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Abstract

Background: Numerous inflammation-related pathways have been shown to play important roles in atherogenesis.
Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of
“omics” data generation. The aim of the present work was to develop a network model of inflammation-related
molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data
to the human clinical setting.

Methods: We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model
representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of
atherosclerosis.

Results: Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and
mechanisms captured by gene expression profiling data from four independent datasets from human endothelial
cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer
mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation
of gene expression datasets from aortas of old ApoE−/− mice (78 weeks) and human coronary arteries with
advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms
specific to human arteries that are consistent with the development of unstable atherosclerotic plaques.

Conclusions: We have generated a new biological network model of atherogenic processes that demonstrates
the power of network analysis to advance integrative, systems biology-based knowledge of cross-species
translatability, plaque development and potential mechanisms leading to plaque instability.

Keywords: Vascular systems biology, Plaque destabilization, Vascular biology networks, Computational modeling,
Atherosclerosis modeling
Background
Evidence gathered from in vitro and in vivo experimental
systems, as well as population-based observational stud-
ies, has led to the recognition of vascular inflammatory
processes as central to all stages of atherogenesis, from
local endothelial dysfunction to plaque development and
* Correspondence: hector.deleon@pmi.com
†Equal contributors
1Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud
5, 2000 Neuchâtel, Switzerland
Full list of author information is available at the end of the article

© 2014 De León et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
rupture [1,2]. Cigarette smoking has been epidemiologi-
cally established as a major risk factor for atherosclerosis
and shown to promote plaque development in experi-
mental animal models [3-5]. Mechanistically, endothelial
dysfunction is thought to be a key initiating cellular
event that results from a variety of pro-atherogenic stimuli
including cigarette smoke (CS), dyslipidemia and oxidative
stress [6-8].
Recent advances in high-throughput technologies have

made the analysis of datasets from cardiovascular cells
and tissues possible [9]. Current challenges in the analysis
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iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:hector.deleon@pmi.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


De León et al. Journal of Translational Medicine 2014, 12:185 Page 2 of 22
http://www.translational-medicine.com/content/12/1/185
of transcriptomics datasets based on functional annotation
or pathway maps (e.g. Gene ontology, KEGG) [10,11] res-
ide on the forward reasoning assumption that differential
expression of genes is directly related to differential pro-
tein activity. The variable relationship of mRNA to protein
activity due to post-transcriptional, translational and
protein and mRNA degradation regulation [12-14] may
lead to misinterpretation of gene expression data. Reverse
Causal Reasoning (RCR), a backward computational rea-
soning methodology, uses observed differential expression
of genes in datasets to reverse-formulate mechanistic expla-
nations (termed hypotheses [HYPs]) of the observed effects
[15]. RCR uses a large database structure of experimentally-
driven causal observations (Selventa Knowledgebase, [SK])
as a substrate for reasoning and HYP generation. Subse-
quent mapping of HYPs to network models that recreate
the biology of interest (e.g., atherogenesis) offers a mech-
anistically integrated evaluation and interpretation of gene
expression data captured in large datasets. Combining
prior knowledge from published literature with large
“omics” datasets (e.g., transcriptomics) into in silico
network models accelerates the data interpretation
process and our understanding of cellular behavior.
Unlike direct network mapping of gene expression
data, a network-based HYP evaluation approach allows
translating experimentally-determined molecular changes
as measurable network perturbations that can be com-
pared between different datasets.
We have previously reported the construction of five

network models relating cellular stress, proliferation,
DNA damage, autophagy, cell death and senescence,
lung inflammation, and tissue repair and angiogenesis
in lung and vascular tissues [16-20]. The present work
describes the construction and application of the Vascu-
lar Inflammatory Processes Network (V-IPN), a network
model that combines a molecular framework constructed
from publicly available literature and enhanced with RCR
data-derived mechanisms, to depict a broad range of
inflammatory processes known to occur in vascular tissue
during atherosclerotic disease progression. The V-IPN also
describes the mechanisms leading to plaque instability, an
event in plaque development that often leads to fatal myo-
cardial or cerebral infarction as a result of plaque rupture
and vessel occlusion. We used the V-IPN network to as-
sess the degree of biological mechanistic coverage from
four different sets of transcriptomics profiling data derived
from multiple atherosclerotic-relevant contexts including
human endothelial cells (ECs) in culture, coronary arteries
from coronary artery disease (CAD) patients and aortas
from ApoE−/− mice. The systemic inflammatory status of
ApoE−/− mice, a well-established model of atherosclerosis
[21], makes this strain an ideal model in which to study
comorbidities associated to cigarette smoking [22]. Our
results indicate that the V-IPN captures the key biological
mechanisms that underlie the progression of vascular dis-
ease in various cellular and tissue contexts and allows for
a comprehensive interrogation of transcriptomics datasets
related to atherogenesis and cross-species translatability.

Methods
Evaluation of transcriptomics datasets requires executing
two sequential processes: RCR-based generation of HYPs
and mapping of those HYPs to a network model for
evaluation. RCR uses the SK as a substrate for HYP gener-
ation, whereas HYP evaluation demands a network model
containing the relevant biology. Network construction is a
multistep process that also benefits from RCR to augment
and refine the literature-based representation of the biol-
ogy of interest (Figure 1). The sections below describe
each element involved in model construction and the
RCR-based approach we followed to evaluate transcripto-
mics datasets obtained from ECs and vascular tissues sub-
jected to atherogenic experimental perturbations.

Selventa Knowledgebase (SK)
The nodes (biological concepts and entities) and edges
(assertions about causal and non-causal relationships
between nodes) comprising the V-IPN model were as-
sembled from the SK, a comprehensive repository con-
taining over 1.5 million nodes and over 7.5 million
edges. The assertions in the SK are derived primarily
from peer-reviewed scientific literature. Each assertion
describes an individual experimental observation from a
study performed either in vivo or in vitro. Assertions
also capture information about the database source (e.g.,
PMID for journal articles listed in PubMed), the species
(human, mouse or rat) and the tissue or cell type from
which the experimental observation was derived. An ex-
ample of a causal assertion is the increased transcriptional
activity of NFkB causing an increase in the mRNA expres-
sion of CXCL1 (HeLa cell line; human; PMID 16414985,
[23]). The SK contains causal relationships derived from
healthy and disease contexts such as inflammation and
cardiovascular disease. While the SK is a private com-
mercial resource, a subset of the information contained
in it, as well as a freely available implementation of RCR
called Whistle, are publicly available (https://github.
com/Selventa/whistle). The proportion of vascular spe-
cific evidence for network edges as defined by vascular
biology keywords (e.g., endothelial cells, smooth muscle
cells) is depicted in Table 1 (See Additional file 1: Vascular
Biology Keywords).

RCR-based HYP generation process
The RCR methodology utilized for network augmenta-
tion has been described previously [15] and a detailed
description may be found in the supplementary methods
(Additional file 2). Briefly, RCR analysis identifies potential

https://github.com/Selventa/whistle
https://github.com/Selventa/whistle
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HYPs for the statistically significant mRNA State Changes
observed in the transcriptomics datasets. These upstream
controllers are termed HYPs, as they represent statistically
significant hypotheses that are potential explanations for
the observed mRNA State Changes (Figure 1C). Detailed
descriptions of the probabilistic scoring metrics (richness
and concordance) can be found in Catlett et al. [15],
whereas the use of causal assertions in the construction of
the V-IPN are further described in the Additional file 2:
Supplementary Methods.
V-IPN construction: model structure and boundaries
The workflow for the creation of the V-IPN is illustrated
in Figure 1A. The initial literature-based network scaffold
was defined by specific cell, tissue, species and disease
contexts (e.g., ECs, aorta, human and atherosclerosis)
known to be implicated in vascular pathobiology. The
V-IPN nodes and edges comprising the scaffold were as-
sembled in a sequential process by first using causal
connections derived from knowledge published in the
scientific literature and captured by the SK (Figure 1B).



Table 1 Proportion of vascular-specific evidence
statements for the V-IPN subnetworks

Subnetwork Total
edges

Edges >1 evidence
annotated with
vascular context

Vascular edges/
Total (%)

Endothelial Cell
Activation

407 238 58

Smooth Muscle Cell
Activation

179 78 44

Plaque Destabilization 494 144 29

Endothelial Cell –
Monocyte Interaction

112 27 24

Foam Cell Formation 285 27 9

Platelet Activation 179 10 6

As causal evidence from platelets and inflammatory cells increase in a given
subnetwork (e.g. Foam Cell Formation, Platelet Activation), the number of
vascular biology-related evidence decreases.
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The literature-derived framework was further aug-
mented with nodes derived from the RCR analysis of
vascular inflammation transcriptomics datasets (referred
to as “model building” datasets, Table 1). RCR analysis
yielded several dozen additional HYPs that were vetted
for biological relevance and incorporated into the net-
work as new nodes. Such nodes were connected to the
literature scaffold using causal relationships captured by
the SK. The resulting integrated network was manually
reviewed by scientists with expertise in vascular biology
and inflammation. The modular framework consists of
six subnetworks that accompany this manuscript in
XGMML and .XLS formats (Additional file 3). The net-
work architecture may be viewed from the XGMML files
using freely available network visualization software such
as Cytoscape (http://www.cytoscape.org/).

Gene expression datasets used for V-IPN construction and
evaluation
Detailed information for each dataset used for model
building and evaluation including IDs, self-descriptive
names and experimental perturbations is provided in
Table 2. Previously published transcriptomics datasets
were downloaded from Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/gds). Details of transcripto-
mics expression analysis of murine aortas (E-MTAB-1696
[Mm_Ao_16w_ApoE_CS_vs_sham]) and NHBE cells
(E-MTAB-1272 [Hs_NHBE_CDKinh_rel_vs_blk_8h]) are
provided in the Additional file 2: Supplementary methods.
Statistically significant differentially expressed genes were
used as input for RCR-based generation of HYPs. Three
model-building datasets representing human and murine
mechanisms related to vascular pathobiology were utilized
for network enhancement (Table 1). Transcriptomics data-
sets from aortas of 32 and 78 week-old ApoE−/− mice
(GSE2372 [Mm_Ao_32w_ApoE_vs_wt] and GSE10000
[Mm_Ao_78w_ApoE_vs_wt]) were assessed alongside one
dataset from primary human aortic endothelial cells
(HAECs) exposed to oxidized 1-palmitoyl-2-arachido-
noyl-sn-glycero-3-phosphocholine (Ox-PAPC) (GSE29903
[Hs_EC_oxPAP_vs_PAP]) to capture a larger spectrum of
molecular events characterizing vascular inflammation in
both species. The addition of these data-derived HYPs to
the literature-based framework generated the integrated
model (Figure 1A).
Four transcriptomics datasets from isolated human

ECs (GSE13139 [Hs_EC_GFP_oxLDL_vs_ct]) [24] and
atherosclerotic human coronary arteries (GSE40231
[Hs_athCA_vs_ctIMA]) [25], as well as murine aortas
(E-MTAB-1696 [Mm_Ao_16w_ApoE_CS_vs_sham]), were
analysed by RCR. RCR results (HYPs) were then used to
evaluate network performance by determining HYP-level
coverage and odds ratios (OR) across the six subnetworks
constituting the V-IPN. Names describing the species and
experimental settings for each dataset were created and
they were used throughout the results and discussion sec-
tion to facilitate comparative analyses.

Gene expression datasets used as negative controls
Three datasets from normal human bronchial epithelial
(NHBE) cells (E-MTAB-1272 [Hs_NHBE_CDKinh_rel_
vs_blk_8h]), human cardiac and lung microvascular ECs
(MVEC-L and MVEC-C) (GSE11341 [Hs_JurkT_ars_vs_ct])
[26] and Jurkat cells (GSE23824090 [Hs_JurkT_ars_vs_ct])
[27] were used as negative controls (Table 3). NHBE cells
and Jurkat cells served as non-cardiovascular controls,
whereas lung and cardiac microvascular ECs represent
negative control datasets from small vessels, which do not
develop atherosclerosis.

Calculation of coverage and odds ratio
Evaluating the RCR results for each dataset in the con-
text of each of the six V-IPN subnetworks was estimated
by calculating coverage and odds ratio (OR). Figure 2
depicts a schematic representation of coverage (sensitiv-
ity) and OR, as well as the equations involved in their
calculation. The dataset’s coverage was calculated as the
fraction of possible HYPs in each subnetwork that are
significant HYPs in a given dataset (Figure 2A, B and C).
The OR was calculated as the odds of having significant
HYPs in the network divided by the odds of having non-
significant HYPs in the network (Figure 2B and C).
Thus, sensitivity is an estimate of subnetwork coverage
(overlap), whereas OR estimates the odds of significant
HYP enrichment for a specific dataset-subnetwork pair.
An OR higher than one implies that the odds of having
significant HYPs in a given subnetwork are higher than
the odds of having not significant HYPs in that subnet-
work (Figure 2D). The larger the OR of a given dataset,
the better the network encompasses the biology embed-
ded in the dataset.

http://www.cytoscape.org/
http://www.ncbi.nlm.nih.gov/gds


Table 2 Datasets analyzed by RCR for V-IPN augmentation and evaluation

Dataset name Dataset
ID

PubMed ID Species Experimental
context

Tissue/cell type Perturbation Timepoint Independent
endpoint

Control

Model
Building
Datasets

Hs_EC_oxPAP_vs_PAP GSE29903 16912112
(Gargalovic,
2006)

Hs in vitro HAECs oxPAPC
(40 μg/ml)

4 h IL8 induction PAPC

(40 μg/ml)

Mm_Ao_32w_ApoE_vs_wt GSE2372 19139167
(Grabner, 2009)

Mm in vivo Aorta ApoE−/− 32 wk of age Aortic
morphometry,
IHC, FACS

Wild-type mice
(C57BL/6 J)

Mm_Ao_78w_ApoE_vs_wt GSE10000 78 wk of age

Test Datasets Hs_EC_GFP_oxLDL_vs_ct GSE13139 19279231
(Mattaliano,
2009)

Hs in vitro HAECs
(cell
line)

GFP
overexp

oxLDL 24 h IL8 induction Untreated

Hs_EC_LOX1_oxLDL_vs_ct LOX-1
overexp

Hs_EC_oxPAP_vs_ct GSE20060 20170901
(Romanoski,
2010)

Hs in vitro Primary HAECs Ox-PAPC
(40 μg/ml)

4 h eQTL analysis Untreated

Hs_athCA_vs_ctIMA GSE40231 19997623
(Hagg, 2009)

Hs in vivo Coronary artery Atherosclerotic
lesions

66 ± 8 yr of age Angiography,
blood cytokines

Paired unaffected
artery (IMA)

Mm_Ao_16w_ApoE_CS_vs_sham E-MTAB-
1696

- Mm in vivo
(ApoE−/−)

Aorta CS exposure 13-16 wk of age;
30 d exposure

Lipoprotein
profile

Fresh air
exposure

ECs: endothelial cells; HAECs: human aortic endothelial cells (ECs); GFP: green fluorescent protein; OxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; oxLDL: oxidized low density lipoprotein;
IHS: immunohistochemistry; FACS: fluorescence-activated cell sorting; eQTL: expression quantitative trait loci; Hs: homo sapiens; IMA: internal mammary artery; Mm: mus musculus, MVECs: microvascular endothelial cells;
h: hours; d: days; wk: weeks; yr: years.
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Table 3 Datasets analyzed by RCR used as negative controls

Dataset name Dataset ID PubMed ID Species Experimental
context

Tissue/cell type Perturbation Time point Independent
endpoint

Control

Hs_NHBE_CDKinh_rel_vs_blk_8 h E-MTAB-1272 23926424 Hs in vitro NHBE Exposure to
CDK4/6 inhibitor

24 exposure + 8 h after
removal of inhibitor

FACS, cell cycle
analysis

Untreated

Hs_MVEC-C_hpx_vs_ct_24 h GSE11341 18469115 Hs In vitro Primary cardiac
microvascular ECs

24 h hypoxia
(1% O2)

Normoxia
(21% O2)

Hs_MVEC-L_hpx_vs_ct_24 h GSE11341 18469115 Hs In vitro Primary human
pulmonary
microvascular ECs

24 h hypoxia
(1% O2)

Normoxia
(21% O2)

Hs_JurkT_ars_vs_ct GSE46909 23824090 Hs In vitro Jurkat T cells Arsenic trioxide 3 μM 6 h exposure Untreated

Hs_NHBE_CDKinh_rel_vs_blk_8h, Hs_MVEC-C_hpx_vs_ct_24h, Hs_MVEC-L_hpx_vs_ct_24h and Hs_JurkT_ars_vs_ct were used as a negative control datasets. ECs: endothelial cells; HAECs: human aortic endothelial cells;
HCAECs: human coronary artery ECs; GFP: green fluorescent protein; OxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; oxLDL: oxidized low density lipoprotein; IHS: immunohistochemistry;
FACS: fluorescence-activated cell sorting; eQTL: expression quantitative trait loci; Hs: homo sapiens; IMA: internal mammary artery; Mm: mus musculus, MVECs: microvascular ECs; NHBE: normal human bronchial
epithelial cells; h: hours; d: days; wk: weeks; yr: years.
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Figure 2 Calculation of V-IPN coverage and odds ratio (OR). (A) Schematic representation of the subsets of HYPs in the SK, the network and a given
dataset. (B) To ascertain the validity of the predictions, two statistical metrics, sensitivity (coverage) and OR, were estimated using HYPs data as depicted in
the 2x2 table. (C) Coverage is an estimate of the fraction of possible HYPs in a subnetwork that are significant in a given dataset (A∩B/B), whereas the OR is
the odds of having significant dataset HYPs in the network (a/b) divided by the odds of having non-significant dataset HYPs (c/d). Coverage is a measure
of HYP enrichment within a given subnetwork, whereas OR reflects the probability of having significant dataset HYPs in that subnetwork. An OR higher
than 1 implies that the odds of having significant HYPs in a given subnetwork are higher than the odds of having not significant HYPs in that subnetwork.
Thus, OR estimates the odds of HYP enrichment. (D) Calculated coverage and OR for the entire V-IPN. Mm_Ao_78w_ApoE_vs_wt (GSE10000) is included as
a building dataset reference. V-IPN: Vascular Inflammatory Process Network, Se: sensitivity, Cov: coverage.
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CS generation and ApoE−/− mice exposure
We set up a study in ApoE-deficient mice in which we
investigated the effects of CS on cardiovascular endpoints
including plasma lipid profiles, and transcriptomics of aor-
tas. The E-MTAB-1696 [Mm_Ao_16w_ApoE_CS_vs_sham]
transcriptomics dataset was generated from aortas display-
ing evidence of atherosclerotic plaques in ApoE−/− mice
exposed to cigarette smoke (CS). All animal experimental
procedures and CS exposure were approved by an Institu-
tional Animal Care and Use Committee (IUCAC) and are
described in detail in the Additional file 2: Supplementary
methods. Total cholesterol measurements in plasma, athero-
sclerotic plaque measurements in the aortic arch and immu-
nohistochemical stainings in vascular tissues of ApoE−/−

mice were conducted according to methods detailed in the
Addditional file 2: Supplementary methods

Results
V-IPN construction and biological integration: description
of modular framework and boundaries
To capture the diverse array of biological processes
involved in the development of atherosclerotic plaques, the
V-IPN network model was constructed using a modular
approach that represents key processes related to vascular
inflammation and atherogenesis. The biology modelled
started with a literature-derived network scaffold followed
by a RCR analysis of two murine and one human
transcriptomics datasets (“Model Building” Datasets,
Table 2) to enhance the representation of biological disease
mechanisms from both species. This RCR-based enhance-
ment of the networks helped uncover additional disease-
relevant mechanisms not readily identified during the
literature-based component of model building. This model
building step strengthened the network’s capability to inter-
pret datasets from multiple species. The RCR predictions
(HYPs) were included in the network if they had been
reported to be mechanistically linked to the process of
interest. Biological processes represented in the V-IPN
were integrated into six distinct subnetworks that captured
key pathobiological events in vascular disease: Endothelial
Cell Activation, Endothelial Cell-Monocyte Interaction,
Foam Cell Formation, Platelet Activation, Smooth Muscle
Cell Activation and Plaque Destabilization (Figure 3). The
first five subnetworks describe fundamental atherogenic
mechanisms underlying vascular inflammatory responses
in discrete cellular populations, whereas the Plaque
Destabilization subnetwork represents a collection of
molecular events that occur in advanced, unstable athero-
sclerotic lesions. While each subnetwork was constructed
to reflect the biological relationships that are involved in
specific processes, the subnetworks contain shared ele-
ments. For example, since the transcription factor NF-kB is
a pleiotropic protein involved in multiple inflammatory
pathways, the node “transcriptional activity of NFkB” exists
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Figure 3 Biological processes modelled by the V-IPN. The V-IPN is a modular network model of vascular biology and inflammation. Each
subnetwork represents a fundamental set of biological functions, and cellular and molecular players. The modular structure facilitates simulation
analysis and evaluation of large ‘omics’ datasets. Five of the six subnetworks describe processes related to the biology of atherogenesis and
arterial inflammation; these include EC Activation, Platelet Activation, EC-Monocyte Interaction, Foam Cell Formation, and SMC Activation. The sixth
subnetwork, Plaque Destabilization, primarily captures those mechanisms resulting in plaque instability in advanced atherosclerotic disease. The
associated subnetwork metrics quantify aspects related to model architecture, such as number of nodes and edges comprising the subnetwork.
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in multiple V-IPN subnetworks, which display varying
network connectivity depending on the focus of the subnet-
work. Twenty five RCR-predicted HYPs representing mostly
pro-inflammatory biological signaling were present in four
of the six subnetworks and Ox-LDL was the only HYP com-
mon to all subnetworks (Additional file 4: Figure S1). Abso-
lute and relative numbers for all overlapping nodes between
subnetworks are shown in Additional file 5: Figure S2. The
provided XGMML encoding of the subnetworks allows for
the assembly of the V-IPN as a single, agglomerated network
using freely available network visualization software such as
Cytoscape (http://www.cytoscape.org/).

Assessment of V-IPN subnetwork-level HYP coverage
Test datasets
To test the ability of the V-IPN to identify biological pro-
cesses modulated by a variety of experimental conditions
and models related to atherogenesis, we evaluated a series
of in vitro and in vivo transcriptomics datasets by RCR,
the details of which are summarized in Tables 2 and 3.
Lists of HYPs for each dataset meeting significance criteria
(richness and concordance p-values < 0.05) were evaluated
for subnetwork-level coverage, i.e. assessment of HYPs
identified as significant in the datasets and also present in
the V-IPN. In order to statistically validate the processes
being represented in each of the transcriptomics datasets,
ORs integrating sensitivity and specificity metrics into a
single number were calculated. The overall V-IPN cover-
age ranged from 9 to 24%, with the human dataset from
atherosclerotic coronary arteries (Hs_athCA_vs_ctIMA)
exhibiting the highest degree of coverage (24%) and the
highest OR (2.47) (Figure 2D). Datasets from Jurkat
cells (Hs_JurkT_ars_vs_ct) and an immortalized EC line
(Hs_EC_GFP_oxLDL_vs_ct) showed the lowest HYP

http://www.cytoscape.org/
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coverage (9%) (Figure 2D). A summary of the absolute
HYP coverage across all six V-IPN subnetworks for each
dataset utilized in the network evaluation is presented in
Table 4. A significant proportion of transcriptomics data-
derived HYPs were captured across the six subnetworks.
HYPs predicted from the Hs_athCA_vs_ctIMA dataset
displayed the highest level of coverage across four V-IPN
subnetworks, particularly within the Plaque Destabilization
subnetwork where coverage approached 40%. The high
range of HYP coverage utilizing a dataset derived from
human coronary arteries displaying advanced athero-
sclerotic lesions underscores the validity of the V-IPN
in capturing vascular disease-related processes.
Figure 4 depicts the coverage and OR of the overlap

for each dataset onto each V-IPN subnetwork. Overall,
datasets from immortalized cell lines in culture (Hs_EC_
GFP_oxLDL_vs_ct; Hs_JurkT_ars_vs_ct) exhibited a lower
coverage and OR compared to datasets from intact
murine (Mm_Ao_78w_ApoE_vs_wt; Mm_Ao_16w_ApoE_
CS_vs_sham) and human (Hs_athCA_vs_ctIMA) vascular
tissues. (Mm_Ao_78w_ApoE_vs_wt), a model construction
dataset, is included here only as a reference. Within the
EC datasets, primary cells treated with Ox-PAPC (Hs_
EC_oxPAP_vs_ct) showed the largest coverage compared
to both Ox-LDL-treated HAEC datasets (Hs_EC_GFP_
oxLDL_vs_ct; Hs_EC_LOX1_oxLDL_vs_ct) and MVECs
(Hs_MVEC-C_hpx_vs_ct_24h; Hs_MVEC-L_hpx_vs_ct_
24h). Within the HAEC study, a larger HYP coverage
was shown by LOX-1-transfected ECs (Hs_EC_LOX1_
oxLDL_vs_ct) compared to cells transfected with GFP
(Hs_EC_GFP_oxLDL_vs_ct), suggesting that vascular
inflammatory processes are indeed initiated by overex-
pressing LOX-1.
Hs_athCA_vs_ctIMA exhibited statistically significant

ORs for all of the six subnetworks and the highest cover-
age of all datasets (except Mm_Ao_78w_ApoE_vs_wt, a
model construction dataset) in four of the six subnet-
works: Plaque Destabilization, Platelet Activation, EC-
Monocyte Interaction and Foam Cell formation. This
remarkable finding underlines the value of contrasting
gene expression datasets from atherosclerotic arteries (e.g.
coronary arteries) with normal vessels from the same
subjects (e.g., internal mammary arteries) as performed
for this dataset [25]. Interestingly, the murine dataset
derived from ApoE−/− aortas of old mice (Mm_Ao_78w_
ApoE_vs_wt) displayed a very similar OR pattern to the
human dataset across all subnetworks, with the excep-
tion of the Platelet Activation subnetwork, which indi-
cates that largely similar biological pathways underlie
atherosclerosis in both species (Figure 4). This result
also suggests that the process of platelet activation may
play a larger role in the development of atherosclerotic
plaques in humans compared to advanced-age murine
models of atherosclerosis.
Negative Control Datasets
Transcriptomics data from four datasets were used
as negative controls to evaluate the specificity of the
V-IPN. Hs_NHBE_CDKinh_rel_vs_blk_8h, a negative con-
trol dataset obtained from NHBE cells, exhibited a low
degree of coverage across all subnetworks (Figure 4).
Significant HYPs for Hs_NHBE_CDKinh_rel_vs_blk_8h
in the EC Activation and SMC Activation subnetworks
were mostly related to cell cycle and growth factor sig-
naling molecules, which are ubiquitously represented
across cell cycle and growth factor subnetworks of the
Cell Proliferation Network (Additional file 6: Table S1).
Three additional negative control datasets mapped to
the V-IPN rendered even lower degrees of coverage
compared to NHBE cells (Figure 4). Hs_MVEC-C_hpx_
vs_ct_24h and Hs_MVEC-L_hpx_vs_ct_24h, two data-
sets obtained from cardiac and lung MVECs subjected
to hypoxia, exhibited lower coverage than the dataset
from NHBE cells across all subnetworks. Lung MVECs
(Hs_MVEC-L_hpx_vs_ct_24h) showed a slight degree of
coverage in the EC activation, SMC Activation and the
Plaque destabilization subnetworks. Hs_JurkT_ars_vs_ct, a
control dataset from Jurkat cells, exhibited the lowest de-
gree of coverage of all datasets examined. The low HYP
coverage displayed by the negative control datasets from
studies using NHBE cells, MVEC and Jurkat cells further
demonstrates the specificity of the biology captured by the
V-IPN and highlights its value to evaluate processes prox-
imal to vascular immunopathology.

HYP scoring and HYP directionality
The predicted directionality of all significant HYPs for all
subnetworks, i.e. increased or decreased predictions based
on the downstream gene expression is included in a sup-
plementary file for each dataset examined (Additional
file 7: Datasets_Analysis_Dashboards). A representative
mapping of the Plaque Destabilization subnetwork de-
picted in Figure 5A shows bar plots for all possible HYPs
that were predicted as significant in the Mm_Ao_16w_
ApoE_CS_vs_sham, Mm_Ao_78w_ApoE_vs_wt, and Hs_
athCA_vs_ctIMA datasets. This visualization highlights
Hs_athCA_vs_ctIMA as the dataset exhibiting the largest
HYP coverage and enrichment values compared to two
murine datasets (Mm_Ao_16w_ApoE_CS_vs_sham and
Mm_Ao_78w_ApoE_vs_wt). The subnetwork depiction also
shows biological components being largely up-regulated
as they relate to the process of plaque destabilization in
human disease. A representative example of the gene
expression data downstream of HYP taof(Stat1) scored
for the Hs_athCA_vs_ctIMA and the Mm_Ao_78w_ApoE_
vs_wt datasets is depicted in Figure 5B and C, respectively.
The HYP contains 94 and 82 measured RNA abundance
nodes and a total of 31 and 50 differentially expressed
RNAs mapped to the network from the human and



Table 4 Summary statistics of dataset overlapping across the six V-IPN subnetworks

Dataset name Dataset ID N° of state
changes (SC)

N° of HYPs
in dataset

No HYPs
overlapping
with EC
activation

N° HYPs
overlapping
with platelet
activation

N° HYPs
overlapping
with EC-monocyte
interaction

N° HYPs
overlapping
with foam cell
formation

N° HYPs
O/L with SMC
Activation

N° HYPs O/L
with Plaque
Destabilization

N° HYPs
O/L with
V-IPN

Total N° of possible HYPs in each subnetwork for human/mouse 2410/ 2354 155/149 59/55 30/27 118/113 88/84 104/102 340*/334

Mouse Mm_Ao_78w_ApoE_vs_wt GSE10000 3872 449 59 11 13 42 32 43 110

Mm_Ao_16w_ApoE_CS_vs_sham E-MTAB-1696 1928 245 24 8 4 23 19 18 52

Human Hs_EC_GFP_oxLDL_vs_ct GSE13139 398 152 16 4 4 16 9 14 31

Hs_EC_LOX1_oxLDL_vs_ct GSE13139 752 224 30 8 8 21 16 21 52

Hs_EC_oxPAP_vs_ct GSE20060 609 309 45 12 8 21 23 27 77

Hs_athCA_vs_ctIMA GSE40231 3643 309 42 17 11 36 20 37 80

Hs_NHBE_CDKinh_rel_vs_blk_8h E-MTAB-1272 1655 296 27 5 7 19 18 14 53

Hs_MVEC-C_hpx_vs_ct_24h GSE11341 459 192 27 8 4 16 16 18 48

Hs_MVEC-L_hpx_vs_ct_24h GSE11341 504 198 22 4 4 15 13 14 42

Hs_JurkT_ars_vs_ct GSE46909 2381 157 15 5 3 3 9 8 31

Reverse causal reasoning (RCR) analysis was conducted using richness and concordance p values <0.05. HYPs that met both criteria were considered to be statistically significant. *Total number of unique human HYPs
among the six subnetworks. Total is not 551 HYPs, the sum obtained from Figure 3, due to node/HYP overlap between the subnetworks. Mm_Ao_78w_ApoE_vs_wt (GSE10000) is included in this table as a building
dataset reference. O/L: overlapping. Dataset Name Dataset ID N° of state changes (SC) N° of HYPs in dataset N° HYPs O/L with EC Activation N° HYPs O/L with Platelet Activation N° HYPs O/L with EC-Monocyte
Interaction N° HYPs O/L with Foam Cell Formation N° HYPs O/L with SMC Activation N° HYPs O/L with Plaque Destabilization N° HYPs O/L with V-IPN.
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Figure 4 Dataset coverage (sensitivity) and odds ratio (OR) for significant coverage and enrichment within V-IPN subnetworks.
Subnetwork dataset coverage (sensitivity, see also Figure 2) depicted on the x-axis represents the fraction of possible HYPs in a subnetwork that
are significant in a given dataset. Only HYPs meeting both richness and concordance cutoff p-values <0.05 were considered to be statistically
significant. OR is an estimate of the probability of having significant dataset HYPs in a given subnetwork. An OR higher than one implies that the
odds of having significant HYPs in a given subnetwork are higher than the odds of having not significant HYPs in that subnetwork. ORs were
calculated for the overlap between each dataset and each subnetwork. The size of the squares is proportional to the OR. The larger the dataset
OR, the better the network encompasses the biology embedded in the dataset. Hs_NHBE_CDKinh_rel_vs_blk_8h, Hs_MVEC-C_hpx_vs_ct_24h and
Hs_MVEC-L_hpx_vs_ct_24h were used as negative control datasets. Mm_Ao_78w_ApoE_vs_wt is included as a building dataset reference. The
significance of HYPs overlap calculated by a chi-square test is depicted by stars. Color intensity indicates significance levels.
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murine datasets, respectively. Twenty-five and 46 genes
supporting upregulated activity and 6 and 4 supporting
downregulated activity from the human and murine
datasets, respectively. The proportion of RNA down-
stream nodes supporting an increased activity of STAT1
over those supporting a downregulated activity may be
related to the key cell signaling role of STAT1 in cells
embedded in advanced murine atherosclerotic lesions.
Four additional examples of HYP scoring displaying
the underlying gene expression data of HYPs for the
Mm_Ao_78w_ApoE_vs_wt dataset were included in the
supplement. Selected HYPs included “macrophage activa-
tion”, “Ccl5”, “monocyte adherence” and “kaof(Chuk)”
(Additional file 8: Figure S3a-d).
The HYP coverage of Hs_athCA_vs_ctIMA was exam-

ined not only across all V-IPN subnetworks, but also across
all subnetworks and models we have previously published
[16-20]. A bar plot visualization of all overlapping networks
is depicted in Additional file 9: Figure S4 as coverage
(bar length) and OR (grey color intensity). Subnetworks
displaying the largest coverage and highest ORs are within
the IPN (Inflammatory Process Network), TRAG (Tissue
Repair and Angiogenesis) and DACS (DNA damage, Au-
tophagy, Cell death, and Senescence) models and include
Dendritic Cell Migration, Neutrophil Chemotaxis, Natural
Killer (NK) Cell Activation, Epithelial Cell Barrier Defense,
Macrophage activation, Immune Regulation of Angiogenesis
and MAP kinases (Mapk). Many of these subnetworks
constitute biological processes that have also been
implicated in the development of atherosclerotic lesions.

V-IPN evaluation of preclinical data translatability
V-IPN coverage of predicted HYPs from human in vitro
datasets
To investigate the ability of the V-IPN to distinguish the
effects of different experimental perturbations, we com-
pared the predicted HYPs from three sets of transcripto-
mics data from HAECs stimulated with Ox-LDL
(Hs_EC_GFP_oxLDL_vs_ct, Hs_EC_LOX1_oxLDL_vs_ct)
or Ox-PAPC (Hs_EC_oxPAP_vs_ct). The largest HYP
coverage by a single dataset was observed with Hs_EC_
oxPAP_vs_ct (40 HYPs, 7-15% across all subnetworks),
followed by Hs_EC_LOX1_oxLDL_vs_ct (14 HYPs, 2-7%)
and Hs_EC_GFP_oxLDL_vs_ct (5 HYPs, 0-3%) (Additional
file 10: Table S2). Significant HYPs observed to be shared
between the three datasets included inflammatory mole-
cules INFB1, IFNG and IL17A. Predicted HYPs known to
be transcriptional modulators involved in lipid metabolism
of biomembranes (CREB1, SREBF1 and SREBF2) were
also commonly observed in the three datasets. Additional
significant HYPs in Hs_EC_oxPAP_vs_ct reflects a group
of growth factors and cell cycle controllers (PDGF, IGF1,
CDK4, CCND1, CDKN1A), inflammatory cytokines and
chemokines (CCL2, CCL5, CD40LG), oxidative stress-
related molecules (NOS3, SOD1), transcriptional regula-
tors of mitogenesis and inflammation (ATF4, NFKB, SP1),



Figure 5 (See legend on next page.)
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Figure 5 Plaque destabilization subnetwork coverage and HYP scoring by murine and human datasets. A. Coverage of the plaque
destabilization subnetwork. A chimeric (human/mouse) version of the plaque destabilization network is visualized. Nodes that are possible HYPs
have a bar plot indicating if the node is a significant HYP in the Mm_Ao_16w_ApoE_CS_vs_sham, the Mm_Ao_78w_ApoE_vs_wt, and/or the
Hs_athCA_vs_ctIMA datasets. HYPs that are predicted down- or up-regulated are blue and orange, respectively. Color intensity reflects statistical
significance while grey bars indicate no significant prediction. Bar plots in non-significant nodes for all three datasets were flattened. Circled HYPs
in red (PPARA and CD40LG) are two examples of HYPs that were predicted decreased and increased, respectively, in the Mm_Ao_16w_ApoE_
CS_vs_sham dataset. B. HYP scoring of human dataset. Gene expression underlying the HYP with the upstream node taof(STAT1) scored for the
Hs_athCA_vs_ctIMA dataset. C. HYP scoring of murine dataset. Gene expression underlying the HYP with the upstream node taof(Stat1) scored
for the Mm_Ao_78w_ApoE_vs_wt dataset. HYP networks contain measured RNA abundance nodes, represented as circles colored by differential
expression (red = significantly increased, green = significantly decreased, white = no significant change). Differentially expressed RNAs mapped to
the network includes supporting increased (solid arrows) and decreased (dotted lines) mechanism activity.
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and molecules driving cytoplasmic and intra-organelle
signaling events leading to migration, proliferation and
cell death (AKT, MAPK8, PKA). The results of this
coverage analysis suggest that treatment with Ox-PAPC
may be a more potent inducer of processes related to
atherogenesis when compared to oxLDL treatment, in
the specific context of HAECs stimulated in vitro.

V-IPN coverage of predicted HYPs from human and murine
in vivo datasets
To test the power of the V-IPN at capturing mechanisms
and biological pathways implicated in advanced vascular
lesion development in human arteries, we evaluated cover-
age across the V-IPN subnetworks with a gene expression
dataset from human coronary arteries isolated from CAD
patients undergoing bypass surgery (Hs_athCA_vs_ctIMA)
[25]. Lesion stage- and species-specific mechanistic dif-
ferences were assessed by comparing the HYP coverage
of each V-IPN subnetwork by the human dataset with
two murine aortic datasets from early (Mm_Ao_16w_
ApoE_CS_vs_sham) and advanced (Mm_Ao_78w_ApoE_
vs_wt) atherosclerosis. Aortic tissue was collected from
sexually mature 13–16 week-old ApoE−/− mice follow-
ing 30 days of CS exposure (Mm_Ao_16w_ApoE_CS_
vs_sham) and from 78 week-old, unexposed ApoE−/−

mice (Mm_Ao_78w_ApoE_vs_wt). The Mm_Ao_78w_
ApoE_vs_wt dataset was used in this evaluation as a refer-
ence for stage- and species-specific comparisons with the
Mm_Ao_16w_ApoE_CS_vs_sham and human Hs_athCA_
vs_ctIMA datasets, respectively.
V-IPN coverage of HYPs common to the murine and

human datasets revealed that more HYPs were common
between Mm_Ao_78w_ApoE_vs_wt and Hs_athCA_vs_c-
tIMA than between any other dataset pair comparison
(Mm_Ao_16w_ApoE_CS_vs_sham // Hs_athCA_vs_ctIMA;
Mm_Ao_16w_ApoE_CS_vs_sham // Mm_Ao_78w_ApoE_
vs_wt) or the combination of the three datasets. The
number of HYPs shared between Mm_Ao_78w_ApoE_
vs_wt and Hs_athCA_vs_ctIMA was 2–5 times higher
than any other possible comparison within the three data-
sets (Table 5). This observation prompted us to conduct
murine-murine and murine-human dataset comparisons
to further examine the molecules and pathways shared
by these datasets. This approach allowed us to evaluate
whether distinct species- and lesion stage-specific mecha-
nisms may play a role in vascular lesion development.

Early vs advanced murine atherosclerosis datasets
The predicted HYPs from the murine datasets showed a
low degree of overlapping HYP coverage (0-3%, Table 5),
suggesting that distinct molecular pathways are active at
various stages of atherogenesis in the same species. The
Mm_Ao_16w_ApoE_CS_vs_sham dataset alone covered
0-7%. We sought to evaluate the coverage of this dataset
across the V-IPN subnetworks to determine the mechanis-
tic similarities and differences underlying lesion formation
following CS-exposure when compared to advanced-age
lesions in the same species. To determine the extent of
vascular lesion development in the CS-exposure model,
aortic histomorphometry and plasma lipid profiles were
performed at the end of the study. Total cholesterol, LDL
and VLDL from animals exposed to CS for 30 days were
significantly increased, as was the size of atherosclerotic
plaques in the aortic arch (Figure 6, panels A to D). H&E
staining of cross-sections of the aortic roots showed typ-
ical intimal thickenings in areas close to the aortic valve
leaflets; immunohistochemical staining of these lesions
with a MAC3 antibody indicated that they were infiltrated
by numerous macrophages (Figure 6, panels E to G).
Predicted HYPs that were common to the mouse datasets

from young and old mice (Mm_Ao_16w_ApoE_CS_vs_
sham and Mm_Ao_78w_ApoE_vs_wt) indicated a low de-
gree of overlapping across the V-IPN subnetworks (0-3%,
Table 5). Coverage analysis showed some mechanisms and
molecules being activated solely in the Mm_Ao_16w_
ApoE_CS_vs_sham dataset including PPARA, CD40LG,
RAC1, PGE2 and SREBF2. Two predicted HYPs were
found in four out of the six subnetworks (decreased
PPARA and increased CD40LG) including the Plaque
Destabilization subnetwork (Figure 5). AGTR1A (angio-
tensin II receptor 1A) was also a predicted HYP shared by
both datasets in three subnetworks. These results indicate
that in addition to a small set of mechanisms shared by
early and advanced murine lesions, distinct biological



Table 5 Dataset HYP overlapping between murine and human vascular tissues across the V-IPN subnetworks

Mm_Ao_16w_ApoE_CS_vs_sham Mm_Ao_78w_ApoE_vs_wt Hs_athCA_vs_ctIMA No of
HYPs

EC activation Platelet
activation

EC-monocyte
interaction

Foam cell
formation

SMC
activation

Plaque
destabilization

X X X 18 11 (7) 3 (5) 2 (7) 8 (7) 9 (10) 9 (9)

X X - 8 2 (1) 0 (0) 0 (0) 4 (3) 3 (3) 1 (1)

X - X 6 2 (1) 0 (0) 2 (7) 3 (3) 2 (2) 4 (4)

- X X 32 18 (12) 6 (10) 5 (17) 15 (13) 4 (5) 16 (16)

X - - 20 9 (6) 5 (8) 0 (0) 8 (7) 5 (6) 4 (4)

- X - 51 28 (18) 2 (3) 6 (21) 15 (13) 16 (18) 17 (17)

- - X 24 11 (7) 8 (14) 2 (7) 10 (8) 5 (6) 8 (8)

- - - 583 73 (47) 36 (61) 12 (41) 55 (47) 43 (49) 44 (43)

Numbers between parentheses are percentage of total number of possible HYPs.
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Figure 6 Atherogenesis in ApoE−/− model after 30 days of CS exposure. (A). Concentration of lipoproteins in serum of ApoE−/− mice
exposed to sham or to CS for 30 days. (B). Plaque area in the aortic arch of sham and CS-exposed mice. (C/D). Representative images of the
aortic arch of 12 week old Apo E−/− mice after the end of the exposure period. (E/F). Representative images of H&E stained cross sections of the
aortic roots of Apo E−/− mice at the end of the exposure period. Atherosclerotic lesions are encircled. (G). Immunohistochemical staining with an
anti-Mac-3 antibody revealed that atherosclerotic lesions from the aortic root of a CS-exposed animal displayed significant presence of macrophages.
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pathways may also contribute to lesion formation in CS
exposure-induced early vascular lesions compared to those
implicated in advanced, older lesions.

Advanced murine vs. advanced human atherosclerosis
datasets In contrast to the murine dataset comparison
results, the degree of overlapping HYPs between Mm_
Ao_78w_ApoE_vs_wt and Hs_athCA_vs_ctIMA ranged
from 10-16% (Table 5), except for the SMC Activation
subnetwork (5%). Many significant HYPs were shared be-
tween these two datasets within the Plaque Destabilization
subnetwork, (Figure 5A). Significant HYPs related to
vascular pathobiology were mapped to the V-IPN; they
included the processes of inflammation, angiogenesis,
and monocyte and macrophage differentiation. Com-
mon HYPs included the canonical transcriptional regu-
lators AP1, IRF3, REL and SPI1, nuclear receptors and
signal transducers (e.g., NCOR1, STAT1), growth fac-
tors (e.g., VEGFA), and chemoattractants (e.g., CCL5).
Cytokines involved in the differentiation and function
of macrophages and lymphocytes CSF1, CSF2, IFNG,
IL1B and IL6, were also shared between the two datasets.
A gene functional clustering analysis of common HYPs
using DAVID (http://david.abcc.ncifcrf.gov/home.jsp) re-
vealed inflammation, cytokine activity, chemotaxis and the
toll-like receptor signaling pathways as the top ranked
functional categories (Additional file 11: Table S3). This
HYP coverage analysis indicates that a shared repertoire
of biological mechanisms underlies the development of
advanced vascular lesions in both humans and mice.

Early murine vs. advanced human atherosclerosis A
comparison between Mm_Ao_16w_ApoE_CS_vs_sham and
Hs_athCA_vs_ctIMA revealed a low degree of overlapping
HYPs, ranging from 0-7% spanning all subnetworks
(Table 5). Furthermore, coverage analysis within the
Plaque Destabilization subnetwork indicated only a few
HYPs being shared between these two datasets (increased
CCL2, increased “response to hypoxia”, and increased
TGFB1) (Figure 5A). Only two additional HYPs, HIF1A
and PPARD, were shared by both datasets in other subnet-
works. This analysis suggests that despite a comparable

http://david.abcc.ncifcrf.gov/home.jsp
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atherosclerotic plaque morphology, the molecular events
leading to its development in a CS exposure murine model
are quite distinct from the molecular pathways leading to
plaque formation and destabilization in advanced human
lesions.

V-IPN-generated functional causal paths in atherosclerotic
coronary arteries of CAD patients
Hs_athCA_vs_ctIMA dataset coverage analysis showed
Platelet Activation, Plaque Destabilization, Foam Cell
Formation and EC-Monocyte Interaction as the V-IPN
subnetworks with the highest HYP coverage (Figure 4).
In contrast, SMC Activation exhibited the lowest coverage.
V-IPN mapping of significant HYPs reflected a rich set of
biological functions and molecules potentially involved in
the pathophysiology of advanced, unstable, atherosclerotic
lesions. Some of the most relevant groups are delineated
below.

Lipid metabolism A series of significant HYPs related
to lipid metabolism were captured by the V-IPN from
Hs_athCA_vs_ctIMA. They included ABCG1, LDLR,
Ox-LDL and Ox-HDL.

Platelet function and angiogenesis Platelet-related HYPs
included the thrombin receptor (F2R) and angiopoie-
tin 1 (ANGPT1). F2R is involved in the regulation of
the thrombotic response, whereas platelet release of
ANGPT1 following platelet activation may be related
to a role of platelets in maintaining vascular stability [28].
ANGPT1 has roles in vascular development and may be
involved in neovascularization within the plaque.

Intracellular signaling A number of signal transduction
molecules including MAP kinases (MAPK1, MAPK3,
MAPK8, MAP2K4, MAP2K6, MAP3K5), PI3K as well as
transcription factors (CEBPA, EGR1, GATA6) were all
predicted as significant HYPs, confirming that multiple
signaling pathways account for the behavior of the various
cell types present in the diseased atherosclerotic milieu.

Discussion
Pathobiological content of the V-IPN
Early mechanisms in vascular disease development such
as arterial cell dysfunction are amenable to controlled
experimental perturbations in animal models or in vitro
settings. In contrast, advanced atherosclerotic lesions are
challenging to recreate experimentally, which has led to
a paucity of sound data on the precise cellular and mo-
lecular mechanisms leading to plaque instability and
eventual rupture. Disease modelling approaches, such
as the implementation of the V-IPN reported here, over-
come these barriers by integrating current knowledge
and large gene expression datasets into networks
reflecting the pathobiology of interest. Each new dataset
mapping on the network has the potential to expand
our mechanistic knowledge and further refine the net-
work’s structure and content.
Impaired endothelial production of prostacyclin (PGI2)

and nitric oxide (NO) in early arterial lesions facilitate
vasoconstriction, inflammation and oxidative stress at a
time when no morphological changes in the vessel wall
have occurred [29]. Cell adhesion molecules (CAMs) are
well represented in the V-IPN as they have been exten-
sively documented in the migration of inflammatory cells
from the vascular lumen to the subendothelial space [30].
In the presence of hypercholesterolemia and a local excess
of reactive oxygen species, oxidation of lipids and lipo-
proteins leads to activation of phagocytic cells that set
in motion a cascade of inflammatory events including
the release of growth and chemotactic factors as well as
the migration and proliferation of SMCs [31]. Excess
lipid uptake by macrophages promotes their differenti-
ation into foam cells, which is the hallmark of fatty streaks
observed in early atherosclerosis. We captured the signal-
ing mechanisms responsible for these phenomena in the
SMC Activation and Foam Cell Formation subnetworks,
respectively. In humans, the final stage of atheroma for-
mation is reached after years of continuous exposure to
environmental noxious stimuli, such as cigarette smoke
and a diet rich in saturated fats and poor in antioxidants
[29,32]. The natural disease progression results in plaque
growth and positive vessel remodeling to maintain a
functional lumen size. Although atherosclerotic plaques
remain clinically silent for decades, they may evolve to
become advanced lesions that are prone to calcification,
cap thinning, hemorrhage and rupture. Platelets play a
major role in the advanced stages of plaque develop-
ment where neovascularization, thrombosis, plaque ero-
sion and rupture constitute fatal complications [33].
Interestingly, platelets also participate in early athero-
genic events by promoting EC activation and forming
microthrombi in fatty streaks [34]. These platelet-
related pathways have been captured in the Plaque
Destabilization and Platelet Activation subnetworks.
Thus, the pathobiology incorporated in the V-IPN rep-
resents a comprehensive implementation of our current
knowledge of atherogenesis, which includes the primary
cellular players, as well as the array of biological pro-
cesses involved, ranging from EC dysfunction to the for-
mation of fatty streaks, atheromas, and subsequent
plaque instability.
Comparisons of RCR-based analyses of transcriptomics

datasets from cells in culture and intact murine and
human tissues rendered a series of powerful insights.
The underlying molecular findings as well as the pathobio-
logical relevance are described in detail below and sum-
marized in Additional file 12: Table S4.
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The V-IPN captured predicted HYPs from primary HAECs
and an immortalized HAEC line that may account for the
divergent phenotypes exhibited by the two cell types
ECs uptake oxidized lipids and Ox-LDL through the
scavenger receptor LOX-1 [8]. Oxidized lipids induce
inflammatory responses mediated by NFkB, including
upregulation of cytokines, chemokines and CAMs that
result in substantial leukocyte recruitment [35,36]. Pre-
dicted HYPs from HAECs overexpressing LOX-1 or GFP
(Hs_EC_LOX1_oxLDL_vs_ct; Hs_EC_GFP_oxLDL_vs_ct)
differed significantly from the HYP profile of HAECs
stimulated by proinflammatory oxidized phospholipid,
Ox-PAPC (Hs_EC_oxPAP_vs_ct). A distinction between
the three datasets is indicated by the relatively low number
of predicted HYPs observed in Ox-LDL-treated HAECs;
5 and 14 HYPs for GFP- and LOX-1-transfected cells,
respectively, compared to 40 significant HYPs pre-
dicted from Hs_EC_oxPAP_vs_ct, a dataset generated
from HAECs treated with Ox-PAPC (Additional file 10:
Table S2). The marked differences in the number of
significant predicted HYPs from each dataset could re-
flect differing magnitudes of signaling events elicited
upon stimulating ECs with atherogenic lipids. Indeed,
Ox-PAPC, a purified component of Ox-LDL, may have
wider and more potent effects on EC biology compared
to Ox-LDL [37]. The analysis presented herein could
indicate that Ox-PAPC treatment is a more efficient
process by which to induce the molecular features that
most closely resemble chronic development of athero-
sclerotic plaques. Alternatively, the differences could
be explained by the phenotypic differences between
the cell types used and the number of human donors
represented in each dataset. Cells from dataset Hs_EC_
LOX1_oxLDL_vs_ct were obtained from an immortalized
(SV40-induced) human aortic EC line [38], whereas pri-
mary HAEC cultures from 96 donors were used to gener-
ate Hs_EC_oxPAP_vs_ct expression data [39]. Cellular
transformation of immortalized cell lines is associated
with phenotypic changes at multiple levels including
gene expression, biochemical, metabolic and prolifera-
tive capacity [40,41]. Therefore, transformed cell lines
may have more limited abilities to respond to experi-
mental induction by atherogenic lipids.

Mechanisms identified by the V-IPN discriminate between
early and late vascular lesions in ApoE−/− mice and
highlight the commonalities between advanced murine
and human atherosclerotic lesions
We have conducted RCR analysis on gene expression
datasets from a study utilizing the ApoE−/− mouse strain,
a well-established model of atherosclerosis [42]. The min-
imal overlap of common HYPs (6 total, Table 5) between
aortas of young (Mm_Ao_16w_ApoE_CS_vs_sham) and
old (Mm_Ao_78w_ApoE_vs_wt) adult ApoE−/− mice
demonstrates a substantial divergence of atherogenic
processes taking place in young ApoE−/− mice (16-week
old) exposed to CS for 30 days compared to advanced
atherosclerotic disease observed in older ApoE−/− mice
(78 weeks). Strikingly, predicted HYPs from human
(Hs_athCA_vs_ctIMA) and old murine (Mm_Ao_78w_
ApoE_vs_wt) datasets generated from intact arteries
harboring advanced atherosclerotic lesions shared a sig-
nificantly larger set of causal mechanisms (32 total HYPs,
Table 5) indicating that similar mechanisms underlie the
development of advanced atherosclerotic lesions in both
species. The pathobiological picture that emerged when
overlaying predicted HYPs from both datasets onto the
V-IPN is one where a complex series of proliferative,
apoptotic and inflammatory events driven by intracellular
transducers and transcription regulators are all taking
place simultaneously. A functional clustering analysis of
the common HYPs from both species using DAVID re-
vealed functional categories consistent with the mecha-
nisms described above (Additional file 11: Table S3).
The vast majority of this set of commonly mapped
HYPs, which were predicted increased in the human
(Hs_athCA_vs_ctIMA) and old murine (Mm_Ao_78w_
ApoE_vs_wt) datasets, should serve as an initial refer-
ence for future simulations using murine and human
vascular datasets. Our results highlight the power of the
V-IPN to assess, at the molecular level, the degree of
translatability from murine morphologic [43] and tomo-
graphic data [44] on plaque instability [45] to the human
clinical setting using transcriptomics data.

V-IPN evaluation reveals that distinct molecular pathways
contribute to atherogenesis in a CS-exposure murine
model of disease
Among the predicted HYPs from the mouse Mm_Ao_
16w_ApoE_CS_vs_sham and Mm_Ao_78w_ApoE_vs_wt
datasets, coverage analysis across the V-IPN revealed a re-
markably low degree of overlapping mechanisms across
the V-IPN subnetworks (0-3%, Table 5). This result sug-
gests that distinct biological pathways contribute to early
lesion development in ApoE−/− mice exposed to CS. A
comparison between Mm_Ao_16w_ApoE_CS_vs_sham
and Hs_athCA_vs_ctIMA also revealed a low extent of
overlapping HYPs, ranging from 0-7% spanning all sub-
networks (Table 5). Furthermore, broad coverage analysis
of the predicted HYPs indicated that the Mm_Ao_16w_
ApoE_CS_vs_sham dataset contained 52 HYPs found
across the V-IPN, whereas the Hs_athCA_vs_ctIMA data-
set contained 80 HYPs (Table 4). This result suggests that
a more diverse array of biological mechanisms underlie
advanced atherosclerotic lesion development in the human
disease. Indeed, coverage analysis specifically within the
Plaque Destabilization subnetwork indicated only a few
unique mechanisms being activated in the Mm_Ao_
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16w_ApoE_CS_vs_sham samples (e.g. decreased PPARA
and increased CD40LG) (Figure 5). A full characterization
of discrete cellular events distinguishing acute atherogen-
esis in a murine model from advanced-stage murine and
human disease further demonstrates the utility of the V-
IPN in evaluating novel datasets to better understand com-
parability between species and/or disease model systems.

V-IPN-generated causal paths were consistent with
advanced, unstable lesions, in coronary atherosclerotic
arteries of CAD patients
Unlike all other datasets used for model construction and
evaluation, Hs_athCA_vs_ctIMA represents paired gene
expression profiles from 37 human atherosclerotic coron-
ary arteries and control internal mammary arteries (IMA);
each pair was obtained from the same subject (STAGE
study) [25]. A principal component analysis (PCA) of the
gene expression profiles identified two groups of control
and diseased arteries (Additional file 13: Figure S5). All
pairs were clearly clustered, thus providing a sense of how
distinct the gene profile of advanced coronary atheroscler-
osis was, compared to the reference IMA. Pathological
evidence indicates that unstable plaques are complex le-
sions with common morphological features including a
thin fibrous cap, a large lipid core, a network of vasa
vasorum and focal inflammation [46]. HYP coverage
analysis of the human dataset (Hs_athCA_vs_ctIMA)
was distinctly consistent with mechanisms driving the
morphological features of unstable plaques. Remarkably,
the Plaque Destabilization and Platelet Activation subnet-
works exhibited the largest ORs for HYP overlap across all
datasets examined and through the six V-IPN subnet-
works (Figure 4). The ORs for the Hs_athCA_vs_
ctIMA dataset were even higher than those obtained
for Mm_Ao_78w_ApoE_vs_wt; in the Platelet Activation
(2.9 vs. 1.1) and Plaque Destabilization subnetworks
(4.1 vs. 3.4); Mm_Ao_78w_ApoE_vs_wt is a dataset from
advanced murine aortic lesions used for network con-
struction. This analysis highlights model-level coverage
of additional mechanisms unique to the human condi-
tion and validates the strength of the V-IPN to differen-
tiate expression data derived from advanced human and
murine lesions. Consistent with a decreased activity of
SMCs leading to fibrous cap thinning in lesions that are
prone to rupture, the SMC Activation network exhibited
lower coverage and ORs compared to both murine data-
sets, Mm_Ao_16w_ApoE_CS_vs_sham and Mm_Ao_78w_
ApoE_vs_wt (2.1 vs. 2.7 and 2.8) (Figure 4). Significant
HYPs categorized within pathobiological functions linked
to plaque destabilization are described below.

Lipid metabolism-related HYPs
Lipid metabolism-related predicted HYPs included ABCG1,
an ATP-binding cassette transporter that regulates
macrophage cholesterol efflux and phospholipid trans-
port to lipoprotein acceptors. Intact endothelium from
ABCG1-deficient mice has been shown to exhibit 4-fold
increases in monocyte adhesion [47]. Other lipid metabol-
ism HYPs included the low density lipoprotein receptor
(LDLR), a protein expressed by human macrophages and
known to be recycled between the plasma membrane and
lysosomes upon binding of LDL. Ox-LDL and Ox-HDL
were both highlighted as predicted HYPs. Relaxing the
concordance and richness p values from 0.05 to 0.1
resulted in a few additional predicted HYPs relevant to
atherogenesis including SP1, CD36 and NOS3. S1P re-
ceptor is expressed by ECs and it binds its ligand S1P, a
bioactive lipid with numerous functions in the immune
and cardiovascular systems. Using a lipidomics approach,
we have previously shown that CS exposure increases,
whereas cessation decreases, the levels of S1P in plasma of
ApoE−/− mice [5,22]. Furthermore, CD36 is a glycoprotein
expressed in various vascular and circulatory cell types
including monocytes, macrophages, platelets, ECs and
adipocytes. It binds collagen, thrombospondin, phospho-
lipids, and Ox-LDL. In macrophages of human athero-
sclerotic lesions, CD36 acts as a receptor for Ox-LDL and
a transporter of long-chain fatty acids. CD36-deficient pa-
tients were shown to have hypertriglyceridemia [48],
whereas patients with acute coronary syndrome exhibited
6-fold higher levels of CD36 in circulating monocytes
compared to healthy controls [49]. Taken together, these
data demonstrate that the scavenger receptor CD36 is in-
volved not only in pro-atherogenic mechanisms but also
in the development of acute coronary syndrome symp-
toms, which are primarily caused by plaque rupture at
sites of thrombus formation.

HYPs related to platelet activation and clot formation
The human advanced coronary lesion dataset (Hs_athCA_
vs_ctIMA) displayed a high degree of coverage and en-
richment within the Platelet Activation subnetwork,
highlighting the involvement of platelets in thrombus
formation and plaque instability. CD36 expression on
the surface of platelets serves as an adhesion molecule
and a receptor for thrombospondin and Ox-LDL, which
was also a predicted HYP mapped to the V-IPN. CD36
has been demonstrated to play a role in platelet activa-
tion and thrombus formation in experiments where
immobilized thrombospondin and Ox-LDL activate
platelets via CD36 through a Syk kinase-dependent sig-
naling mechanism [50]. In agreement with the multiple
functions of CD36, the CD36 node is present in three
V-IPN subnetworks, Platelet Activation, EC-Monocyte
Interaction and Plaque Destabilization; CD36 was a
predicted HYP in both the murine and human dataset.
A predicted HYP unique to the human dataset was the
thrombin receptor. The first step of the coagulation
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cascade involves cleavage of coagulation factor II to form
thrombin. Protease-activated receptors (PARs [FR2]) are
activated in response to TF-VIIa-Xa, a ternary complex
that is also linked to inflammation within plaques prone
to rupture [51]. Plaque vulnerability has been shown to be
correlated with PAR1 expression in ApoE−/− mice [52].

Angiogenesis-related causal paths were captured by the
V-IPN
Other significant HYPs predicted by the datasets included
NOS3 and ANGPT1, both of which regulate vascular
tone and permeability, as well as blood vessel matur-
ation and stability. Intra-plaque neovascularization may
lead to hemorrhage, fissure development and plaque
rupture. The neovascularization process that occurs in
advanced lesions [53] indicates that various pro-angiogenic
factors are being secreted within the plaque and that
signaling pathways and associated molecules are all op-
erating in advanced atherosclerotic lesions. In addition
to ANGPT1, vascular endothelial growth factor A (VEGFA),
HIF1A, a master regulator of a cellular homeostatic re-
sponse to hypoxia that activates transcription of genes
involved in angiogenesis, PTAFR and STAB1, were also
identified as significant HYPs and potentially modulated
mechanisms. STAB1, also known as CLEVER-1, is a
glycoprotein involved in scavenging, angiogenesis and
cell adhesion, and has also been shown to mediate
transmigration of leukocytes [54].

Model limitations
RCR-based models do not operate with integrated feed-
backs and non-linear elements that contribute to regu-
lating a dynamic output. In order to make accurate
predictions, mathematical models incorporate feedback
elements tuned to match phenotypic constrains (e.g.,
blood pressure values). In RCR, all biological feedbacks
are implicitly integrated in the datasets. RCR-based
models do not dynamically model the regulatory processes
controlling biological pathways. RCR-based models are
tools to extract biological processes embedded in large sets
of molecular data driven by specific experimental pertur-
bations, and to contextualize those findings within a body
of knowledge.

Conclusion
In summary, we have demonstrated that RCR analysis of
large gene expression datasets coupled with HYP map-
ping to the V-IPN was able to discern the mechanistic
variability underpinning the development of atheroscler-
otic lesions in a variety of experimental and species con-
texts. The mapping of predicted HYPs to the V-IPN was
able to successfully distinguish between early and ad-
vanced murine lesions, as well as advanced murine and
human atherosclerosis, thus pointing to a distinct subset
of mechanisms that are translatable to the human condi-
tion. Importantly, our computational model proved to be
a powerful tool to further our pathophysiological under-
standing of vascular inflammation, atherogenesis and
plaque destabilization. The dynamic nature of the model’s
structure allows for further refinement as additional data-
sets become available and represents a useful tool for the
interrogation of cross-species translatability in the context
of cardiovascular disease.

Glossary
Reverse Causal Reasoning (RCR): A computational meth-
odology for identifying potential upstream controllers
leading to differential molecular profiles.
Selventa Knowledgebase (SK): A network representing a

working set of knowledge fit for a specified use. The SK is
used as a substrate for RCR. It encodes prior scientific
knowledge as a network of nodes that are connected
by edges.
Biological Expression Language (BEL): The knowledge

representation language used to build the SK.
Node: A biological entity or process in the SK.
Edge A causal relationship (e.g., increase, decrease,

subset) connecting two nodes in the knowledgebase.
State Change (SC): A differential measurement across

a sample group (e.g., treated and control) that is con-
verted to a discrete value of increase, decrease, or no
change, based on two statistical metrics: richness and
concordance.
Hypothesis (HYP): A small, directed causal network

containing an upstream node representing a biological
entity or process connected by a causal increase, decrease
or ambiguous edges to downstream nodes representing
measured entities.
HYP upstream node: A controller of downstream nodes

in a HYP and a potential explanation for state changes
(SC) mapped to the downstream nodes.
HYP downstream nodes: Nodes in a HYP mapped to

quantities measured in the dataset.
HYP causal edges: The causal relationships (i.e., increases

or decreases) connecting the HYP upstream node to
each downstream node.
Richness: A measure of the relevance of a HYP to the

changes observed in an experimental dataset.
Concordance: A measure of the consistency of the direc-

tion of the changes observed in an experimental dataset.
Coverage (sensitivity): An estimate of the fraction of

possible HYPs in a subnetwork that are significant in a
dataset. Coverage is a measure of HYP enrichment.
Odds ratio (OR): The probability of having significant

dataset HYPs within a network. The higher the OR, the
better the network encompasses the biology embedded
in a given dataset.
X: Protein abundance of X
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taof(X): Transcriptional activity of X
exp(X): RNA expression of X
gtpof(X): GTP-bound activity of X
kaof(X): Kinase activity of X
paof(X): Phosphatase activity of X
catof(X): Catalytic activity of X
X P@Y: Abundance of X phosphorylated at Y
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Additional file 2: Supplementary Methods.

Additional file 3: Six .XGMML and six .XLS files of all V-IPN subnet-
works. The network architecture may be viewed from the XGMML files
using freely available network visualization software such as Cytoscape
(http://www.cytoscape.org/).

Additional file 4: Figure S1. Frequency rate of nodes and HYPs across
the six subnetworks. As the number of events increases, the frequency of
those occurrences in all networks decreases. Twenty five HYPs were
present in all subnetworks at a simultaneous event rate of 4, whereas a
single HYP, Ox-LDL, was present once in all networks.

Additional file 5: Figure S2. Node overlap between subnetworks.
Table A shows the number of overlapping nodes between all six of the
individual subnetworks. Table B shows, as a percentage, the degree of
node overlap between the six subnetworks. Colored cells reflect the degree
of overlap from low (dark blue) to high degrees of overlap (dark red).

Additional file 6: Table S1. Common HYP coverage of V-IPN and cell
proliferation subnetworks by a dataset from NHBE cells (Hs_NHBE_CD-
Kinh_rel_vs_blk_8h) used as a negative control. (↑) predicted increased,
(↓) predicted decreased.

Additional file 7: Datasets_Analysis_Dashboards.

Additional file 8: Figure S3. A. The HYP with the upstream node
macrophage activation scored for the Mm_Ao_78w_ApoE_vs_wt dataset.
This HYP contains 23 measured RNA abundance nodes, represented as
circles colored by differential expression (red = significantly increased,
green = significantly decreased, white = no significant change). A total of
18 differentially expressed RNAs mapped to the HYP network, including
15 supporting increased mechanism activity (solid arrows) and three
supporting decreased activity (dotted lines). B. The HYP with the
upstream node Ccl5 scored for the Mm_Ao_78w_ApoE_vs_wt dataset.
This HYP contains 41 measured RNA abundance nodes, represented as
circles colored by differential expression (red = significantly increased,
green = significantly decreased, white = no significant change). A total of
24 differentially expressed RNAs mapped to the HYP network, including
19 supporting increased mechanism activity (solid arrows) and five
supporting decreased activity (dotted lines). C. The HYP with the
upstream node monocyte adherence, scored for the
Mm_Ao_78w_ApoE_vs_wt dataset. This HYP contains 87 measured RNA
abundance nodes, represented as circles colored by differential
expression (red = significantly increased, green = significantly decreased,
white = no significant change). A total of 36 differentially expressed RNAs
mapped to the HYP network, including 33 supporting increased
mechanism activity (solid arrows) and three supporting decreased activity
(dotted lines). D. The HYP with the upstream node kaof(Chuk), scored for
the Mm_Ao_78w_ApoE_vs_wt dataset. This HYP contains 44 measured
RNA abundance nodes, represented as circles colored by differential
expression (red = significantly increased, green = significantly decreased,
white = no significant change). A total of 25 differentially expressed RNAs
mapped to the HYP network, including 23 supporting increased
mechanism activity (solid arrows) and two supporting decreased activity
(dotted lines).

Additional file 9: Figure S4. Coverage and OR of the dataset
Hs_athCA_vs_ctIMA (GSE40231) across other network models.
Subnetworks with less than 10 HYPs were not included. IPN:
Inflammatory Process Network, TRAG: Tissue Repair and Angiogenesis.
DACS: DNA damage, Autophagy, Cell death (apoptosis and necroptosis),
and Senescence.

Additional file 10: Table S2. Transcriptomics-based evaluation of the
effects of oxidative stimuli on primary HAEC cultures vs. immortalized
HAECs.

Additional file 11: Table S3. DAVID functional clustering of common
HYPs between Mm_Ao_78w_ApoE_vs_wt and Hs_athCA_vs_ctIMA. (↑)
predicted increased in both datasets; (↓) predicted decreased in both
datasets.

Additional file 12: Table S4. Summary of findings and insights
provided by each dataset evaluated by RCR and the V-IPN.

Additional file 13: Figure S5. Principal component analysis (PCA) of
samples from Hs_athCA_vs_ctIMA (GSE40231). PCA plot A illustrates the
principal components of the gene expression profiles of 37 pairs of
samples from the atherosclerotic coronary arteries and control internal
mammary arteries from the STAGE study. Although the separation
between atherosclerotic tissue and control mammary artery is relatively
clear, the pairing of the samples (each pair from one patient) empowers
the downstream analysis as illustrated when looking at the distance
between the pairs of samples. PCA plot B highlights the relationships
between the paired samples, demonstrating that for the samples that
may look at the borderline between the two groups (ATHERO and CTRL),
the difference between the atherosclerotic vessel and its control artery is
still very clear, and in the same direction as for the other pairs.
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