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Abstract

Ovarian cancer represents the fifth leading cause of death from all cancers for women. During the
last decades overall survival has improved due to the use of new chemotherapy schedules. Still, the
majority of patients die of this disease. Research reveals that ovarian cancer patients exhibit
significant immune responses against their tumor. In this review the knowledge obtained thus far
on the interaction of ovarian cancer tumor cells and the immune system is discussed. Furthermore
the role of p53 as tumor antigen and its potential role as target antigen in ovarian cancer is
summarized. Based on the increased knowledge on the role of the immune system in ovarian
cancer major improvements are to be expected of immunotherapy based treatment of this disease.

Introduction

Ovarian cancer is the most common cause of death from
gynecological malignancies. Its nonspecific clinical pres-
entation and the absence of effective screening methods
are responsible for the 70% of patients who present with
an advanced stage of disease at the time of diagnosis. Pri-
mary treatment for advanced stage ovarian cancer is
cytoreductive surgery followed by platinum/paclitaxel
based chemotherapy. An aggressive surgical approach has
been advocated with the intent to remove all macroscopic
disease which should yield better survival than leaving
residual disease [1-3]. Response rates to primary chemo-
therapy are 65-80%. When residual or recurrent disease
manifests itself, resistance to chemotherapy will prohibit
further curative therapy, resulting in an overall survival for
patients with advanced stage ovarian disease of only 10-
20%]4,5].

Research during the last decades has revealed that ovarian
cancer patients exhibit significant immune responses
against their tumor (reviewed in this paper). In designing
alternative treatments to successfully eradicate ovarian
cancer it is important to consider both the positive effects
of immune responses to ovarian cancer and the con-
founding negative effects on the immune system caused
by the tumor cells. As the main target for a potential vac-
cine is the (overexpressed / mutated) p53 protein we will
focus on studies aimed at the induction of humoral and
cellular responses against this antigen. However, before
reviewing these studies we will briefly introduce some
general aspects of the cellular immune system including
antigen encounter, antigen processing and presentation
and factors influencing the outcome of the immune
response in ovarian cancer.
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General introduction on the cellular immune
system

Antigen presenting cells, most likely dendritic cells, can
capture tumor antigens that are secreted or shed by tumor
cells or by taking up dying tumor cells. The tumor anti-
gens are processed and presented as peptides by major his-
tocompatability complex (MHC) I and II molecules on
the cell surface, and recognized by the T-cell receptor on
T-cells. This phenomenon is often referred to as the first
signal of activation. After cleavage of proteins into pep-
tides by the proteasome complex and loading of peptides
into the class I molecules in the endoplasmatic reticulum,
these MHC class I - peptide complexes, recognized by
cytotoxic T lymphocytes, are transported to the cell sur-
face. MHC class II molecules mainly present exogenous
endocytosed proteins. Antigen (peptide) loading of MHC
class I molecules occurs within the endocytic pathway
(MHC class II compartments). MHC class I - peptide
complexes expressed on the cell surface are recognized by
the CD4+ T helper cells. Next to this first antigen specific
signal there is a need for a second signal. This signal
involves the ligation of CD28 or CTLA-4 on lymphocytes
by co-stimulatory molecules CD80 (B7.1) or CD86 (B7.2)
respectively on antigen presenting cells or target cells.
Binding of the CD28 receptor results in proliferation and
activation of T cells, in contrast to binding of CTLA-4
which results in T cell anergy. Another important co-acti-
vation signal is mediated by interaction of CD40 ligand
on T cells and CD40 on the antigen presenting cell. Fully
activated CD8+ T cells differentiate into cytotoxic T lym-
phocytes and can lyse tumor cells. Memory CD4+ and
CD8+ T cells play a critical role in maintaining protective
immunity. Apart from their role in expanding CD8+ T-
cells, CD4+ T-cells are also involved in the activation of
CD8+ independent tumoricidal mechanisms which may
play a role in the eradication of tumor cells that have lost
MHC class 1 expression [6]. The CD4+ T cells can be
divided into at least two subsets of T helper cells (Th), des-
ignated Th1l and Th2. Whereas a Thl type immune
response generally stimulates the generation of cellular
immunity, a Th2 type response stimulates humoral
immunity next to growth and differentiation of mast cells
and eosinophils. Th1 cells secrete cytokines like IFN-y, I1-
2 and TNF-a, Th2 type cells mainly produce IL-4 and IL-
10. Regulatory or suppressor T cells, represent potentially
a major barrier to successful anti-tumor immune
responses. These include Natural Killer T cells[7],
CD25+CD4+ T cells [8,9] and Th3 cells[10]. The balance
of signals processed by regulatory T cells can determine
vastly different scenarios in tumor surveillance [11]. In the
mouse system, CD25+CD4+ regulatory T cells suppress
the activation and proliferation of other CD4+ and CD8+
T cells specific for auto antigens which of course is impor-
tant to prevent autoimmunity but on the other hand pre-
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vents the effective generation of immunity to tumor
antigens.

The rules that govern the balance between immunity and
tolerance is controlled by the conditions of antigen
encounter and activation status of the antigen presenting
cell [10,12]. In general, systemic and persistent exposure
of T cells to antigen in the absence of costimulation tends
to result in T cell tolerization. The type and level of cos-
timulation received during the first encounter with anti-
gen are key determinants in the outcome of an immune
response. This depends largely on the activation status of
the professional antigen presenting cell that presents the
antigenic peptide to naive T cells, in most cases the den-
dritic cell. The costimulatory state of professional antigen
presenting cell is promoted by activated CD4+ T cells, in
particular by interaction between CD40L on Th cells and
CD40 on the APC [13-16]. This type of T cell help is essen-
tial for CTL induction under noninflammatory condi-
tions, whereas lack of CD4+ T cell help can lead to CTL
tolerization[17]. Direct demonstration that the activation
status of antigen presenting cells influences the outcome
of antigen recognition by CD8+ T cells was obtained in
studies in which vaccination with mature dendritic cell
induced cytotoxic T lymphocyte immunity, whereas infu-
sion of immature dendritic cells failed to do so [15,18].
The conditions involved in setting the balance between
tolerance and immunity seem to be different for activated
T cells, because circumstances that tolerize naive T cells
may not be tolerogenic for memory T cells. More details
on the cellular immune system are to be found in recent
reviews [19-22])

Ovarian cancer and the immune system

While the interaction between the host immune system
and ovarian cancer tumor cells is still not completely
understood, several observations suggest that cell-medi-
ated immune responses could be important in controlling
ovarian cancer.

As already stated, the presence of antigen presenting cells,
most favorable dendritic cells, is crucial in activating the
immune system. In cancer patients the number of den-
dritic cells is decreased and functionally suppressed by the
tumor microenvironment, inhibiting immune responses
and thereby causing an impaired tumor immunity [23-
27]. For several tumor types it was shown that the number
of infiltrating dendritic cells correlated with good progno-
sis. In a retrospective study using immunohistochemistry
the same phenomenon was observed in ovarian cancer
[28]. The potential role of dendritic cells in ovarian cancer
was demonstrated by Schlienger et al[29]. In 50% of ovar-
ian cancer patients dendritic cells derived from peripheral
blood mononuclear cells could, in vitro, induce tumor
specific T cells upon loading the dendritic cells with tumor
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antigen derived from autologous tumor. The antigen(s)
recognized by these T cells were not defined. Dendritic
cells derived from peripheral blood mononuclear cells
and tumor associated macrophages obtained from ascites
from the same ovarian cancer patients, cultured with IL-4,
GM-CSF and TNF-0, comparably stimulated T cell
lines[30]. In contrast to the beneficial effects of macro-
phages and dendritic cells on the tumor specific immune
responses, tumor associated macrophages have been
shown to secrete the immunosuppressive cytokine IL-
10[27,31]. One of the effects of IL-10 is that it induces B7-
H1 expression on myeloid derived dendritic cells [32]. B7-
H1, belonging to the B7 family of costimulatory mole-
cules, is thought to be involved in the regulation of cellu-
lar immune responses through its receptors on activated T
and B cells [33,34]. B7-H1 was first described to be
expressed by ovarian cancer cells. Later it has been shown
to be also present in other human carcinomas [33].
Tumor associated B7-H1 induces apoptosis of activated
antigen specific T cells, contributing to the immune eva-
sion of tumor cells [35]. Not only the ovarian cancer
tumor cells but also myeloid derived dendritic cells
obtained from ovarian tumor tissue and their draining
lymph nodes express B7-H1, and are capable to downreg-
ulate T cell responses[32]. INF-y upregulates B7-H1 on the
surface of tumor cell lines [35], which might have impli-
cations for IFN-y based cancer immunotherapy. To deal
with this issue one could consider blockade of the B7-H1
pathway by e.g. neutralizing mAb. The efficacy of this
approach has been shown very nicely in a mouse model
for squamous cell carcinoma [36].

In ascites and tumors from patients with ovarian cancer
myeloid dendritic cells are outnumbered by plasmacytoid
dendritic cells [27,37,38]. The exact role of the plasmacy-
toid dendritic cells in priming naive T cells needs to be fur-
ther elucidated. It seems that plasmacytoid dendritic cells
produce high levels of the angiogenic cytokines TNFo. and
IL-8 in contrast to the myeloid dendritic cells which pro-
duce cytokine IL-12, an inhibitor of angiogenesis. Thus,
the accumulation of plasmacytoid dendritic cells in ascites
and ovarian cancer tumors is of benefit for the vasculari-
zation of the tumor and thereby promotes tumor
growth[39].

In ovarian cancer tumor infiltrating CD4+ and CD8+ T
cells have been studied extensively. MHC restricted tumor
infiltrating lymphocytes cell lines and clones have been
developed from lymphocytes derived from ascites and
solid tumors of patients with ovarian cancer [40-44]. A
clear association between tumor infiltrating lymphocytes
and clinical outcome in ovarian cancer patients has been
reported in a landmark paper by Zhang et al[45]. In a large
cohort of 186 ovarian cancer patients, the five year sur-
vival rate was 38% among patients whose tumors con-
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tained T cells and only 4,5% among patients whose
tumors contained no T cells. The presence of intratumoral
T cells was an independent prognostic factor in a multivar-
iate analysis. One of the other remarkable observations
from this study was the correlation between high vascular
endothelial growth factor expression and low number of
T cells, suggesting that vascular endothelial growth factor
reduces the number of T cells. T cells from patients with
late-stage ovarian cancer contained increased proportions
of regulatory CD25+CD4+ T cells, that secreted the immu-
nosuppressive cytokine TGF-B[9]. In a very elegant study
by Curiel et al it was shown that ovarian cancer tumor
cells and associated macrophages produce the chemokine
CCL22, which mediates trafficking of regulatory T cells in
tumors and ascites but not to draining lymph nodes[46].
It was shown that these regulatory T cells suppressed
tumor specific T cells and were associated with worse
prognosis[46]. The regulatory T cells expressed high levels
of CCR4, a receptor for CCL22. By blocking regulatory T
cell attracting factors, like CCL22, patients might benefit
to a higher extent of immunotherapeutic approaches. Also
in the same paper by Curiel it was shown that HER-2/neu
specific T cells were blocked by the regulatory T cells in
their proliferative function, cytokine production and cyto-
lytic activity. The papers of Zhang et al [45] and Curiel et
al [46] seem to have conflicting results with Zhang et al
showing a positive correlation between the presence of
intratumoral T cells and survival and Curiel et al showing
an inverse correlation. However in the first study the total
number of T cells was taken into account and in the latter
paper only the number of regulatory T cells. One can
imagine that ovarian cancer patients with intratumoral T
cells have a favorable prognosis as long as regulatory T
cells are absent. Nevertheless, it will be important that the
data from Zhang et al will be confirmed by others to elu-
cidate the role of intratumoral T cells in ovarian cancer. It
has been proposed by Conejo-Garcia et al that the ligand
"Letal" (lymphocyte effector cell toxicity-activating lig-
and), expressed by ovarian cancer tumor cells has a role in
survival and expansion of tumor infiltrating lymphocytes
[47]. Higher levels of tumor derived "Letal" correlated
with stronger lymphocyte infiltration. The same group
recently published on a new mechanism of tumor vascu-
logenesis involving vascular endothelial growth factor in
cooperation with antimicrobial inflammatory peptides
called B-defensins mediated by a new population of
CD11c positive leucocytes (DC precursors) named by
these group "vascular leucocytes"' [48,49]. These observa-
tions provide a role for the immune system in tumor ang-
iogenesis and need further research to assess what the
implications for the clinic could be.

Cytokines and their role in the normal ovary and in ovar-
ian cancer is nicely reviewed by Nash et al[50] and will not
be discussed extensively in this review. Ovarian cancer
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Table I: Serum p53 antibodies in patients with epithelial ovarian cancer.

Reference Total no of patients No of patients with p53 serum antibodies (%) Correlation with
overall survival
In all patients In patients with stage  In patients with stage
I/l disease II/IV disease

[146] 86 18 (21) 3 (10) 15 (27) no!
[131] 113 21 (19) 3(8) 18 (23) yes!2
[147] 83 38 (46) 5 (26) 33 (52) no?
[148] 193 24 (12) 4 (6) 20 (15) no!?2
[149] 33 12 (36) 3(21) 9 (47) yes!
[150] 30 10 (33) 2(22) 8 (38) -

[I151] 174 41 (24) 8(21) 29 (28) no'?2
[133] 113 28 (25) - - no!
[152] 99 25 (25) - - -

[127] 46 49 - - -

[130] 30 8(27) - - yes!
[153] 30 8 (27) - - -

[129] 40 15 (38) - - -

[126] 46 49 - - -

[154] 38 11(29) - - -

1154 267 (23) 28 (13) 132 (28)

I: tested in an univariate analyses. 2: tested in a multivariate analyses.

cells probably only partially retain the ability to produce
cytokines with important immunostimulatory functions,
that are expressed by normal ovarian epithelial cells but
lost during neoplastic transformation e.g. the pro-inflam-
matory cytokine IL-18 [51]. Stat3, a mediator in inflam-
matory responses and overexpressed in ovarian cancer
[52,53], might play an important role in this change in
cytokine production by tumor cells suppressing proin-
flammatory cytokine production[54].

MHC class I down regulation, an often observed immune
escape mechanism in different types of cancer, has not
been described frequently for ovarian cancer [55-57].
However recently, Vitale et al showed that MHC class 1
down regulation was associated with higher stage of dis-
ease, yet in a multivariate analysis not with survival [58].

The influence of cytoreductive surgery and platinum/pacl-
itaxel based chemotherapy on the immune system in
ovarian cancer has not been elucidated up to now.
Whether the anti-tumor reactivity in ovarian cancer
patients is influenced by surgery and / or chemotherapy
remains to be determined. The immunogenicity of dying
tumor cells upon chemotherapeutical treatment, does
depend on the nature of the cell death (apoptosis or
necrosis), but probably as important are local environ-
ment and the activation state of the dendritic cells. Plati-
num based chemotherapy induces apoptosis of ovarian

cancer tumor cells. It is therefore encouraging that den-
dritic cells loaded with autologous apoptotic tumor cells
are capable to induce strong tumor specific T cell
responses[29]. T cells themselves are susceptible to chem-
otherapy [59], but high expression of "Letal" by tumor
cells protects lymphocytes from cisplatinum induced cell
death [47]. For tumor associated antigens like Mov18,
OV-TL3 and OC125 only limited differences in expression
on the cell surface of ovarian cancer cells were observed
before and after chemotherapy[57].

p53 as tumor antigen

General introduction on p53

Specific T cell-mediated immunotherapy requires the
identification of tumor-specific antigens carrying T cell
epitopes presented in the context of MHC class I and/or
MHC class II molecules (reviewed by[19,20,60,61]) An
attractive tumor specific antigen in ovarian cancer is the
frequently overexpressed and mutated p53 protein. Other
possible target antigens like HER-2/neu and MUC-1 are
less frequently expressed by ovarian tumor cells. P53 is a
tumor suppressor protein. The role of p53 and other can-
cer genes has been reviewed by Vogelstein and Vousden
[62-64]. P53 acts as a transcription factor, playing a key
role in coordinating cell cycle arrest, DNA repair and
apoptosis following DNA damage to promote genomic
stability. P53, as a transcription factor, mediates apoptosis
by pathways involving the upregulation of pro-apoptotic
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Table 2: Naturally processed human wilt-type p53 derived epitopes in MHC class |

Allel amino acid nr. Sequence Reference
HLA-A*0201 65-73 RMPEAAPPV [I'15,155]
HLA-B*4601 99-107 SQKTYQGSY [z
HLA-A2 103-111 YQGSYGFRL [120]
HLA-A24 125-134 TYSPALNKMF [156]
HLA-A2 139-147 KTCPVQLWV [120,157]
HLA-A2.1 149157 STPPPGTRV [84,124]
HLA-A*0201 187-197 GLAPPQHLIRV [I'15]
HLA-A2 217-225 VPYEPPEVG [118]
HLA-A*0201 264-272 LLFRNSFEV [84,111]

genes as well as downregulation of anti-apoptotic genes
[65]. P53 also has the capacity to induce apoptosis directly
from the cytoplasm via direct activation of Bax to perme-
abilize mitochondria which will release cytochrome c
leading to the induction of apoptosis [66]. In cancer cells
loss of wild-type p53 function may lead to more aggres-
sive tumor growth and failure to respond to standard ther-
apy. The most common way of loss of function is through
mutation. P53 is one of the most commonly mutated
tumor suppressor proteins in human tumors [67], and
already more than 4000 different mutations have been
described. The majority are point mutations, resulting in
single amino-acid substitutions, generally occurring in the
central region of the protein (amino acid 100-300).
Other tumor suppressor genes often lose their expression
after mutation, but the point mutated p53 protein is often
more stable and therefore overexpressed in tumor cells.
The loss of function of p53 might be due to binding of the
mutated protein to the wild type protein (non-functional
tetramers) or to loss of the wild type allele (loss of heter-
ozygosity) [67,68]. P53 mutations are associated with
poor prognosis. Other ways of inactivation include bind-
ing to overexpressed MDM?2 or E6 protein of human pap-
illomavirus, both causing rapid p53 protein degradation
via the ubiquitin pathway[62,63]. Increased resistance to
chemotherapy by mutant p53 has been linked to loss of
the presumed triggering role of wild-type p53 in the proc-
ess of apoptosis.

P53 as tumor antigen (preclinical studies)

P53 protein is overexpressed in 50-60% of ovarian can-
cers [69-73]. Restoration of the function of p53 in tumor
cells is one therapeutic approach. Important progress has
been made recently in this field, using viral and non-viral
vectors [74], or p53 activating peptides [75]. On the other
hand, p53 seems an attractive target for cancer immuno-
therapy. Due to mutation, nuclear and cytoplasmatic lev-
els of p53 are strongly increased in tumor cells compared
to normal cells, thereby providing an immunological win-
dow for p53 wild-type specific immune effector cells

[76,77]. Still, tolerance against an autoantigen as wild
type p53 needs to be overcome, without development of
autoreactive T cells. Mutant and wild-type p53 specific
CTL have been described in mice [78-85] In mice, eradica-
tion of tumors was achieved with vaccines composed of
p53 wild type and mutant peptides [81-83], as well as
with adoptive transfer of wild type p53 specific T cells
[78,85-87]. To immunize with whole p53 protein
expressed by e.g. viral vectors or long peptides overlap-
ping a whole protein has the advantage of multiple MHC
class I and II restricted epitope expression (dominant as
well as cryptic). Mouse dendritic cells transduced with an
adenoviral wild type p53 encoding construct generated
wild type p53 specific CTL (after i.v. or s.c. immunization)
capable of preventing the outgrowth of sarcoma
tumors[88,89]. Moreover, the same construct used intra-
tumorally, induced a systemic antitumor response against
p53 overexpressing tumors, despite the fact that anti p53
T cell responses could not be measured[90]. Intratumoral
injections with recombinant canarypox virus expressing
wild type murine p53 (ALVAC-p53) showed antitumor
effects in 66% of the mice, however without detectable
anti p53 CTL responses [91]. Using different routes of
ALVAC-p53 immunizations only intravenous administra-
tion was capable of inducing anti-p53 CTL response [92].
More successful than the ALVAC-p53 immunizations in
mice was the approach using a recombinant modified vac-
cinia virus Ankara, expressing wild-type murine p53
(MVAp53). This cell free immunization strategy protected
mice for the outgrowth of a syngeneic murine sarcoma by
intraperitoneal injection of MVAp53[93]. Mice immu-
nized s.c. with a recombinant vaccinia virus construct
expressing wild type p53 were protected against challenge
with a p53 overexpressing glioblastome cell line (GL261).
Achieving successful p53 based immunization in the pres-
ence of well established tumors probably requires active
adjuvants. CTLA-4 plays an important role in (negative)
regulation of T cell responses [94]. The p53 specific CTL
and Th responses can be enhanced by using anti-CTLA-4
at the time of antigenic stimulation, thereby even more
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Table 3: Naturally processed human wilt-type p53 derived epitopes in MHC class 1l

Allel amino acid nr. Sequence Reference
HLA-DRI/HLA-DR4 108-122 GFRLGFLHSGTAKSV [158]
HLA-DRBI*0401 I10-124 RLGFLHSGTAKSVTC [124]
HLA-DP5 153-165 PGTRVRAMAIYKQ [125]
HLA-DRBI*1401 193-204 HLIRVEGNLRVE [125]

effectively breaking tolerance [93,95]. Anti-CTLA-4 block-
ade in combination with a vaccine adjuvant, CpG ODN
(synthetic oligodeoxynucleotide containing unmethyl-
ated cytosine-phosphate-guanine motifs) had a synergis-
tic effect on the improvement of MVAp53 induced
antitumor immunity[96]. Using MVAp53 based immuni-
zation Dafterian et al showed eradication of large, well
established tumors in three different tumor models in two
different strains of mice[96]. The immune response
against p53 can also be enhanced by the activation of
CD40 [89,97]. Triggering of the CD40 receptor on den-
dritic cells is vital for their adequate activation and matu-
ration. Both compounds, anti-CTLA4 and activators of
CD40, will become available to test on a wide-based scale
in clinical studies within the near future. Another route of
enhancement of p53 specific immune response after
immunization was obtained by administration of Flt3
Ligand, a strong DC stimulating adjuvant[98]. High
steady state levels of p53 are not a pre-requisite for tumor
eradication by p53 specific CTL as mentioned in one
study[99]. Instead, p53 turnover is an important factor in
determining the sensitivity of tumor cells to these CTL
[87,100]. CD4+ T helper cells are crucial in the recruit-
ment and regulation of the innate and adaptive immune
effector cells[101]. We have demonstrated that CD4+ p53
specific T-helper cells are able to help tumor-specific CTL
in controlling p53 overexpressing tumors [102]. Using
MHC-transgenic mice has shown to be very efficient in
obtaining MHC class 1 restricted CTL against p53 with
high avidity capable of lysing p53 overexpressing tumor
cells without lysis of normal cells expressing normal levels
of p53 [77]. Very elegantly Kuball et al showed that a
CD8-independent p53 specific T cell receptor, generated
in HLA A2.1 transgenic mice, could be expressed in
human CD8+ and CD4+ T cells with p53 specific tumor
recognition|103]. This is at least a very efficient way to
obtain p53 specific class I restricted T cells with very high
affinity. These model systems might help to answer ques-
tions on self tolerance for tumor antigens like p53 and
intriguing aspects like cross presentation, cross priming
and different aspects of immunotherapy in cancer. So far
neither clinical nor immunopathological damage to nor-
mal tissue has been observed in different mouse models,
despite the fact that wild type p53 is expressed in normal

tissue. This indicates that p53 specific T cells are truly
tumor-specific. Data available so far support the view that
P53 specificimmunotherapy may offer a wide therapeutic
margin in cancer patients. Proof of the pudding is still in
the eating, knowing that their might be important differ-
ences in the immune system between preclinical models
and men as nicely reviewed by Mestas et al [104].

Cicinnati et al studied the potential of prophylactic vacci-
nation with p53 epitopes using DNA and /or peptide
pulsed dendritic cell vaccination in the tumor model giv-
ing rise to sarcomas[105]. Compared to control mice a
higher incidence of epitope loss tumors were detected in
the prophylactic vaccinated group resulting in an increase
in tumor growth. Vaccine induced tumor escape therefore
could be an important risk in p53 based prophylactic
vaccines.

P53 as tumor antigen (clinical studies)

In humans MHC class I restricted p53 specific CTL [106-
121], MHC class II restricted p53 specific proliferating Th
cells [122-125], and p53 antibody responses (summa-
rized in Table 1) have been observed [123,126-133]. The
first phase I/II immunization trials using p53 as an anti-
gen have just finished and new trials are being initiated. In
a phase I study, six advanced stage cancer patients were
immunized with an adenoviral vector encoding wild type
p53[134]. Neither tumor responses nor anti p53
responses were observed, however all patients showed an
adenoviral immune response. This strong anti adenoviral
specific response may limit a p53 specific response. Based
on the results in the mouse system[91,92,135] and rhesus
macaques [136], a phase I/II clinical study involving vac-
cination of end-stage colorectal cancer patients with a
recombinant canarypox virus (ALVAC) encoding wild
type p53 was performed|[137]. Patients were immunized
intravenously with an increasing dosage of ALVAC-p53.
From this study it appeared that this modality is safe and
capable of stimulating p53-specific Th1 (IFNYy) responses
in several of these patients. One out of 16 patients showed
stable disease for a short period of time after immuniza-
tion with the highest dose. Fever was the only vaccine
related adverse effect. The authors conclude from this trial
that repeated immunizations are probably necessary to
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obtain good clinical responses. Again, anti-vector
responses were observed in all patients after vaccination
which might have impaired the anti-p53 immune
responses. Preclinical data have shown the superiority of
prime and boost vaccine strategies using different viral
vectors [138,139]. Whether or not the route of administra-
tion plays a role is under debate[140]. Clinical studies
have shown the safety and effectiveness of prime and
boost vaccination protocols using different viral vectors to
deliver the antigen of interest[141,142]. An analysis of the
p53 specific Th response before and after surgery for color-
ectal cancer showed that the majority of the Th responses
detected were not associated with the immunostimulatory
cytokine IFNYy, whereas a number of Th responses even
involved secretion of the immunomodulatory cytokine
IL-10, pointing at the activity of T-regulatory cells that are
known to suppress T cell immunity[143]. These results
more or less resemble the cytokine profiles of tumor asso-
ciated T cells derived from ovarian tumors, which were
also associated with a lower zeta chain expression[144]. It
is important to further investigate the character of the p53
specific T cell responses, because p53-based vaccination of
patients should be aimed at boosting only the desired
Thl-type immunity, while stimulation of T-regulatory
cells should be avoided. This finding would argue in favor
of application of a p53-specific vaccination using a deliv-
ery mode specifically stimulating the anti p53 (cytotoxic T
cell and) Th1l responses. Autologous dendritic cells
expressing the antigen of interest is one of these ways.
Svane et al reported on their phase I immunization study
in breast cancer patients with p53 peptide pulsed
DC[145]. Dendritic cells were pulsed with three wild-type
and three modified HLA-A2 restricted p53 peptides com-
bined with a MHC class II binding peptide (PADRE).
Patients received ten subcutaneous immunizations with
at least 5 x 10° peptide pulsed dendritic cells combined
with 6 mIU/m2 IL2. Two out of six patients had a clinical
response and three out of six had p53 specific T cell
responses (including the two patients with a clinical
response), without inducing significant toxicity. Another
vaccination strategy would be the use of long peptides
encoding the whole protein of interest. The advantage of
using long peptides is that, if delivered in the appropriate
adjuvant (with dendritic cell stimulatory capacity), all
potential MHC class I and class II epitopes within the
delivered peptides will be processed and presented to host
T cells. Table 2 and 3 summarize the naturally processed
wild-type p53 epitopes in MHC class I and II known so
far. These vaccines will thus become independent of MHC
binding motif prediction or processing algorithms and
can be administered to subjects independent of their
MHC type. A phase I - II trial using wild- type p53 derived
long peptides in ovarian cancer patients will be initiated
at the University Medical Center Groningen in 2005.

http://www.translational-medicine.com/content/3/1/34

Conclusion

Progress in the fight against ovarian cancer has been ham-
pered by the lack of highly effective therapy to perma-
nently eradicate disseminated intraperitoneal metastases,
which are present in most patients at the time of diagno-
sis. In order to improve the poor outcome for ovarian can-
cer patients standard and new treatment modalities, such
as targeted or biologic agents and immunotherapy should
be combined. In this review we pointed out that ovarian
cancer tumor cells may (over)express immunoregulatory
molecules such as ligand "Letal", CD40 and Stat-3 which
stimulate immune response. On the other hand mole-
cules are expressed which downregulate MHC class I mol-
ecules and / or simultaneously produce ligands such as
CCL22 attracking regulatory T cells as immune-escape
mechanism. Recent data showing the importance of the
immune response in the course of ovarian cancer and the
availability of new potent immunization strategies urge
further exploration of immunotherapy as adjuvant treat-
ment modality in ovarian cancer patients. The immune
response against p53 can be enhanced by the activation of
CD40, anti CTLA-4 blockade, coadministration of Flt3
Ligand and CpG ODN. Compounds capable of activating
or blocking these molecules will become available within
the near future to be tested on a wide-based scale in clini-
cal studies. The role of p53 as tumor antigen in ovarian
cancer in immunotherapy based trials will be unravled
within the near future as well. Next to important issues as
safety and immunogenicity of vaccination strategies, clin-
ical effectiveness should be one of the major aims of
future trials.

HW Nijman is supported by the Dutch Cancer Society
(Grant nr. 2002-2768)
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