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Abstract

Toxicogenomics can measure the expression of thousands of genes to identify changes associated
with drug induced toxicities. It is expected that toxicogenomics can be an alternative or
complementary approach in preclinical drug safety evaluation to identify or predict drug induced
toxicities. One of the major concerns in applying toxicogenomics to diagnose or predict drug
induced organ toxicity, is how generalizable the statistical classification model is when derived from
small datasets? Here we presented that a diagnosis of kidney proximal tubule toxicity, measured by
pathology, can successfully be achieved even with a study design of limited number of training
studies or samples. We selected a total of ten kidney toxicants, designed the in life study with
multiple dose and multiple time points to cover samples at doses and time points with or without
concurrent toxicity. We employed SVM (Support Vector Machine) as the classification algorithm
for the toxicogenomic diagnosis of kidney proximal tubule toxicity. Instead of applying cross
validation methods, we used an independent testing set by dividing the studies or samples into
independent training and testing sets to evaluate the diagnostic performance. We achieved a Sn
(sensitivity) = 88% and a Sp (specificity) = 91%. The diagnosis performance underscores the
potential application of toxicogenomics in a preclinical lead optimization process of drugs entering
into development.

Background

Drug discovery and development is an expensive and time
consuming process. It is estimated that about one third of
drug candidates are terminated due to lack of clinical
safety or toxicity concerns [1-3]. Identifying drug safety
liabilities or predictive biomarkers for drug induced organ
damage at or before the preclinical stages of drug develop-

ment is of great importance to pharmaceutical companies.
The ability to make proper go or no go decisions based on
safety would greatly reduce the cost of drug development
and improve the attrition rate of new chemical entities
(NCE). Preclinical drug safety evaluation, at this time,
mainly relies on complex histopathological or clinical
pathological analysis. These traditional approaches have
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proven to be highly successful but may fail to detect
benign or prodromal stages of toxicity. Gene expression
profiling stands as a complementary or possibly alterna-
tive molecular diagnosis approach. Transcriptional profil-
ing has the promise of being able to detect toxicity
objectively, accurately and earlier, while requiring consid-
erably less time and resources. Gene expression changes
from preclinical studies associated with toxicity may also
assist with our understanding of the mechanism of certain
drug induced toxicities [4].

The kidney is a major organ for filtration, secretion, re-
absorption and ultimately excretion of drugs or drug
metabolites. As a consequence of its primary function, the
kidney is especially vulnerable to toxic insults by various
drugs or xenobiotics, and thus nephrotoxicity is one of the
major concerns in preclinical safety evaluation. Despite
the morphological complexity of the kidney, the renal
tubular epithelial cells stand out as one of the most sensi-
tive components in the kidney and are thus highly suscep-
tible to damage. Drug induced tubular damage has been
well documented and studied extensively [5]. Molecular
methods using microarray gene expression data have been
attempted to predict and diagnose preclinical renal tubu-
lar toxicity. Fielden and colleagues [6] used a strategy
designed to assess predicative gene expression endpoints
at early time points proceeding the onset of any signs for
renal tubular pathology. They achieved a sensitivity of
76% which is much better than traditional approaches
which often have no significant prediction values. In a
separate study designed to assess the expression profiling
end points in matching the histopathological diagnosis of
concurrent renal tubular toxicity, the performance was
improved and a sensitivity of 82% was achieved [7].

The success of statistically modeling microarray gene
expression data to diagnose or predict renal toxicity is
often constrained by a limited number of samples in com-
bination with a large number of features (genes) to be
monitored. This common conundrum is typically the case
with most "omics" studies and has been referred to as "the
curses of sample sparsity and feature dimensionality" [8]
which often lead to an over-fitted, non generalizable sta-
tistical model or poor prediction performance. The gen-
eral approach to overcome or avoid such problems, is to
design a representative training set (random sampling),
and estimate the model performance with an independ-
ent testing data set. However, for a toxicogenomics predic-
tion of future onset of toxicity, it is very difficult to have a
study design with enough coverage of compounds, doses
and time-points to cover all possible mechanistic prodro-
mal signals due to the biological complexities of the
whole compound space. A likely exception to this is the
diagnosis of drug induced acute organ toxicity. It is
assumed that there are defined molecular manifestations
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or transcriptional changes that occur when a very specific
toxicity occurs. Thus we hypothesized that a study involv-
ing multiple doses and time points for a small number of
defined compounds with different pharmacological
mechanisms will allow uncommon pharmacological
responses to be neutralized and diagnostic gene expres-
sion changes associated with toxicity to be defined. Such
gene expression profiling end points have shown to pro-
vide accurate diagnostic information as demonstrated by
the two studies referenced above and the diagnostic exer-
cise gave better performance than the predicative exercise,
although the performances were evaluated by cross vali-
dation [6,7]. Other carefully designed profiling studies
with limited number of samples have also been attempted
in preclinical drug development with certain success [9-
12].

The support vector machine (SVM) algorithm [13] is one
of the most powerful supervised learning algorithms in
microarray or gene expression profiling data analysis
[14,15]. Used as a "one over all" binary classifier to per-
form multi-class cancer diagnosis, SVM has been shown
to outperform other classification methods consistently
[16]. In this report, by applying a binary SVM classifica-
tion algorithm, to a well designed microarray gene expres-
sion dataset, using an independent testing dataset to
evaluate classification performance, we report much bet-
ter diagnosis of kidney tubular toxicity in rats.

Methods

Animal husbandry

Two groups of independent in-life studies were carried out
by Merck and Charles River Laboratories (See Table 1).
For both Charles River Laboratories and Merck studies,
male Sprague-Dawley (SD) rats (320-370 g) approxi-
mately 11-weeks-old, from Charles River Laboratories
were used. The animals were individually housed in met-
abolic cages. Certified Rodent Diet #PMI 5002 was pro-
vided at 22 grams of feed daily at the beginning of
acclimation through study termination. In the event of
feed remaining at the end of day, all remaining feed was
removed before providing the next daily feed allocation.
Filtered tap water was provided ad libitum. The rats were
kept at a controlled temperature of 61-79 F and at a
humidity of 30-70%. A 12:12 hour light:dark cycle was
maintained in the animal room.

Test articles and study design

Test articles were suspended or dissolved in respective
vehicles (see Table 1) and dosed via the individual routes.
Most of the test articles involve multiple doses and repeat
daily dosing, except D-serine which was given as a single
dosing. The studies were about two weeks in duration
with interim necropsy or sampling (Table 1).
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Table I: In vivo compound treatments used in training and testing
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Compound Class Conducted by Dose (mpk) Necropsy day Vehicle - Route
Cisplatin DNA — alkylator Merck 0.5 3,8 0.9% (w/v) sodium chloride — IP
35 3,8
7 3,8
Cyclosporin A Calcineurin inhibitor Merck 6 3,915 olive oil = SC
30 3,915
60 3,915
Gentamycin Antibiotic Merck 20 3,915 0.9% (w/v) sodium chloride — IP
80 3,915
240 3,9, 12
Sodium Fluoride Environmental toxin Merck 35 3,8 12 Water — PO
75 3,812
Merck X Antibiotic Merck 75 3,8, 14 0.5%saline — IV
150 3,8, 14
225 3,8
Allopurinol Xanthine oxidase inhibitor Charles River 6 3 corn oil — IP
30 3
100 3,7, 14
D-serine Serine analog Charles River 750 3,1 water — |P
Hexachloro 1,3, butadiene Synthetic toxin Charles River 7.5 3 corn oil - IP
40 3,14
100 3
Puromycin Antibiotic Charles River 5 3 0.9% (w/v) sodium chloride — IP
20 3,7, 14
60 3,7
Tobramycin Antibiotic Charles River 6 3 0.9% (w/v) sodium chloride — IP
30 14
60 3,14

Male Sprague-Dawley rats were treated daily with the listed compounds except D-serine which was given as a single dose once on day 0. Each dose group includes 4 or 5 rats.
Animals were terminated at the end of study. Terminal or interim necropsy were performed 24 hours post dosing. Kidney expression profiles were obtained for each
necropsy day (when kidney samples were harvested). Appropriate dosing routes were applied: PO — Oral Garvage, IV — intravenous, SC — subcutaneous.

Tissue collection and histopathology

For Charles River studies, animals were humanely eutha-
nized by group via anesthesia with carbon dioxide to
effect followed by exsanguination and submitted for a
complete necropsy examination (defined as examination
of the external surface of the body; all orifices; and the cra-
nial, thoracic, and abdominal cavities, and their con-
tents). For histopathological evaluation, a kidney from
each animal was examined in situ, dissected free, and
fixed in 10% neutral buffered formalin. Histopathology
was performed on kidney from all animals (except ani-
mals found dead). Fixed tissues were trimmed, embed-
ded, and sectioned. Slides were stained with hematoxylin
and eosin. To collect kidney samples for RNA profiling,
the second kidney from each animal was dissected free
and placed in tubes containing RNAlater™ (Qiagen). The
tubes were allowed to remain at room temperature for a
minimum of 30 minutes (maximum of 2 hours) before
freezing at -20°C.

Similarly for Merck conducted studies, rats were anesthe-
tized under isoflurane, bled via the vena cava, exsanguin-
ated and necropsied. Kidneys were subject to preparation
for histopathology examination and toxicogenomics
study as described above.

RNA extraction and expression profiling

RNA extraction, expression profiling, data processing and
quality control were performed as previously described
(De Souza et al. 2006). Briefly, RNA was extracted from
tissues using a combination of TRIzol RNA extraction
(Invitrogen, Carlsbad, CA) with RNeasy RNA extraction
kit (Qiagen, Valencia, CA). Expression profiling was car-
ried out using Rosetta custom arrays consisting of 22.5 K
60 mer oligonucleotides (plus control sequences) repre-
senting rat genes, Rat 2.25 K chip. The arrays were synthe-
sized using The Agilient inkjet printing method. Two Cy3-
and Cy5- two color reverse hybridization was applied.
Individual samples were hybridized against a pool of RNA
from time matched (concurrent) control animals. The
ratio of individual animal expression to control pool was
used for all data analysis. All hybridizations were per-
formed in duplicate, with fluor reversal (Cy3 or Cy5) in
the second hybridization. The resultant fluo-reversed
pairs were combined to give a single ratio measurement
for each gene of each sample.

Support Vector Machine (SVM)

SVM light is from Thorsten Joachims [17]. Briefly the sam-
ples were naturally divided into independent training and
testing sets of Merck studies and Charles River Laborato-
ries studies respectively. LOOCV (Leave One Out Cross
Validation) was performed for optimization.
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Spotfire

Spotfire™ is a type of data analysis and visualization soft-
ware licensed from business intelligence company TIBCO
[18]. Spotfire was used here to produce a heatmap to illus-
trate the correlation of gene expression with SVM predic-
tion.

Results

The paradigm used for the study design or data analysis
assumes that any test compound can be toxic at a given
dose and time. A drug is safe as long as margins which fall
short of its toxicity can be established. Therefore, preclin-
ical drug safety assessment is more concerned with diag-
nosed drug toxicity relative its effective dose and duration
of dosing. A study design of multiple doses with different
time points covering toxic dose/time and non toxic dose/
time enables the differentiation of gene expression
changes associated with toxicity from those due to phar-
macology and can potentially define safety margins. If the
study design is expanded to incorporate several structur-
ally different compounds which induce the same toxicity
by pathology, the different pharmacological effects
reflected in the gene expression can be further diminished
or neutralized in the analysis (by cancelling each other
out), while at the same time gene expression changes asso-
ciated with the defined common toxicity are qualified for
the purpose of diagnosis of such toxicity. As an alternative
to the conventional analysis which would require involv-
ing large numbers of studies or compounds in the training
set, the above reasoning underscores the importance of
this type of focused expression profiling design for diag-
nosis drug induced toxicity.

As described in materials and methods, a total of nine kid-
ney proximal tubule toxicants and one glomerular toxi-
cant were selected for the study. All of them are known for
inducing kidney toxicities, mainly proximal tubule toxici-
ties identified as necrosis/degeneration by pathology.
Puromycin and Tobramycin are known to cause a combi-
nation of glomerular and proximal tubule toxicity [7]. The
toxicants were chosen based on their known kidney toxic-
ity profile or availability. The in vivo studies were divided
into two groups and conducted by either Merck or Charles
River Laboratory. Multiple dose levels and repeat dosing
were designed except for D-serine with a single dose
(Table 1). Kidney tissues were collected at necropsy and
subjected to microarray gene expression study and his-
topathology analysis (see methods). Interim necropsy was
performed so to obtain data from multiple time points for
most studies.

A standard approach to the pathological evaluation was
employed. Significant histopathological finding for PT
toxicity were summarized animal by animal. Merck stud-
ies are shown in supplement data, Charles River studies
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are shown in Table 2. A grade was assigned which qualita-
tively represent the severity of the toxicity. The grading
was agreed upon by consensus of a peer review committee
of pathologists. Grade 0 represents no histopathology, or
non toxic, while Grades 1 or higher represent toxicity
observed by histopathology.

Supervised learning algorithm, SVM, was employed as the
binary classification algorithm for its reported better per-
formance as discussed in introduction. Histopathology
observations were used as the anchor for the SVM training
and testing for the kidney proximal tubule toxicity classi-
fication. Histopathology scores of 1 or higher for tubular
toxicity were viewed as toxicity class and labeled as +1,
while vehicle controls or treated samples with histopa-
thology score of 0 were assigned in negative class and
labeled as -1. Such class labels were used to supervise the
SVM learning during SVM training and to measure the
SVM model performance while in testing. SVM class des-
ignations for samples from Charles River Laboratories are
listed in table 2 and the Merck samples are listed in addi-
tional file 1.

In brief, there were a total of 250 Merck samples. Forty-
one of these samples have no histopathology data availa-
ble (not performed), leaving 209 samples with histopa-
thology, to be included in the data analysis. 96 of the 209
Merck samples had tubular toxicity (pathology grade 1 to
5). In the studies conducted by Charles River Laboratories,
a pathology evaluation was carried out on 128 samples,
and 45 out of 128 had tubular toxicity indicated by
pathology including 4 vehicle controls. The tubular
pathology in the vehicle controls was considered non
drug treatment related and was potentially misclassifica-
tions. These four vehicle samples could be excluded from
analysis. Microarray gene expression data for all the sam-
ples was generated using the Agilient rat 22.5 K chip. The
log ratio of the gene expression for the ratio of treated ver-
sus control pool was used as the feature values in SVM
training and testing described below.

Since the number of Merck samples is more than that of
Charles River samples, Merck samples were used for train-
ing the SVM algorithm. Charles River studies were used as
the independent testing set. When training SVM with
Merck samples, linear kernel function (linear SVM) was
selected and leave one out cross validation (LOOCV) was
performed. For performance testing with the independent
Charles River study samples, a positive SVM score indi-
cates predicted positive or toxic and negative SVM score
indicates predicted non toxic (SVM predicted class label
shown in supplement data and Table 2, SVM scores not
shown). The testing accuracy of 87% was achieved with Sn
= 81%, Sp = 91% initially, see Table 3. When we inspect
the miss classified samples in the Charles River testing set,
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Table 2: Charles River Laboratories study

A_id C.Dose.Day H_score B_class A_id C.Dose.Day H_score B_class
| All.006.03 0 -1 65 Pur.075.03 0 -1
2 All.006.03 0 -1 66 Pur.075.03 0 -1
3 All.006.03 0 -1 67 Pur.075.03 0 -1
4 All.006.03 0 -1 68 Pur.075.03 0 -1
5 All.030.03 0 -1 69 Pur.075.07 3 |
6 All.030.03 0 -1 70 Pur.075.07 2 |
7 All.030.03 0 -1 71 Pur.075.07 0 -1
8 All.030.03 0 -1 72 Pur.075.07 0 -1
9 All.100.03 2 | 73 Tob.006.03 0 -1
10 All.100.03 2 | 74 Tob.006.03 0 -1
I All.100.03 2 | 75 Tob.006.03 0 -1
12 All.100.03 2 | 76 Tob.006.03 0 -1
13 All.100.03 | | 77 Tob.030.14 | |
14 All.100.03 | | 78 Tob.030.14 0 -1
15 All.100.03 | | 79 Tob.030.14 0 -1
16 All.100.03 | | 80 Tob.030.14 0 -1
17 All.100.07 2 | 8l Tob.060.03 0 -1
18 All.100.07 2 | 82 Tob.060.03 0 -1
19 All.100.07 | | 83 Tob.060.03 0 -1

20 All.100.07 | | 84 Tob.060.03 0 -1
21 All.100.14 2 | 85 Tob.060.14 2 |
22 All.100.14 2 | 86 Tob.060.14 2 |
23 All.100.14 2 | 87 Tob.060.14 2 |
24 All.100.14 | | 88 Tob.060.14 2 |
25 D-5.750.03 4 | 89 Veh.000.03 | |
26 D-S.750.03 4 | 90 Veh.000.03 0 -1
27 D-5.750.03 4 | 91 Veh.000.03 0 -1
28 D-S.750.03 0 -1 92 Veh.000.03 0 -1
29 D-5.750.14 2 | 93 Veh.000.03 0 -1
30 D-S.750.14 2 | 94 Veh.000.03 0 -1
31 D-S.750.14 2 | 95 Veh.000.03 0 -1
32 HCB.007.5.03 0 -1 96 Veh.000.03 0 -1
33 HCB.007.5.03 0 -1 97 Veh.000.03 0 -1
34 HCB.007.5.03 0 -1 98 Veh.000.03 0 -1
35 HCB.040.03 | | 99 Veh.000.03 0 -1
36 HCB.040.03 0 -1 100 Veh.000.03 0 -1
37 HCB.040.03 0 -1 101 Veh.000.03 0 -1
38 HCB.040.14 2 | 102 Veh.000.03 0 -1
39 HCB.040.14 2 | 103 Veh.000.03 0 -1
40 HCB.040.14 2 | 104 Veh.000.03 0 -1
41 HCB.040.14 2 | 105 Veh.000.03 0 -1
42 HCB.100.03 4 | 106 Veh.000.03 0 -1
43 HCB.100.03 4 | 107 Veh.000.03 0 -1
44 HCB.100.03 3 | 108 Veh.000.03 0 -1
45 HCB.100.03 3 | 109 Veh.000.07 | |
46 Pur.005.03 0 -1 110 Veh.000.07 0 -1
47 Pur.005.03 0 -1 11 Veh.000.07 0 -1
48 Pur.005.03 0 -1 112 Veh.000.07 0 -1
49 Pur.005.03 0 -1 113 Veh.000.07 0 -1
50 Pur.020.03 2 | 114 Veh.000.07 0 -1
51 Pur.020.03 0 -1 115 Veh.000.07 0 -1
52 Pur.020.03 0 -1 116 Veh.000.07 0 -1
53 Pur.020.03 0 -1 117 Veh.000.14 | |
54 Pur.020.03 0 -1 118 Veh.000.14 | |
55 Pur.020.03 0 -1 119 Veh.000.14 0 -1
56 Pur.020.03 0 -1 120 Veh.000.14 0 -1
57 Pur.020.03 0 -1 121 Veh.000.14 0 -1
58 Pur.020.07 0 -1 122 Veh.000.14 0 -1
59 Pur.020.07 0 -1 123 Veh.000.14 0 -1
60 Pur.020.07 0 -1 124 Veh.000.14 0 -1
6l Pur.020.14 3 | 125 Veh.000.14 0 -1
62 Pur.020.14 3 | 126 Veh.000.14 0 -1
63 Pur.020.14 3 | 127 Veh.000.14 0 -1
64 Pur.020.14 2 | 128 Veh.000.14 0 -1

Charles River Laboratories samples with histopathological grade and binary class label for SVM classification. The columns are: A_id, the animal identification number;
C.Dose.Day, Compound.Dose.Day; H_score, histopathology grade; B_class, the designated SVM class label for binary classification training or testing. The compounds are: All
(Allopurinol), D-s (D-serine), HCB (Hexachloro 1,3, butadiene), Pur (Puromycin), Tob (Tobramycin) and Veh (Vehicle control). The designated SVM binary class label was
assigned based on the pathology grade. 1-5 labeled as |, the positive class and 0 labeled as -1, the negative class.
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Table 3: Testing results

Tubular Toxicity Test

with 4 veh without 4 veh
positives positives
TRUE FALSE TRUE FALSE
Positive 38 7 38 7
Negative 74 9 74 5
Sn 81% =38/(38 +9) 88% = 38/(38 + 5)
Sp 91% =74/(74 + 7) 91% =74/(74 + 7)

Positive Prediction
Negative Prediction

84% = 38/(38 + 7)
89% = 74/(74 + 9)

84% = 38/(38 + 7)
94% = 74/(74 + 5)

Linear SYM model was built using Merck studies as training set. Using Charles
River Laboratories studies as testing set, sensitivity and specificity as well as
Positive prediction of kidney proximal tubule toxicity classification were obtained.

we noticed four of the false negative predictions are the
four vehicle controls with the pathology grade 1. Con-
cerned with potential miss calls by histopathology and
considering the fact that they were not drug treatment
related even if they were correct calls, we decided to
exclude those four vehicle controls and recalculate the
performance of the SVM classification. This time The Sn is
88% and Sp is 91%. This is the best performance achieved
from an independent testing as opposed to a cross valida-
tion.

The linear SVM algorithm employed here used all the
genes or features on the chip to perform the kidney prox-
imal tubule toxicity classification, although genes are used
independently and uniquely as to their importance. SVM
algorithm is generally known to work as a black box with-
out much interpretability of how individual feature con-
tributes to the SVM model performance; however the
linear SVM does assign a weight or coefficient [19] to each
of the features. Such feature weight when considered
together with the feature value can be used to estimate the
relative significance of individual features in linear SVM
classification. Here we first parsed out the gene weights
from the linear SVM model, then we calculate the product
of the gene weight and the gene fold change (individual
sample versus control pool, see Materials and Methods)
for each gene and each sample with kidney proximal
tubule toxicity. The averaged product value obtained over
all toxic samples in the training sample set is used to rank
all the genes. We took the top ranked 100 positive
weighted and top ranked 25 negative weighted genes to
generate a heatmap using spotfire™ (Methods). Figure 1
shows the heatmap which illustrates the top SVM classi-
fier genes against samples with and without kidney prox-
imal tubule toxicity. The gene expression changes are
consistent with the SVM predicted class labels. Very little
gene expression changes were seen with the false negative
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samples while gene expression changes did appear for
false positive samples (the samples are shown as non
matching colors in the first two columns indicating SVM
mis-classification, false negative or false positive).

The positive prediction and negative prediction values by
this SVM classification model are also listed in Table 3. It
was noted that some positive Puromycin and Tobramycin
samples were falsely identified as negatives (false nega-
tives) in our study (Table 4). Similar findings have been
noted by others [7], and it has been speculated that their
associated glomerular toxicity may have complicated and
confounded the diagnosis of their PT toxicity.

By reversing the data sets and use the Charles River study
for training, the Merck samples for testing, we can achieve
an accuracy of 81%, which is similar to but less than the
87% accuracy achieved above. This is most likely due to
the fact that there are almost twice as many Merck samples
as Charles River samples. Knowing the acceptable per-
formance of the linear SVM model by independent test-
ing, as a common practice in data mining to ensure
optimal training, we can actually train the linear SVM
model with both Merck and Charles River samples for
future diagnosis of kidney proximal tubule toxicity.

Discussion

Using toxicogenomics data to diagnose histopathology of
kidney proximal tubule toxicity has usually achieved accu-
racy in the eighties. Thukral SK et al. [7] attempted to pre-
dict prognosis of kidney proximal tubule toxicity by
diagnosing subtypes or subtype combination of kidney
proximal tubule histopathology. A sensitivity of 82% was
achieved. This is a very good performance for toxicity sub-
type prediction even though only one compound was
used for testing. Similarly anchored with histopathology,
in this report, we grouped all proximal tubule toxicity as
one positive class including grade 1 for the slightest
pathology. We reported better performance in diagnosis
of concurrent kidney proximal tubule toxicity using
genomics with sensitivity of 88% and specificity of 91%.
We did so using independent testing dataset consists of 5
different compounds, which is a better estimate of the true
performance. The study design only involved 10 toxicants,
therefore the success in this exercise also implied that
sample sparsity [8], which often complicates most
genomics or microarray data analysis may not be as big a
problem in diagnosis of concurrent toxicities as discussed
earlier, it also implies that such focused genes expression
profiling experiment design may be generally applicable
to diagnose drug induced organ toxicities. However, also
as discussed earlier, the same can not be said for toxicog-
enomics prediction of later or future onset of drug
induced toxicities. Such predictive toxicogenomics
requires more representative sample coverage of diverse
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Figure |

Heatmap to illustrate the kidney proximal tuble toxicity classification by SVM. Top ranked 100 up regulated genes
(positive weighted) and 25 down regulated genes (down regulated) by linear SVM were used to correlate with the kidney prox-
imal tubule toxicity and SVM predicted class label. The first column is PT histopathology grade. The second column is the SVM
predicted class label: -1 is predicted non toxic and | is predicted toxic. After a Blank column for separation, the rest columns

are the selected top ranked genes in logratios. The rows in the heatmap represent samples.

Table 4: The 16 mis-classified samples

A_id Animal Treatment Cpd.Dose.Day H_score B_class SVM_value Class_predicted TRUE/FALSE
84 2021 Tobramycin Tob.060.03 0 -1 0.053417599 | FALSE
80 2017 Tobramycin Tob.030.14 0 -1 0.020981321 | FALSE
36 2071 HCB HCB.040.03 0 -1 0.3853432 | FALSE

5 2117 Allopurinol All.030.03 0 -1 0.4184979 | FALSE
6 2118 Allopurinol All.030.03 0 -1 0.33539873 | FALSE
7 2119 Allopurinol All.030.03 0 -1 0.079393616 | FALSE
8 2120 Allopurinol All.030.03 0 -1 0.40372499 | FALSE
17 2142 Allopurinol All.100.07 | | -0.33466752 -1 FALSE
19 2143 Allopurinol All.100.07 | | -0.25854402 -1 FALSE
104 2408 Vehicle Veh.000.03 | | -1.4422447 -1 FALSE
121 2413 Vehicle Veh.000.14 | | -1.277754 -1 FALSE
128 1940 Vehicle Veh.000.14 | | -1.2135719 -1 FALSE
116 1936 Vehicle Veh.000.07 | | -1.1563262 -1 FALSE
54 1962 Puromycin Pur.020.03 2 | -1.0786993 -1 FALSE
63 1971 Puromycin Pur.020.14 2 | -1.3810734 -1 FALSE
6l 1969 Puromycin Pur.020.14 3 | -0.056223804 -1 FALSE

The mis-classified samples by SVM in Charles River Laboratories studies are listed here. Columns are: A_id, animal identification; Treatment, compound; Cpd.Dose.Day,
compound.dose.day; H_score, histopathology grade; B_class, designated SVM class label for testing; SVM value, the prediction value from SVM model (>0 indicates positive
class and <0 indicates negative class); class_predicted, predicted class label; Prediction, prediction true or false.
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prodromal mechanisms leading to toxicity, when sample
sparsity is actually going to be a difficult hurdle to over-
come.

On the other hand, for diagnosis of drug induced concur-
rent toxicity, in this report, the SVM model built with
thousands of genes as features gave highly desirable per-
formance, without requesting the understanding of how
genes in the SVM model contribute to the classification. If
interpretability of the diagnosis is of concern, feature
selection algorithms could be applied to identify the more
important genes or features for the classification or diag-
nosis of the toxicity of interest.

An additional exercise (not shown) using random half of
the genes on the microarray to do the classification, simi-
lar performance could be achieved. Thus reducing the
number of genes in the model does not really affect the
classification performance as much. This implies that
there is rich and maybe redundant classification informa-
tion in the gene expression profiles. Such rich toxicoge-
nomics diagnosis information, in turn, confirms that the
study design of small number of compounds representing
different pharmacology is a working design for diagnosis
of concurrent toxicity (identified by histopathology).

Our effort here was primarily to apply SVM and microar-
ray gene expression profiles in diagnosis of concurrent
kidney proximal tubule pathology. It could be potentially
applied to diagnosis of other well defined drug induced
toxicity. With the cost of profiling experiments going
down, such toxicogenomics approach could be applied
early in lead optimization or it would even be integrated
into preclinical drug safety assessment processes, so to
reduce cycle time and improve attrition rates in drug
development.
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