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Abstract

Background: There are diverse molecules present in blood plasma that regulate immune functions and also
present a potential source of disease biomarkers and therapeutic targets. Genome-wide profiling has become a
powerful method for assessing immune responses on a systems scale, but technologies that can measure the
plasma proteome still face considerable challenges. An alternative approach to direct proteome assessment is to
measure transcriptome responses in reporter cells exposed in vitro to plasma. In this report we describe such a
“transcriptomic reporter assay” to assess plasma from patients with sepsis, which is a common and severe systemic
infectious process for which physicians lack efficient diagnostic or prognostic markers.

Methods: Plasma samples collected from patients with culture-confirmed bacterial sepsis and uninfected healthy
controls were used to stimulate three separate cell types — neutrophils, peripheral blood mononuclear cells, and
monocyte-derived dendritic cells. Whole genome microarrays were generated from stimulated cells to assess
transcriptional responses. Unsupervised analysis and enriched functional networks were evaluated for each cell type.
Principal component analyses were used to assess variability in responses. A random K-nearest neighbor — feature
selection algorithm was used to identify markers predictive of sepsis severity, which were then validated in an
independent data set.

Results: Neutrophils demonstrated the most distinct response to plasma from septic patients with 709 genes showing
altered expression profiles, many of which are involved in established immunologic pathways. The amplitude of the
neutrophil transcriptomic response was shown to be correlated with sepsis severity in two independent sets of patients
comprised of 64 total septic patients. A subset of 30 transcripts selected using one set of patients was demonstrated to
have a high degree of accuracy (82-90%) in predicting sepsis severity and outcomes in the other independent set. This
subset included several genes previously established in sepsis pathogenesis as well as novel genes.

Conclusions: These results demonstrate both the suitability and potential clinical relevance of a neutrophil reporter
assay for studying plasma, in this case from septic patients. The distinctive transcriptional signature we found could
potentially help predict severity of disease and guide treatment. Our findings also shed new light on mechanisms of
immune dysregulation in sepsis.
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Background

The immune system plays a pivotal role in maintaining
the balance between health and disease. Profiling im-
munological perturbation holds potential for elucidating
the pathogenesis of a wide range of diseases. Currently
available high-throughput profiling technologies and
emerging systems immunology analysis approaches en-
able the study of clinical samples on a system-wide scale
and provide unbiased tools for investigation of immune
responses [1,2]. Whole blood transcriptome profiling has
been employed to investigate a wide range of conditions
[3-5]. Plasma, which is a valuable source of potential
biomarkers, is an attractive alternative for profiling mo-
lecular changes associated with disease pathogenesis and
progression on a systems scale. However, robust, cost-
effective and reproducible technologies needed for meas-
uring plasma protein abundance on a systems scale are
still lacking. Most prevalent is mass spectrometry, how-
ever this lacks well-established reference databases and
is biased toward detecting high-concentration com-
pounds, which are major limitations for assessment of
the plasma proteome by this technology [1,6].

So-called “transcriptomic reporter assays” provide an
alternate means to assess perturbations in plasma on a
system-wide scale [7]. This strategy consists of measuring
whole genome transcriptional responses elicited in re-
porter cells exposed in vitro to patient plasma. This type
of approach has already proven useful in studies of several
immunologically mediated diseases. It was employed to
help unravel the pathogenesis of systemic onset juvenile
idiopathic arthritis, eventually leading to the adoption of a
novel therapeutic modality for treatment of this disease
[7,8]. It has been used to identify candidate biomarker
signatures in patients prior to the clinical onset of type 1
diabetes mellitus [9]. It has contributed to identifying
pathways of pancreatic islet cell destruction in islet cell
transplantation [10,11]. Despite these and other successes,
this approach has not yet been widely explored or
adopted.

Sepsis is a clinical syndrome related to dysregulated
systemic inflammation in response to an underlying in-
fection. Uncontrolled production of cytokines and che-
mokines is believed to play a role in sepsis severity [12].
Early recognition leading to targeted antimicrobial and
supportive therapy is critical to survival and each hour
that treatment is delayed can markedly increase mortal-
ity [12-14]. However, due to an incomplete understand-
ing of sepsis pathogenesis, criteria for rapid diagnosis
and severity assessment are limited and based largely on
non-specific clinical signs of systemic inflammation and
organ dysfunction [15,16]. Several biomarkers have been
studied in attempts to provide more simple, rapid, and
accurate methods for diagnosis and prognosis of sepsis
[17]. These include C-reactive protein, procalcitonin,
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triggering receptor expressed on myeloid cells 1 (TREM-1)
and others [17-19]. While several small studies have
shown correlation of such proteins to sepsis severity and
outcomes, these proteins have not proven reliable on a lar-
ger scale and are not routinely used in clinical practice
[18,20]. Recent studies suggest that combined use of mul-
tiple biomarkers may be more accurate, however at
present these remain investigational [19].

Our study evaluated responses of three different cell
types to stimulation with septic plasma: polymorpho-
nuclear cells (PMNs), peripheral blood mononuclear cells
(PBMCs), and monocyte-derived dendritic cells (MoDCs).
PMNs and PBMCs were selected as these constitute the
primary types of leukocytes in peripheral blood and are
key in control of infections. MoDCs were selected because
they are known to play a central role in the immune sys-
tem and are able to respond to diverse immune signals.
Each of these cell populations functioned as a so-called
“reporter cell system” to investigate the transcriptional
response to septic plasma. We demonstrate the utility of a
reporter cell system for elucidating immune pathogenesis
of a complex disease such as sepsis and the potential rele-
vance of this approach for predicting prognosis in sepsis.

Methods

Ethics statement

The study was approved by the ethical review commit-
tees of Khon Kaen University and Khon Kaen Regional
Hospital (Khon Kaen, Thailand) and the Institutional
Review Board of Benaroya Research Institute (Seattle,
WA). Participants provided written informed consent to
participate in this study. Written informed consent was
obtained from parents or guardians on behalf of the
minor/child participant in this study.

Plasma collection

Septic patients were enrolled from Khon Kaen Regional
Hospital, Khon Kaen, Thailand. Patients who met at
least two of the criteria for severe inflammatory response
syndrome (SIRS) were enrolled in the study [3,15]. As
part of the routine investigations, clinical specimens
were collected for bacterial culture within 24 h following
SIRS diagnosis. Only blood samples obtained from pa-
tients who were retrospectively diagnosed with culture-
proven sepsis were retained for further analyses. Patients
with negative blood cultures were excluded. Severe sep-
sis was defined according to the current guidelines from
the Surviving Sepsis Campaign [15]. These criteria in-
clude several clinical and laboratory findings of sepsis-
induced tissue hypoperfusion or organ dysfunction. We
used the subset of these criteria for which the necessary
data had been collected for our patient cohort: elevation
in creatinine to >2.0 mg/dl, elevation in bilirubin to >
2.0 mg/dl, platelet count <100,000/pL, and sepsis
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induced hypotension (septic shock). In hospital death
was also counted as severe sepsis. Demographic and
clinical data were recorded for all subjects (Additional
files 1, 2, and 3). Uninfected healthy controls were se-
lected as individuals who had no signs of acute infec-
tious diseases during the previous 3 months or at the
time of the study. Uninfected controls also had to have
normal blood counts, normal fasting blood glucose, and
normal glycosylated hemoglobin. Three milliliters of
whole blood was collected from each patient and healthy
control into heparinized tubes (BD Biosciences). For sep-
sis patients, samples were grouped as drawn either in
the first 48 h of admission, or at >48 h after admission.
To separate plasma, blood samples were centrifuged at
2,000 rpm for 10 minutes and the plasma component
was transferred into a cryogenic vial and stored at -80°C
until used.

PMNs and PBMCs isolations from healthy volunteers

Blood samples from three additional healthy volunteers
were used in subsequent cell isolation procedures. PMNs
were isolated from heparinized venous blood by 3.0%
dextran T-500 sedimentation and Ficoll-Paque PLUS
centrifugation (Amersham Biosciences) as previously de-
scribed [21]. The purity of isolated cells was generally
more than 95% as determined by flow cytometry (FACS-
Calibur, Becton Dickinson) [22]. PBMCs were isolated
from whole blood samples by centrifugation through a
Ficoll-Paque Plus (Sigma Aldrich) density gradient.

Generation of MoDCs

A portion of the isolated PBMCs was subsequently used
for MoDCs generation as previously described [22,23].
MoDCs were harvested and resuspended in serum-free
RPMI-1640 medium (Gibco), 5 x 10° cells/well were
plated into a 24-well tissue culture plate (Corning) for
24 h. The resulting cells were determined to be >95%
CD11c" by flow cytometry.

Cell culture

Cell cultures were performed as described by Pascual et al.
[7]. Two million PMNs or one million PBMCs were resus-
pended in serum-free RPMI-1640 medium (Gibco) and
added to either 5 ml or 2 ml culture tubes (Becton Dick-
inson), respectively. Five hundred thousand MoDCs were
seeded into 24 well tissue culture plates (Corning) at 1 x
10° cells/ml and rested for 24 h before the experiments.
Cells were cultured with medium alone or a plasma sam-
ple in a final concentration of 20%. After 6 h incubation
at 37°C in 5% CO,, cells were harvested, washed twice
with phosphate buffered saline, homogenized in RLT
buffer (RNeasy mini kit; QIAGEN), and stored at -80°C
until use.
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RNA preparation and microarray

Total RNA was isolated using the RNeasy Mini kit (QIA-
GEN) according to the manufacturer’s instructions. RNA
integrity number (RIN) was determined by using an
Agilent 2100 Bioanalyzer (Agilent). Qualified samples
(RIN >6 or presence of 28s and 18s rRNA) were retained
for further processing. Total RNA was amplified and la-
beled using the Illumina TotalPrep RNA Amplification Kit
(Ambion). Labeled cRNA was hybridized overnight to
Human HT-12 V4 BeadChip array (IIlumina), washed,
blocked, stained and scanned on an Illumina HiScan
instrument following the manufacturer’s protocols.

Data acquisition and background subtraction
GenomeStudio was used to generate signal intensity
values from the scans and perform background subtrac-
tion. Post-hybridization quality controls were done by
the standard metrics provided by the manufacturer. Data
from each cell type and each culture experiment were
processed independently. All possible outliers were ex-
cluded from the expression data set by metrics for post-
hybridization quality controls.

Data normalization

All data analyses were performed using R (version 2.14.0;
http://cran.r-project.org/bin/windows/base/old/2.14.0/). Data
pre-processing of background subtracted data was per-
formed by using the preprocessCore package from Bio-
conductor. Pre-processing included rescaling intensity by
quantile normalization. After normalization, expressions
were floored with intensities <10 set to 10. Transcripts
with detection p-value of less than or equal to 0.01 in at
least one sample (PALO) were selected for further ana-
lysis. Samples from the same cell type and batch were
normalized to the average intensity of samples cultured in
medium alone. A filter was set to include only transcripts
that had at least two-fold changes and 100 intensity differ-
ences compared to medium control. Background sub-
tracted and processed data from these experiments have
been deposited at NCBI's Gene Expression Omnibus data-
base (http://www.ncbinlm.nih.gov/geo/), with accession
numbers GSE49758. To facilitate data sharing and inter-
active data analysis, we created a data portal (https://gxb.
benaroyaresearch.org/tra/tra-paper/tra-landing.gsp) to store
and analyze background subtracted data from all three
experiments (see [24] for tutorial).

Unsupervised analysis

Principle component analysis (PCA) was performed
using the R function “prcomp”. The first two principal
components, PC1 and PC2, were plotted against each
other. Each colored dot represents an individual sample.
Euclidean distances were calculated by measuring the
distance from each sample to the average of samples
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stimulated with uninfected plasma. The comparison be-
tween severe and non-severe sepsis was performed using
the Mann-Whitney U-test. Hierarchical clustering ana-
lysis was performed using the function “heatmap.2” from
the R package “gplots”. Euclidean distance and complete
linkage methods were used by default.

Feature selection

Transcripts that were differentially expressed between
study groups were selected by Random k-Nearest Neigh-
bor — Feature Selection (RKNN-FS) using the R package
“rknn” [25]. A RKNN classifier consists of an ensemble of
base k-nearest neighbor models (number of neighbors = 5),
each constructed from a random subset of the input vari-
ables. Features were selected by ranking the importance of
the PALO transcripts.

Pathway analysis

Gene ontology analyses were performed using GeneGo
MetaCore pathway analysis tool (Thomson Reuters, NY).
The default background gene list was used for all enrich-
ment analyses including process networks, pathway map
folders, and pathway maps. Pathway maps are the col-
lection of pathways grouped into folders according to
main cell processes, protein functions, and diseases. Map
Folders are the collection of pathways grouped into folders
according to main biological processes. Statistical signifi-
cance was ascertained by using a threshold of false
discover rate (FDR) <0.05. The network builder tool using
the shortest possible path with no more than 2 steps was
used to represent functional interactions. Upstream tran-
scription factors were identified for lists of over-expressed
genes using the Transcription Factors tool.

Class prediction

To determine the performance of our predictive signature,
class prediction of binary variables was carried out by sup-
port vector machine (SVM; package “e1071”) and random
forest (RF; package “randomForest”) algorithms. These
machine learning methods are robust, well-accepted and
commonly used methods for class prediction. Receiver
operating characteristic (ROC) curves were constructed
using the R package “ROCR”. Area under the curve
(AUC) and confidence intervals were calculated using the
R package “Hmisc”.

Results

Septic plasma elicits transcriptional responses that can be
measured on a systems scale in a cell reporter assay

We first set out to determine which cell reporter system
would be most amenable to detect meaningful changes
in response to septic plasma in vitro. PMNs, PBMCs and
monocytes were isolated from two healthy donors
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(Table 1). Monocytes were cultured with interleukin 4
(IL4) and granulocyte-macrophage colony-stimulating
factor (GM-CSF) to generate MoDCs. Plasma samples
were obtained from a first set of patients with culture-
confirmed sepsis (n=12) and from uninfected healthy
controls (n=6). Cells were cultured for 6 hours in
medium alone (unstimulated) or in the presence of plasma
(stimulated) using a final concentration of 20% (Figure 1).
Microarray data were generated to assess transcriptional
responses on a genome-wide scale. PALO filtering returned
21,236, 25,728, and 23,589 transcripts in PMNs, PBMCs,
and MoDCs respectively. Transcripts were selected that
changed by at least 2-fold and 100 intensity differences
(2FC100DIF) in response to plasma stimulation compared
to unstimulated cells. To reduce data dimensionality and
facilitate the comparison among cell types, principal com-
ponent analyses (PCA) were carried out. PCA plots of data
obtained from the 3 different reporter cell systems (PMNs,
PBMCs, and MoDCs) show changes in transcription
that can be attributed to responses to plasma stimulation
(Figure 2). The best separation between sepsis and unin-
fected plasma samples was observed in PMNs (Figure 2,
top left panel). This result was confirmed by calculating
the Euclidean distance from the center of uninfected con-
trols (Additional file 4). These results demonstrate the
feasibility of a “reverse proteomics” approach to detect the
presence of immunomodulatory factors in the blood of
sepsis patients. While responses measured in PMNs and
PBMCs were consistent for both cell donors (Figure 2,
upper and middle right panels), significant donor-to-donor
variation was observed in MoDCs (Figure 2, lower right
panel).

PMNs mount a robust immune transcriptional program in
response to septic plasma

To test how our approach could best be used for moni-
toring immunomodulatory factors in the blood of sepsis
patients, we next compared the transcriptional programs
elicited by septic plasma in PMNs, PBMCs, and MoDCs.
Septic plasma samples (n=6/24) that were found to
induce the most robust responses consistently across
the three cell reporter systems were selected (Figure 2,
Additional file 5). Transcripts changing by at least 2-fold

Table 1 Overview of experimental design and sample
sizes

Experiments Cell donors Plasma sources

| Healthy subjects (n=2) Uninfected subjects (n=6)
Sepsis subjects (n=12)

I Healthy subjects (n=1) Uninfected subjects (n=18)
Sepsis subjects (n=29)

I Healthy subjects (n=2)  Uninfected subjects (n=19)

Sepsis subjects (n=35)
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Figure 1 Schematic illustration of the experimental design and procedures. Experiments were performed using 3 independent sets of
patient samples. Cells were isolated from healthy volunteers and the responses to plasma measured after 6 h of culture using whole genome
lllumina Human HT-12 V4 BeadChips. Plasma samples were obtained from patients with culture-confirmed sepsis (n=12, 29, and 35 in
experiments |, Il and I, respectively) and control subjects with no infection (n =6, 20, and 20 in experiments |, Il and Ill, respectively). In
experiment |, three types of leukocyte populations were isolated from two healthy volunteers: PMNs, PBMCs and monocytes. In experiments |l

and [ll, only PMNs were used.
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compared to their own unstimulated controls in each
reporter system (709, 366 and 452 transcripts for PMNs,
PBMCs and MoDCs, respectively) were combined to
generate a list of 1,366 transcripts (Additional files 6
and 7). The number of transcripts passing this 2-fold cut
off was the highest in PMNs and the majority of these
transcripts are over-expressed (Table 2). In contrast,
there were fewer changes recorded in PBMCs and
MoDCs and for the majority of those genes, transcript
abundance decreased upon exposure to septic plasma.

In an effort to determine potential molecules present
in septic plasma inducing these patterns of gene expres-
sion, we selected those genes over-expressed in each of
the 3 reporter cell types and predicted the upstream
transcription factors using GeneGo MetaCore. One hun-
dred and sixty-one transcription factors were identified
in total (Additional file 8). There was significant overlap
among the 3 lists of transcription factors with 27 pre-
dicted for all 3 cell types, including several well estab-
lished in core immune pathways such as STAT3, STAT4,
STATSA, STATSB, and CREBI. These findings are con-
sistent with the idea that a relatively small number of
molecules are driving the observed transcriptional re-
sponses and could suggest future studies to determine

the relevant immunomodulatory molecules in septic
plasma.

To better understand the observed gene expression
patterns and the functions of those genes, a heatmap
was generated with the 1,366 transcripts differentially
expressed in at least one cell type (Figure 3). We per-
formed hierarchical clustering and further characterized
the function of transcripts in each of the resulting clus-
ters by using the GeneGo MetaCore pathway analysis
tool. Networks with statistically significant enrichment
of functional annotations were found in 5 out of 12
clusters. Most of the enriched functional networks are
relevant to immune processes. Cluster 1 (n=267), the
largest cluster, is formed by transcripts over-expressed in
PMNs. This cluster contains many genes involved in
neutrophil function (e.g. CD177, IL1IR2, NLRP3, TNFSFS,
FCGRIA, FCGRIB, and FCGRIC). Cluster 3 (n=84)
contains transcripts over-expressed in PBMCs, MoDCs
and to a lesser extent PMNSs. This cluster contains genes
enriched for cell cycle and apoptotic mechanisms (e.g.
CDKNIA, GADD45A, GAA45G, SMAD?7, etc). Cluster 5
(n=39) is over-expressed in PMNs but under-expressed
in PBMCs. This is a smaller cluster but it contains sev-
eral important immune-related transcripts (e.g. CCL2,
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Figure 2 Principal component analyses of transcriptional responses to septic plasma in three different reporter cells systems. The
transcriptional response to septic plasma measured by microarrays was analyzed separately for each reporter cell system. Fold-changes were
calculated by normalizing the expression levels of cell cultures stimulated with plasma to their respective unstimulated cell cultures. Transcripts
passing a filter criteria of 2 fold-change and 100 difference in intensity (2FCT100DIF) were used for principal component analysis (PCA). Scores from
principal component 1 (PC1) and principal component 2 (PC2), which explain approximately 50% of the variability, were plotted. Samples were
color-coded according to study groups (blue = uninfected plasma; red = septic plasma; left panels) or cell donors (blue = donor H1; black = donor
H2; right panels). Each ellipse indicates the 95% confidence interval of data from the corresponding group (indicated by colors). Numbers in
parentheses indicate percentage of variance.
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Table 2 Number of over-expressed and under-expressed
transcripts induced by septic plasma

Cell Number of over-expressed Number of under-
types transcripts expressed transcripts
PMNs 465 358
PBMCs 168 442

DCs 125 488

CCL20, CXCL2, ILIRA, ILIA, IRAK3, and TLR2). Innate
immune pathways and chemotaxis are the major functions
of the genes in this cluster; specific induction of these genes
in PMNs is consistent with their known role as the immune
cells that respond immediately to bacterial infection.
Cluster 6 (n=135) is under-expressed in PBMCs and is
enriched in immune mediators involved in chemotaxis (e.g.
CCL3, CCL3L1, CXCLS5, and CXCLI6), IFN-gamma signal-
ing (e.g. CASP5, FCAR and CFB), and proliferation and
morphogenesis (e.g. MMPI9 and NRPI). Lastly, cluster 7
(n=178) is under-expressed in all reporter systems. The
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Cluster # Networks p-value Ratio
1 1 Signal Transduction_Cholecystokinin signaling 6.98E-05 8/106
2 Neurophysiological process_Corticoliberin signaling 4.28E-04 5/49
3 Inflammation_Neutrophil activation 5.68E-0410/219
4 Inflammation_Kallikrein-kinin system 6.89E-04 9/185
5 Reproduction_Gonadotropin regulation 1.16€-03 9/199
6 Translation_Regulation of initiation 1.356-03 7/127
7 Reproduction_Male sex differentiation 1.39E-0310/246
8 Reproduction_GnRHsignaling pathway 1.47E-03 8/166
9 Reproduction_Feedingand Neurohormone signaling 1.74E-03 9/211
10 Chemotaxis 2.09E-03 7/137
11 Apoptosis_Anti-Apoptosis mediated by external signalsvia MAPK and JAK/STAT ~ 2.36E-03 8/179
12 Inflammation_IL-2 signaling 2.38E-03 6/104
13 Neurophysiological process_Circadian rhythm 3.14E-03 5/76
14 Inflammation_Interferonsignaling 3.16E-03 6/110
15 Neurophysiological process_Long-term potentiation 4.36E-03 5/82
16 Cellcycle_G2-M 5.55E-03 8/206
17 Development_Keratinocyte differentiation 5.04E-03 5/58
2 Not significant
3 1 DNAdamage_Checkpoint 2.74E-04 4/124
2 Apoptosis_Apoptotic nucleus 7.05E-04 4/159
3 Protein folding_Response to unfolded proteins 7.48E-04  5/69
4 Not significant
5 1 Inflammation_Innate inflammatory response 4.77€-05 5/181
2 Chemotaxis 2.54E-04 4/137
3 Development_Regulation of angiogenesis 1.60€-03 4/223
4 Inflammation_Protein Csignaling 1.96€-03 3/108
5 Inflammation_Amphoterin signaling 2.52E-03 3/118
6 Inflammation TREM1 signalin; 4.52E-03 3/145
6 1 Chemotaxis 7.70E-05 7/137
2 Development_Blood vessel morphogenesis 3.17E-04 8/228
3 Proliferation_Negative regulation of cell proliferation 4.79E-04 7/184
4 Inflammation_IFN-gammasignaling 1.49E-03 5/110
7 1 Immuneresponse_Antigen presentation 1.17€-04 9/197
2 Inflammation_Neutrophil activation 2.60E-04 9/219
3 Inflammation_IL-6signaling 1.04E-03 6/119
4 Development_Regulation of angiogenesis 1.42€-03 8/223
5 Inflammation_IL-10 anti-inflammatory response 1.55€-03 5/87
6 _Inflammation_MIF signali 2.38E-03 6/140
8 Not significant
9 Not significant
10 Not significant

11

Not significant

12

-4

Not significant

most consistent response in all three reporter cell systems were selected

the total number of molecules in the network.

Figure 3 Transcriptional programs elicited by septic plasma in three reporter cell systems. Six samples, which provided the highest and

compared to medium controls were used (n = 1,366). Transcripts were organized by hierarchical clustering (Euclidean distance) according to
similarities in expression profiles. Each row represents a transcript and each column an individual sample. The heatmap shows fold-change
compared to unstimulated cell cultures. Red indicates over-expressed and blue indicates under-expressed transcripts. Clusters are identified by a
number on the right side of the heatmap. Each cluster was annotated using the GeneGo MetaCore pathway analysis tool. P-values indicate
enrichment significance for the networks based on hypergeometric distribution. Ratios indicate the number of molecules in the query set over

(Additional file 5). Transcripts passing a filter criterion of 2 fold-change

enriched functional networks for this cluster are relevant to
both innate and adaptive immune responses, for example,
antigen presentation (e.g. CD58 and STATI), and neutro-
phil activation (IL6, NFKB2, and CXCLI). Taken together,
these results support the use of PMNs as a useful reporter
cell type for sensing immunomodulatory constituents of
septic plasma in our reverse proteomic assay system.

A wide range of responses to septic plasma samples is
observed in the PMN reporter assay system

Next we sought to further investigate factors that ac-
count for the heterogeneity of the responses observed in
PMNs exposed to plasma from the initial cohort of sep-
tic patients. Plasma samples from a larger independent
set of septic (n=29) and uninfected (n=18) subjects
were tested on PMNs collected from one of the cell
donors used in our first experiment. PALO filtering

returned 21,374 transcripts. The results were similar to
that of the first experiment in both quantitative and quali-
tative aspects. The first two principal components, PC1
and PC2, explained more than 50% of the variability, and a
distinct response to septic plasma compared with unin-
fected plasma was observed (Figure 4A, left panel). How-
ever, there was significant heterogeneity observed among
the samples stimulated with septic plasma.

Further analyses identified 2 parameters accounting
for much of the observed heterogeneity among samples
stimulated with septic plasma — sepsis severity and tim-
ing of sample collection. To stratify severity, patient
samples were categorized into “severe” or “not severe”
sepsis according to predefined criteria (see Methods). In
contrast to patients with non-severe sepsis, patients with
severe sepsis were markedly separated from uninfected
controls. This result was confirmed by calculating the
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Figure 4 Responses to septic plasma measured in a PMN reporter assay for additional sets of subjects. Plasma samples from two
additional sets of subjects were used in new sets of experiments: A and B corresponding to experiments Il and ll, respectively. PMNs used in
both experiments were obtained from the same donor (donor H2) who had also participated in experiment . Transcripts passing filter criteria of
2 fold-change and 100 difference in intensity (2FCT00DIF) were used. PCA plots (left panels) were generated as described earlier. Colors and
symbols indicate sample class and disease severity: red triangle, severe sepsis; green triangle, not severe sepsis; blue triangle, uninfected; and
closed circle, plasma collected >48 h after admission. Numbers in parenthesis indicate percentage of variance. Box plots (right panels) show
Euclidean distances calculated for each sample from the center of ellipses corresponding to responses to plasma from uninfected controls.
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Euclidean distance from the center of uninfected con-
trols (ellipse in Figure 4A, right panel). The second im-
portant explanatory parameter identified was the timing
of sample collection from hospital admission. There was
no difference between transcriptional responses stimu-
lated by septic plasma samples collected more than 48 h
after admission and uninfected controls, whereas there
was significant difference between septic plasma samples
collected less than 48 h after admission and controls
suggesting potential resolution of observed immu-
nologic changes after treatment initiation. Numerous
other demographic and clinical variables were inves-
tigated which did not appear to explain the observed
heterogeneity (Additional file 9). The fact that most
variability could be accounted for by sepsis severity sug-
gests this is the primary factor determining the PMN
response to plasma.

Sepsis severity markers identified by the PMN reporter
system

Since disease severity impacted the magnitude of tran-
scriptional response to septic plasma, we evaluated the
potential value of our PMN reporter system for clinical
applications. We conducted a third experiment using
PMNs from the same donor as in a second experiment
with an independent set of septic plasma samples all col-
lected within 48 h of admission (n = 35) and uninfected
control samples (n =19). PALO filtering returned 15,083
transcripts. The PCA plots generated from these tran-
scripts showed similar results to that obtained in the
second experiment confirming the marked separation of
severe sepsis from not severe sepsis and controls and
demonstrating sepsis severity the main variable affecting
transcriptional responses (Figure 4B, Additional file 10).
To assess variation of the cell donor source, we tested
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the same set of plasma samples with PMNs from an add-
itional donor not used in either of the previous two exper-
iments. PCA plots and Euclidean distance comparisons
demonstrate similar findings as with the first donor sug-
gesting this sort of PMN reporter system can be reprodu-
cible independent of the cell donor (Additional file 11).
We then used a RKNN-ES algorithm to identify
markers for differentiating severe and not severe sepsis
(Table 3). Data from the third experiment were used as
the training set because it was the most balanced and
largest dataset (severe sepsis n=20; not severe sepsis
n = 15). RKNN-FS identified a set of 30 transcripts as be-
ing able to provide the highest accuracy (82.02%) in pre-
dicting sample class in a leave one out cross-validation
scheme. This biomarker signature reflects different
amplitudes of PMN responses to septic plasma samples
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according to disease severity. Misclassification was ob-
served only with some non-severe sepsis and uninfected
controls. This result is due to the more similar transcrip-
tional response between these two groups as seen in
Figure 4. To illustrate the performance of the identified
markers for predicting both severe and non-severe sepsis
from uninfected controls by a ROC curve, we built
prediction models by using SVM and RF algorithms.
Data from experiment II (severe sepsis n = 17; not severe
sepsis n = 12) were used as a test set. The results demon-
strated the high accuracy of the 30-transcript panel in
predicting the response to plasma from severe sepsis
samples; AUCs are 1 for both SVM and RF. The predic-
tion accuracies of response to plasma from non-severe
sepsis samples are slightly lower; the AUCs are 0.82
(95% confidence interval, 0.78 — 1.00) and 0.90 (95%

Table 3 Sepsis severity markers identified by the PMN reporter system

No. Abbreviation Accession number Gene name lllumina ID

1 ALG10B GenBankNM_001013620.3 Asparagine-linked glycosylation 10 ILMN_1730304
2 ARID5A GenBankNM_212481.1 AT rich interactive domain 5A ILMN_1689700
3 ccL22 GenBank:NM_002990.3 Chemokine (C-C motif) ligand 22 ILMN_2160476
4 CCND3 GenBankNM_001760.2 Cyclin D3 ILMN_1668721
5 DMXL2 GenBankNM_015263.2 Dmx-like 2 ILMN_1705663
6 ECHDC3 GenBankNM_024693.2 Enoyl Coenzyme A hydratase domain containing 3 ILMN_2072178
7 EXOC5 GenBankNM_006544.3 Exocyst complex component 5 ILMN_1788625
8 FAM195A GenBankNM_138418.2 Family with sequence similarity 195, member A ILMN_1730523
9 FCGR2B GenBank:XM_938851.1 Fc fragment of IgG, low affinity Ilb, receptor ILMN_1804174
10 FKBP5 GenBankNM_004117.2 FK506 binding protein 5 ILMN_1778444
11 IL18R1 GenBank:NM_003855.2 Interleukin 18 receptor 1 ILMN_1781700
12 IL1R2 GenBankNM_004633.3 Interleukin 1 receptor, type Il ILMN_1758371
13 KLF9 GenBank:NM_001206.2 Kruppel-like factor 9 ILMN_1778523
14 MCOLN2 GenBankNM_153259.2 Mucolipin 2 ILMN_1660462
15 METTL6 GenBankNM_152396.2 Methyltransferase like 6 ILMN_1661998
16 MMP9 GenBank:NM_004994.2 Matrix metallopeptidase 9 ILMN_1796316
17 NCRNA0O120 GenBank:NR_002767.1 AKIRIN2 antisense RNAT (non-protein coding) ILMN_3239856
18 P2RY2 GenBankNM_176071.1 Purinergic receptor P2Y ILMN_1723535
19 PCYOX1 GenBankNM_016297.2 Prenylcysteine oxidase 1 ILMN_2113535
20 PGM1 GenBankNM_002633.2 Phosphoglucomutase 1 ILMN_1800659
21 PIBF1 GenBankNM_006346.2 Progesterone immunomodulatory binding factor 1 ILMN_1758111
22 SEC24A GenBank:NM_021982.1 SEC24 family, member A ILMN_2126832
23 SLC15A3 GenBankNM_016582.1 Solute carrier family 15, member 3 ILMN_2085862
24 SLC25A3 GenBank:NM_002635.2 Solute carrier family 25, member 3 ILMN_2332713
25 SMAP2 GenBankNM_022733.1 Small ArfGAP2 ILMN_1781468
26 TFRC GenBankNM_003234.1 Transferrin receptor ILMN_1674243
27 TLR2 GenBank:NM_003264.3 Toll-like receptor 2 ILMN_1772387
28 TNFRSF9 GenBankNM_0015614 Tumor necrosis factor receptor superfamily, member 9 ILMN_1813379
29 TPSTI1 GenBank:NM_003596.2 Tyrosylprotein sulfotransferase 1 ILMN_1651950
30 YIPF5 GenBank:NM_030799.6 Yip1 domain family, member 5 ILMN_1714756
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confidence interval, 0.66 — 0.99) for SVM and RF, re-
spectively (Figure 5). Meaningful validation could not be
done using data from experiment I because almost all of
these plasma samples (11/12) were obtained from pa-
tients with severe sepsis, 3 of which were collected
at >48 h after admission.

Functional annotation of the candidate gene signature is
a further indication of its relevance as a severity
biomarker

Enrichment analyses were performed to characterize the
functional relevance of our severity signature panel in
GeneGo MetaCore. Collectively, these genes are involved
in immune system response as their major biologic func-
tion (Figure 6A). Analyses for significant cellular process
(Pathway Maps) also suggested their roles in cell cycle
regulation (Figure 6B). The genes participating in these
functions can be visualized on an interaction network
(Figure 6C).

In addition to these enrichment analyses, many of our
30 classifier biomarkers have been previously shown to
have potential roles in several dysregulated inflammatory
conditions including sepsis and secondary organ dysfunc-
tion. Most of the 11 over-expressed transcripts have been
independently identified as being of potential value as
severity biomarkers in such inflammatory conditions.
FKBPS5 has been shown to contribute to the regulation of
myeloid-derived suppressor cells (MDSCs) and changes in

<
-
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Figure 5 Receiver operating characteristic (ROC) curve for the
candidate septic severity biomarker signature. This plot assesses
the performance of the “septic severity” signature in predicting
severe sepsis and non-severe sepsis. Areas under the curve (AUC)
are 1 for the prediction of severe sepsis by both SVM and RF.

AUCs are 0.82 (95% confidence interval, 0.78-1.00) and 0.90 (95%
confidence interval, 0.66-0.99) for the prediction of non-severe
sepsis by SVM and RF, respectively.
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MDSCs have been shown important in a sepsis model
[26,27]. TLR2 has been shown to be overexpressed in sep-
tic shock and also to play a role in acute kidney injury,
which is an important consequence of severe sepsis and
was part of our severity criteria [28,29]. TPSTI over-
expression can be induced by lipopolysaccharides (LPS)
and inhibition of TPSTI has been shown to affect macro-
phage signaling suggesting its role in the innate immune
response [30]. ECHDC3 over-expression was reported in
onset of acute coronary syndrome [31]. ILI8RI and ILIR2
belong to the IL1R family. IL18R1 plays a role in neutro-
phil migration and activation and has been identified as a
biomarker for several systemic inflammatory conditions,
such as surgery-induced inflammation and bacterial men-
ingitis [32-34]. ILIR2 expression has been suggested to be
a marker of sepsis and high circulating ILIR2 protein
levels have been reported in critically-ill patients with
sepsis [35,36].

The functional relevance of the 19 under-expressed bio-
markers was also investigated. MMP9 has been shown to
have negative correlation with multiple organ dysfunction
scores in sepsis [37]. FCGR2B deficient mice have been
shown to have increased bacterial clearance and survival
in sepsis [38]. TNFRSF9 is thought to be down-regulated
by TNF-a, and to enhance anti-apoptosis and subse-
quently induce inflammatory responses [39,40]. CCL22 is
involved in regulating immune response by recruiting T-
helper cells and regulatory T cells and a sepsis model dem-
onstrated CCL22 playing a role in enhancing neutrophil
activation and chemotaxis [41-43]. P2RY2 has been shown
to play a role in neutrophil chemotaxis in a mouse model
and is also involved in the recruitment of PMNs to the
lung resulting in acute lung injury in sepsis [44,45].

Several other genes in our severity panel are involved
in cell cycle and proliferation, for example, KLF9,
CCND3, YIPF5, ALGI0B, and ARIDSA. Taken together
this literature shows well-established pathogenic roles in
sepsis or other inflammatory conditions for much of our
candidate biomarker panel and constitutes an external
validation of our reporter assay system.

Discussion

This study reports the development and implementation
of a “transcriptomic reporter assay” designed to investigate
the immunogenicity of septic patient plasma and to our
knowledge is the first published study employing immune
cells in a whole genome transcriptomic reporter assay for
an infectious process. One previous study investigated a
focused transcriptional response of 1700 transcripts in
cardiac myocytes cultured with septic serum [46]. Whole
transcriptomic reporter assays have been employed suc-
cessfully in previous studies of autoimmune diseases and
have contributed to the understanding of disease patho-
genesis in systemic onset juvenile idiopathic arthritis and
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type 1 diabetes mellitus [7-11]. Our work helps further
extend this technique into the infectious disease field and
also confirms the utility of comparing performance of
multiple leukocyte subsets.

Transcriptomic reporter assays such as this one are
based on the fact that plasma carries diverse circulating
immune mediators. Stimulation of immune cells by
plasma can demonstrate the biological processes trig-
gered by the immune responses of the host [7,9]. In the
context of infection, a transcriptomic reporter assay may
be detecting in part the responses triggered by exogen-
ous molecules including pathogen associated molecular
patterns (PAMPs) such as LPS, lipoproteins, and pepti-
doglycans [47]. However such an assay also reflects the
responses triggered by diverse endogenous signaling

molecules including cytokines and damage associated
molecular patterns (DAMPs) among others [48].

Our work identified that for investigation of sepsis,
PMNs served as the best reporter cells in a side-by-side
comparison with PBMCs and MoDCs. PMNs were
better sensors of immunostimulatory factors present in
plasma, displaying improved ability to discriminate sep-
tic from uninfected subjects, and PMNs mobilized the
most robust immune transcriptional program. This find-
ing was not initially expected given that PBMCs have
been to date the preferred “serum sensing” cell reporter
system [9], and given that dendritic cells are well known
for their sentinel role in the immune system and have
ability to respond to a wide range of immune triggers.
However our findings are consistent with the role of
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PMNs, which serve as the first line of the cellular innate
immune response and are a major source of acute phase
immune mediators [49,50]. Further our results support
previous work investigating the robust transcriptional
response of PMN in sepsis. For example, Wong et al.
demonstrated from leukocyte transcriptional profiling in
pediatric septic shock that the number of differentially
expressed genes in PMNs was greater than in monocytes
or lymphocytes suggesting repression of adaptive immun-
ity gene programs in early sepsis [51]. De Kleijn et al.
demonstrated a robust set of functional gene networks-
differentially expressed by PMNs after both in vivo and
ex vivo exposure to LPS that related to extended survival
and the regulation of inflammatory responses [52]. It
should be noted that the arrays of receptors expressed by
different immune cell types vary widely, and that while
our report indicate that neutrophils are especially well
equipped to respond to plasma from septic patients it may
not be the most appropriate cell type in other settings.

The PMN cell reporter system coupled with whole
transcriptome readout allowed identification of a severity
signature for sepsis that was highly accurate in two inde-
pendent datasets. Current guidelines for diagnosing sep-
sis and grading severity are based on multiple clinical
parameters, which can be inaccurate and do not predict
prognosis well [15]. Although many potential biomarkers
including cytokines, coagulation factors, and several
others have been investigated for sepsis diagnosis and
prognosis, none have proved reliable enough to enter
routine clinical practice and so there is a need for better
markers for risk stratification of septic patients to guide
treatment and prognosis [17-19]. Elucidating the bio-
logic mechanisms that differ among sepsis patients will
help advance this field [12,20]. The promising perform-
ance of the PMN transcriptomic reporter assay pre-
sented here to stratify patients with sepsis by severity
offers a novel and attractive platform for the develop-
ment of biomarker signatures in sepsis. Similarly, the
ability to select a gene panel that was specific to stimula-
tion with plasma from severe sepsis patients shows the
utility of this method to better understand the immuno-
pathogenesis of sepsis.

Additional investigation is warranted by these results.
The use of three independent cohorts of patients dem-
onstrates reproducibility, but investigation with profiling
of longitudinal samples will be necessary to further
validate our severity assessment and to determine its po-
tential value in monitoring disease progression and the
response to treatment. Seeing consistent results using
three separate PMN donors suggests our results can be
reproducible independent of donor source, however fur-
ther studies are necessary to determine how much vari-
ability donor source could introduce. Similarly extending
our study to stable cell lines such as the neutrophil-like
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HL-60 line could be useful to develop a standardized
assay, an approach that has been previously investigated
in the context of type 1 diabetes research [53]. Perhaps
most important, comparison of transcriptional profiles
elicited from similar clinical conditions due to sterile
inflammation (e.g. non-infectious SIRS or major surgery)
is essential to determine the specificity of the severity
signature described in this study. Also further work to-
wards using this approach to identify a causative patho-
gen could hold potential — in our case the relatively
small sample size and diversity of pathogens made it
difficult to address this issue.

While at present a transcriptomic PMN reporter assay
is not ideal for applications at the bedside given chal-
lenges for standardization of cell lines and data process-
ing, technological advances in automation of sample
processing and availability of polymerase chain reaction
(PCR)-based amplification would make the implementa-
tion of a similar but more targeted assay feasible [54,55].
This approach could also serve as a novel platform for
biomarker discovery and the development of novel clin-
ical tests that could improve diagnosis and prognosis in
sepsis. Moreover, this type of neutrophil transcriptomic
reporter assay is likely to prove valuable for the investi-
gation of other immunologically mediated diseases.

Conclusions

We demonstrated the utility and accuracy of a neutro-
phil reporter assay coupled with whole transcriptome
readout for predicting sepsis severity. We also demon-
strated that this technique identifies important func-
tional networks involved in the pathogenesis of sepsis.

Additional files

Additional file 1: Table S1. Demographic and clinical data for subjects
used in experiment |.

Additional file 2: Table S2. Demographic and clinical data for subjects
used in experiment |I.

Additional file 3: Table S3. Demographic and clinical data for subjects
used in experiment |Il.

Additional file 4: Figure S1. Box plot showing Euclidean distances
from the PCA plots on Figure 2. Euclidian distances were calculated for
each sample from the center of the ellipses corresponding to responses
to plasma from uninfected controls in each reporter system (See Figure 2).
Reporter cells and types of plasma are indicated on the x-axis. P-values were
derived from a Mann-Whitney U-test.

Additional file 5: Figure S2. Principal component analyses of
transcriptional responses to septic plasma in three different reporter cells
systems. A subset of septic plasma samples eliciting robust transcriptional
responses consistently across all three cell reporter systems is indicated
with red triangles on these PCA plots derived from Figure 2. Color
indicates study groups (blue = uninfected plasma; red = septic plasma).
An ellipsis indicates 95% confidence interval of data from the
corresponding group (indicated by color). Number in parenthesis
indicates percentage of variance. See the legend for Figure 2 for more
details.
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Additional file 6: Expression profile of Transcripts changing by at
least 2-fold compared to their own unstimulated controls in each
reporter system.

Additional file 7: Figure S3. Summary of transcripts expressed in each
reporter cell system. Venn diagram demonstrating overlap of the 1,366
differentially genes (from Figure 3 and Additional file 6) for the 3 reporter
cell types.

Additional file 8: Predicted transcription factors from genes over-
expressed in each reporter cell system.

Additional file 9: Figure S4. Transcriptional responses and additional
clinical data association (Experiment Il). PCA plot from experiment |l
(Figure 4A) overlaid with additional clinical information for the sepsis
patients: type of bacterial infection, Gram stain of bacterial infection, age
(divided as <60 and 260 years-old), gender, presence of underlying
diabetes mellitus, and presence of underlying chronic kidney disease.

Additional file 10: Figure S5. Transcriptional responses and additional
clinical data association (Experiment Ill). PCA plot from experiment Il
(Figure 4B) overlaid with additional clinical information for the sepsis
patients: type of bacterial infection, Gram stain of bacterial infection, age
(divided as <60 and 260 years-old), gender, presence of underlying
diabetes mellitus, and presence of underlying chronic kidney disease.

Additional file 11: Figure S6. Responses to septic plasma measured in
a PMN reporter assay using PMNs from an additional healthy donor.
Results from experiment Il as shown in Figure 4B are replicated here in
(A). PMNs from an additional donor were treated with the same set of
plasma samples from experiment Il (8) demonstrating similar responses.
See Figure 4 legend for further details.
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