
were detected in the plasma samples, only without
nm23-H1 and hnRNP A2/B1 possibly because they were
below the present sensitivity threshold. After using Tclass
classification system to analyze all possible feature com-
binations of these 11 proteins, they found that a combi-
nation of four proteins, CD98, fascin, polymeric
immunoglobulin receptor/secretory component and 14-
3-3 η had a higher sensitivity and specificity than any
single marker. Thus, investigating cancer secretome pro-
vides a useful tool to establish cancer marker profiles for
high-quality cancer detection.

Taken together, these studies demonstrate that secretome
analysis is a feasible and efficient method to find, identify,
and characterize clinical relevant biomarkers.

Investigation of the mechanisms on carcinogenesis and 
gene functions
In addition to the identification of candidate biomarkers,
cancer secretome analysis can provide new insights into
the molecular mechanisms of carcinogenesis. Extracellu-
lar events such as cell-to-cell interactions and cell-to-extra-
cellular matrix interactions are crucial during
carcinogenesis. To characterize extracellular events associ-
ated with breast cancer progression, secreted protein-
encoded gene expression profiles were investigated in a
cell line model of human proliferative breast disease
(PBD). Differentially expressed genes from microarray
data were searched for genes encoding secreted proteins in
three public databases. The analysis displayed two clusters
of secretome genes with expression changes correlating
with proliferative potential, implicating a role in breast
cancer progression [23]. In a recent secretome study [74],
two UV-induced fibrosarcoma cell lines (UV-2237 pro-
gressive cells and UV-2240 regressive cells) were used as
models to investigate aspects that affect tumor formation.
In addition to analysis of differential proteome expression
in these two cell lines, in vivo secretome from samples col-
lected from tissue chamber fluids was characterized and
quantified via an isotope-coded protein label (ICPL) in
conjunction with high-throughput NanoLC-LTQ MS
analysis. Three differential proteins in secretome includ-
ing myeloperoxidase, alpha-2-macroglobulin, and a vita-
min D-binding protein, together with 25 differential
proteins in the proteome between these two cells were
identified, partially revealing a possible mechanism
underlying the succession and attenuation of cancers.

Differential cancer secretome analysis can also advance
our understanding on the functions of interesting genes.
It is known that tumor-suppressive p21 is a negative regu-
lator of cell cycle progression; however, several studies
have shown that p21 expression in tumor cells mediates
an anti-apoptotic and mitogenic paracrine effect [75,76].
In order to clarify such paradoxical phenomena, Currid et
al [65] have characterized secretomes of HT-1080 human
fibrosarcoma cells displaying inducible p21 expression by
SELDI-MS technology. Three putative p21-regulated fac-
tors (cystatin C, pro-platelet basic protein, beta-2-
microglobulin) were identified and validated, which have
been shown previously to have growth-regulating effects
and might contribute to the observed mitogenic and anti-
apoptotic paracrine activity of p21-expressing cells. To
study the role of p53, a major tumor suppressor, in car-
cinogenesis through its manipulation of the tumor micro-
environment, Khwaja et al [26] compared secretomes of
p53-null tumor cells in the presence or absence of recon-
stituted wt-p53 expression. Using 2-DE in conjunction
with cICAT, they found 50 p53-controlled secreted pro-
teins. These proteins have known roles in cancer-associ-
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ated processes such as immune response, angiogenesis,
cell survival, and extracellular matrix (ECM) interaction.
Interestingly, most of these proteins were found secreted
through receptor-mediated nonclassical secretory mecha-
nisms, indicating a role of p53 in the regulation of the
nonclassical secretory pathway.

Challenges and perspectives
Preparations for in vitro cancer secretome samples
To gain reliable insights into the cancer secretome, it is
first necessary to prepare samples for analysis which are as
pure as possible. Secreted proteins in vivo occur in body
fluids, thus the direct analysis for them is hindered by the
high complexity. It is generally accepted that proteins
secreted by tumor cells in vitro may, to some extent, reflect
the proteins released by tumors in vivo. Therefore, the
routine method used to date is to obtain secreted proteins
from the media of in vitro cancer cell culture(Figure 1).

Although cells are commonly cultivated in serum-supple-
mented media, serum-free media (SFM) are needed to
guarantee the successful analysis of the cancer secretome
in vitro. The reason lies in the fact that the highly abun-
dant serum proteins such as albumin may mask and

dilute the secretome, whereas cell growth is much slower
in SFM, and these cells tend to autolyse and liberate
cytosolic proteins. Mbeunkui et al [42] performed a com-
prehensive study of the secretome of three metastatic can-
cer cell lines in vitro. To obtain minimal cytosolic protein
contamination, they optimized the incubation time and
the cell confluence. Two cytosolic proteins beta-actin and
beta-tubulin were applied to monitor cell lysis. Compar-
ing the LC-MS/MS analysis of the secretome under differ-
ent culture conditions in SFM, they found that the level of
these two cytosolic proteins increased noticeably in the
culture media after 30 hours incubation or when the cell
confluence was above 70%. Finally, an incubation time of
24 hours and 60–70% cell confluence were considered as
optimal cell incubation conditions. Mauri et al [43] also
investigated several different preparations of secretome
from cancer cell lines. In their study, the 18 hours time
point was the longest incubation time generating a good
signal in MudPIT analysis without obvious signs of cell
lysis. These results tell us that the optimal conditions vary
according to specific studies. Morphological and dye
exclusion assay evaluation, as well as the detection of
some cytosolic proteins can help us to determine the opti-
mal conditions.

Secretome preparation from the conditioned media of in vitro cells cultureFigure 1
Secretome preparation from the conditioned media of in vitro cells culture.
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In consideration of the significant masking effects of
bovine serum albumin (BSA) and other serum constitu-
ents, washing the cells thoroughly to reduce serum con-
taminations before incubation in SFM is a necessary step,
whereas stringent washes can damage or kill the cells and
lead to the nonspecific liberation of cytoplasmic proteins.
Thus, how to keep a balance between serum contamina-
tions removal by washing and cell survival is the key. Pel-
litteri-Hahn et al [77] used rat endothelial cells as a model
to compare three different rinsing methods: in the first
group, no rinsing treatment was given; the second group
received a moderate rinsing treatment; the last group, in a
stringent rinsing treatment, was rinsed twice with 10 mL
of Dubelcco's phosphate buffered saline with calcium and
magnesium (DPBS) and once with 10 mL of SFM. They
demonstrated that the percentage of contaminant BSA
was much lower in the stringently rinsed cells (average
13.2%) compared with either the moderate or no-wash
treatment (average 35.2 and 45.2%, respectively). More
importantly, the reduction of BSA in the stringent wash
group increased the protein identification significantly
without apparently interrupting cell growth or viability.
Therefore, it is important to adequately wash the cells, and
the stringent method described in this study proved to be
a desirable one, keeping the balance between serum pro-
tein reduction and cell survival.

There is no doubt that optimizing the cell culture condi-
tions and employing an appropriate washing technology
can significantly reduce serum or cytosolic protein con-
tamination. Nevertheless, some serum constituents are
still present in culture media even after thorough rinsing
treatment, and even under optimum culture conditions,
cell cultivation in vitro is unavoidably accompanied by
cell death and subsequent release of cytosolic proteins.
Because the concentration of secreted proteins is always
very low, the contamination by non-secreted proteins
may easily mask the proteins of interest. Consequently,
how to discriminate genuine secreted proteins from non-
secreted proteins is a major question that remains to be
answered. Zwickl et al [30] have established a metabolic
labeling-based technology which allows for the sensitive
and selective detection of authentic secreted proteins.
They demonstrated the applicability of this method
through a study on the secretome of the hepatocellular
carcinoma-derived cell line HepG2 and human liver
slices. In their study, HepG2 cells were incubated in
serum-free, methionine- and cysteine-free RPMI-1640 in
the presence of [35S]-labelled methionine and cysteine,
then the cell supernatant was filtered, precipitated, and
subjected to two-dimensional gel electrophoresis. Finally,
the gel was stained with RuBPS and proteins detected by
fluorescence analysis and autoradiography. While fluores-
cence analysis detects all proteins which may contain a
large number of cytosolic or serum proteins, autoradiog-

raphy detects only those proteins synthesized by living
cells during the metabolic labeling period. Indeed, all
identified 16 protein spots, which showed positive radi-
olabels, were found to be authentic secreted proteins.
Therefore, the application of this novel approach can
improve cancer secretome analysis by specifically detect-
ing and identifying genuine secreted proteins.

Secreted proteins present in the culture media are usually
in low concentrations, which can go down to the ng/mL
range, as in the case of some cytokines. Thus, proteins
secreted in the culture media should be concentrated
before subsequent proteomics analysis. Various methods
have been used to concentrate the proteins; nonetheless,
these methods are not all well suited for the secretome
analysis. For example, precipitation with acetone can not
concentrate large volumes of culture medium because a
minimum five-fold volume excess of acetone should be
used, and dye precipitation selects against an important
class of secreted proteins – the proglycoproteins [78].
Among these methods, ultrafiltration is most often used
in the concentration of the secretome [41,79,80]. It is
proved to be an efficient technology despite the leakage of
low molecular weight proteins. Mireille et al [81]
described an improved technology for secretome concen-
tration, which is based on carrier-assisted TCA precipita-
tion. In this study, 5 protein concentration technologies
were evaluated for the performance and compatibility
with 2-DE, and carrier-assisted TCA precipitation was
clearly superior to the others. This technology did not dis-
tort the protein patterns, and enabled the identification of
secreted proteins at concentrations close to 1 ng/mL such
as TNF and IL-12. However, this technology still missed
some proteins; in fact, cytokines such as IL-1 and IL-6
have not been detected.

In vivo cancer secretome studies
Currently, most studies on the cancer secretome involve
collecting secreted proteins from supernatants of cancer
cell lines cultivated in vitro and then analyzing their prop-
erties in vivo. Nevertheless, the in vitro cell culture sys-
tems are far from physiological situations. Then, the
question is whether the in vitro cell culture systems are
able to completely replicate the in vivo conditions, or
whether the data from in vivo secretome can match well
with that achieved in vitro. Considering the great chal-
lenges for obtaining pure secretome, to date, only a
minority of studies have investigated cancer secretome
under in vivo situations. Varnum et al [82] characterized
the protein pattern of the nipple aspirate fluid (NAF), that
contains proteins directly secreted by the ductal and lobu-
lar epithelium, in women with breast cancer. Using gel-
free proteomic technologies, they identified a total of 64
proteins. Among these proteins, 15 proteins, including
cathepsin D and osteopontin, have been previously
Page 8 of 12
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reported to be potential markers for breast cancer in
serum or tumor tissues. Celis et al [83] employed 2-DE
and MALDI-TOF-MS to analyze the tumor interstitial fluid
(TIF), which was collected from small pieces of freshly dis-
sected invasive breast carcinomas. TIF perfuses the breast
tumor microenvironment, and consists of more than one
thousand proteins. From TIF, they identified 267 primary
translation products, involved in cell proliferation, inva-
sion, angiogenesis, metastasis and inflammation. A novel
technology for investigating in vivo cancer secretome was
developed by Huang and colleagues [31]. They collected
in vivo secretome directly by implanting capillary ultrafil-
tration (CUF) probes into tumor masses of a live mouse at
the progressive and regressive stages. With MS proteomics,
ten secreted proteins were identified. Among them, five
proteins, including cyclophilin-A, S100A4, profilin-1, thy-
mosin beta 4 and 10, which previously correlated to
tumor progression, were identified at the progressive
stage. The remaining five secreted proteins (fetuin-A,
alpha-1-antitrypsin 1–6, and contrapsin) were identified
at the regressive stage. The approach using CUF probes to
capture in vivo secreted proteins from a tumor mass sheds
light on in vivo secretome examinations and cancer
biomarker discovery.

Validation for biomarkers discovered from cancer 
secretome
For achieving reliable and clinically worthwhile biomark-
ers, the interesting protein markers discovered from the
cancer secretome need to be further validated. To some
extent, validation is more arduous than discovery [84],
and there have been concerns regarding the biomarker
validation process. First, immunoassays based on specific
antigen and antibody reaction are routinely employed for
biomarker verification, whereas, the specific antibodies
with the required affinity and specificity for the targets are
not usually available. To overcome the reagent limita-
tions, methods that do not demand antibodies continue
to be explored. Undoubtedly quantitative MS analysis
using multiple reaction monitoring (MRM) presents a
compelling alternative. This approach employs synthetic
isotope-labeled peptide as internal standard, allowing
very accurate measurements of target proteins. Multiplex-
ing and high-throughput are major advantages of this
approach, which enable characterization of a number of
candidate proteins simultaneously. Although quantitative
LC-MRM MS has been demonstrated to be a powerful tool
for biomarker validation, its sensitivity compared to exist-
ing immunoassays is still a matter of concern [85-87]. Sec-
ond, adequate and reasonable clinical tissue or plasma
specimens (patient group and matched controls) are cru-
cial to biomarker validation. However, the availability of
high-quality specimens with well-matched controls is lim-
ited [88]. Finally, the proteomics platform currently used
is far from comprehensive and lacking high-throughput –

hence it is unable to handle a large number of samples
during the biomarker validation process [89].

Conclusion
Analysis and characterization of a cancer secretome is a
critical step towards the biomarker discovery process,
which represents a challenge for current technologies.
Though genome-based approaches are convenient and
comprehensive, the accuracy for predicting secreted pro-
teins is always far from satisfactory owing to the inherent
drawbacks. Furthermore, there is always a discrepancy
between the expression levels of mRNA and the corre-
sponding secreted proteins. For allowing direct analysis
for secreted proteins, proteomic methods are considered
as a more powerful means to investigate the cancer secre-
tome. While classic gel-based proteomic technologies
have produced significant contributions to biomarker dis-
covery, the emergence of gel-free MS-based proteomic
approaches, such as MudPIT and SELDI-TOF-MS, greatly
facilitates the secretome analysis with increased sensitivity
and automation. Proteomic approaches currently used are
not as rapid and high-throughput as genomic profiling
with microarrays – hence improving proteomic methods
towards higher comprehensiveness, throughput, repro-
ducibility and accuracy is of vital importance. Considering
genomic-based and proteomic approaches provide closely
related but distinct information about the cancer secre-
tome, they can be combined as complementary methods.
Searching for biomarkers from cancer secretome analysis
also challenges bioinformatics, which needs to cope with
the vast amounts of data from MS. To gain more reliable
insights into the cancer secretome and develop valuable
cancer biomarkers, the optimization of sample prepara-
tion procedure should be fully established, and more
efforts should be focused on in vivo secretome research
and biomarker validation. Overall, investigating the can-
cer secretome opens up new avenues in the search for clin-
ically worthwhile biomarkers. With the rapid
development of new strategies and technologies, this
newly emerging field will reveal more valuable informa-
tion on cancer diagnosis, monitoring and therapy.
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