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Abstract

Background: Nutrigenomics elucidate the ability of bioactive food components to influence gene expression,
protein synthesis, degradation and post-translational modifications.

Resveratrol (RSV), natural polyphenol found in grapes and in other fruits, has a plethora of health benefits in a
variety of human diseases: cardio- and neuroprotection, immune regulation, cancer chemoprevention, DNA repair,
prevention of mitochondrial disorder, avoidance of obesity-related diseases. In skeletal muscle, RSV acts on protein
catabolism and muscle function, conferring resistance against oxidative stress, injury and cell death, but its action
mechanisms and protein targets in myogenesis process are not completely known. Myogenesis is a dynamic
multistep process regulated by Myogenic Regulator Factors (MRFs), responsible of the commitment of myogenic
cell into skeletal muscle: mononucleated undifferentiated myoblasts break free from cell cycle, elongate and fuse to
form multinucleated myotubes. Skeletal muscle hypertrophy can be defined as a result of an increase in the size of
pre-existing skeletal muscle fibers accompanied by increased protein synthesis, mainly regulated by Insulin Like
Growth Factor 1 (IGF-1), PI3-K/AKT signaling pathways.

Aim of this work was the study of RSV effects on proliferation, differentiation process and hypertrophy in C2C12
murine cells.

Methods: To study proliferative phase, cells were incubated in growth medium with/without RSV (0.1 or 25 pM)
until reaching sub confluence condition (24, 48, 72 h). To examine differentiation, at 70% confluence, cells were
transferred in differentiation medium both with/without RSV (0.1 or 25 uM) for 24, 48, 72, 96 hours. After 72 hours
of differentiation, the genesis of hypertrophy in neo-formed myotubes was analyzed.

Results: Data showed that RSV regulates cell cycle exit and induces C2C12 muscle differentiation. Furthermore, RSV
might control MRFs and muscle-specific proteins synthesis. In late differentiation, RSV has positive effects on
hypertrophy: RSV stimulates IGF-1 signaling pathway, in particular AKT and ERK 1/2 protein activation, AMPK protein
level and induces hypertrophic morphological changes in neo-formed myotubes modulating cytoskeletal proteins
expression.

Conclusions: RSV might control cell cycle promoting myogenesis and hypertrophy in vitro, opening a novel field of
application of RSV in clinical conditions characterized by chronic functional and morphological muscle impairment.
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Background

Skeletal muscle differentiation

Skeletal muscle differentiation is a dynamic multistep
process that involves two simultaneous phenomena. The
first is the induction of muscle-specific genes expression
by Myogenic Regulatory Factors (MRFs), such as Myf-5,
MyoD, Myf-6 and Myogenin [1-8] (Figure 1A).

The second phase is the commitment of myogenic
cells into skeletal muscle cells: mononucleated undiffer-
entiated myoblasts break free from the cell cycle, cease
to divide, elongate and fuse into multinucleated myo-
tubes [1-3,9-12] (Figure 1A). A differentiation marker in
neo-formed myotubes is the transcription induction of
structural muscle-specific genes, such as Myosin Heavy
Chain (MyHC), the major structural protein in myotubes
[9-11].

At the molecular level, several positive and negative
cell cycle regulators have been identified. Progression
through cell cycle phases is dependent on consecutive
activation and inhibition of phosphoproteins by cyclin-
dependent kinases (CDKs) complexed with their activa-
tors cyclins [1,4,5,13].

Furthermore, cytoskeletal reorganization occurs before
and after myoblast fusion: a number of studies indicate that
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N-Cadherin (N-cad), a member of calcium-dependent cell
adhesion molecules, and Alpha-Sarcomeric Actinin (a-act),
an actin binding protein, have a central role in these cyto-
skeletal reorganizations [14,15].

Further, AMP-activated protein kinase (AMPK) ap-
pears to act as a master regulator of skeletal muscle me-
tabolism and as a negative feedback control to maintain
muscle hypertrophy [16].

When the cellular AMP/ATP ratio is high, AMPK is acti-
vated, inhibiting ATP-consuming anabolic pathways and
promoting ATP-producing catabolic pathways: as result
protein synthesis and cell growth are suppressed [16-18].

Muscle hypertrophy

Skeletal muscle is a dynamic tissue that can either in-
crease or decrease its mass in response to a variety of
environmental causes such as exercise, nutrients and
starvation.

Two major signaling pathways have been identified
that control these processes through two distinct posi-
tive and negative mechanisms respectively, mediated by
either Insulin Like Growth Factor 1 (IGF-1) or Growth
and Differentiation Factor (GDF8), otherwise known as
Myostatin [19,20].
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Figure 1 Stages of myogenesis and experimental study design. A) Schematic illustration of skeletal muscle differentiation. B) Description of
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Skeletal muscle hypertrophy can be defined as an
overall increase of muscle mass, as a result of an en-
largement of the size of pre-existing skeletal muscle
fibers accompanied by enhanced protein synthesis
without an apparent increase in the number of myofi-
bers [19-21].

Insulin Growth Factor-1 (IGF-1) is among the best
characterized muscle growth promoting factors.
Mainly produced in the liver under the control of the
Growth Hormone (GH), its expression is located also
in the skeletal muscle, suggesting a paracrine/auto-
crine role of IGF-1 in positively regulating muscle
growth. IGF-1 acts through direct interaction with its
own receptor IGF-1 R, a tyrosine-kinase leading to
the final activation of AKT by the generation of
phosphatidylinositol-3,4,5-triphosphates (PIP3) [20,22-24].

Many studies have established that IGF-1 strongly acti-
vates muscle hypertrophy by stimulating the PI3-Kinase/
AKT pathway. IGF can activate any of the three AKT
isoforms, and currently both AKT1 and AKT2 have been
implicated in myogenesis. Protein levels of AKT1 re-
mains constant from proliferating to differentiating cells,
whereas the levels and activity of AKT2 increase with
differentiation [25]. AKT, in turn, activates the down-
stream kinase mTOR, which stimulates p70 S6 kinase
and other effectors, ultimately culminating in enhanced
protein synthesis [22-24].

Resveratrol properties

Resveratrol (RSV) (3,5,4 -trihydroxystillbene) belongs to
the huge group of polyphenols found naturally in a var-
iety of plants, especially in the peel of grapes and pea-
nuts. RSV has received important attention because of a
number of reports highlighting its benefits in vitro and
in vivo in a variety of human disease, including cardio-
and neuroprotection, immune regulation, cancer chemo-
prevention, DNA repair, Sirtuins activation, prevention
of mitochondrial disorder, avoidance of obesity-related
diseases [26-40].

The versatility of RSV lies in its diverse targeting of
membrane and intracellular receptors, signaling mole-
cules, biogenesis enzymes, oxidative systems, DNA-
repair mechanisms and transcription factors, as well
as in the wide range of possible RSV-induced effect,
including cellular proliferation, cell-cycle arrest, differ-
entiation and cell death [26,27,29].

To elucidate the underlying mechanism of RSV ac-
tion, much research has been focused on different tis-
sues and cell types such as myocardial cells and
hepatocytes [30-32,37]. But, since RSV has been
shown to act on skeletal muscle metabolism and
function [41-45], less attention has been given to its
effects on myogenesis [46].
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In vitro model for myogenesis study

C2C12 murine immortalized cell line provides a good
in vitro model for the study of the major steps of myo-
blasts proliferation and differentiation [6,47-50].

In this cellular model, undifferentiated myoblasts are
recognizable as flat, fusiform or star-shaped cells, which ap-
peared scattered on the substrate and rigorously mononu-
cleated. After reaching confluence or 24 hour after serum
removal, C2C12 cells are considered myoblasts in an early
differentiation stage and they are characterized by changes
in myoblasts orientation, lengthening and thickening. Later,
confluent mononucleated myocytes begin to fuse forming
multinucleated myotubes (intermediate differentiation),
positive for the characteristic muscle-specific protein
MyHC. Myotubes become wider and longer over the next
few days as additional myocytes fusion. Multinucleated and
large myotubes appear to form a network with numerous
nuclei arranged in multiple linear arrays (late differenti-
ation) (Figure 1A).

In the present work we investigated potential mecha-
nisms mediating the effects of two different doses of
Resveratrol (0.1 pM and 25 pM) on cell cycle regulation,
skeletal muscle differentiation and during the genesis of
hypertrophy in C2C12 myoblastic cells (Figure 1B).

Methods

Materials

Mouse C2C12 myoblastic cells were purchased from the
European Collection of Animal Cell Cultures (ECACC). Re-
agents were purchased from Sigma Chem. (St. Louis, MO,
U.S.A.). Primary antibodies: anti-MyoD (C-20), anti-Myf-5
(C-20), anti-Akt1l/2 (N-9), anti-MyHC (H-300), anti-p21
(C-19), anti-Myogenin (D-10), anti-Calnexin (H-70), anti-
GDF-8 (N-19), anti-IGF-1 (G-17), anti-N-Cadherin (H-63),
anti-p120 (H-90), anti-AMPKa1/2 (H-300), anti-pERK1/2
(E-4), anti-ERK1 (K-23), anti-ERK2 (C-14), anti-p53 (FL-
393) monoclonal or polyclonal primary antibodies and the
peroxidase-conjugated or rhodamine-conjugated secondary
antibodies were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, U.S.A.). Alpha-Sarcomeric Actinin pri-
mary antibody was purchased from Sigma Chem. Co. (St.
Louis, MO, USA). Anti-phospho-Akt (Ser 473)(D9E) and
phospho-AMPKa (Thr 172) (40H9) were purchased from
Cell Signaling Technology (Danvers, MA, U.S.A.).

In particular, Resveratrol was purchased from Sigma
Chem. (St. Louis, MO, U.S.A.) and, according to the
manufacturer’s instruction, it was dissolved in sterile
water.

Experimental procedures

C2C12 cells were maintained at 37°C in humidified 5%
CO2 atmosphere in a growth medium containing DMEM
(Dulbecco Modified Eagle Medium) supplemented with
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20% (v/v) FBS (Fetal Bovine Serum), 1% penicillin-
streptomycin and 1% L-glutamine up to 70% confluence.

During proliferation phase, cells, seeded at 6 x 107
cells/cm?, were maintained in mitogen-rich growth
medium (GM) as single myoblasts. These proliferating
cells were treated with RSV 0.1 and 25 pM. These two
doses represent the optimal concentrations to induce ef-
fects on differentiation process without any significant
toxicity for cells [42,46]. This observation was validated
by our growth curve and cell viability test.

According to RSV half-life, medium was changed
every 8 hours.

Mouse myoblast C2C12 immortalized cell line is a
subclone of C2 myoblasts, which spontaneously fuse and
differentiate into multinucleated myotubes as a result of
both the achievement of myoblast confluence (as in the
case of cells seeded in growth medium with 20% FBS =
GM) and the removal of the serum growth factors (as
for cells transferred in DMEM supplemented with 1%
HS, Horse Serum =DM) [6,47-50]. Figure 1B explains
experimental study design in each phase of the protocol,
with cell confluence percentage, treatments start time
and duration.

RSV action was evaluated by Real-Time-PCR, Western
Blot and Immunofluorescence analysis during prolifera-
tion phase and in the induction, progression and termin-
ation of myogenesis. RSV effects on hypertrophy process
were also studied.

Growth curve and cell viability test
To study RSV action on C2C12 myoblast proliferation,
we performed growth curve assay as described [51].

C2C12 myoblasts were plated in 60 mm x 15 mm cul-
ture dishes at 40% confluence and grown in GM with or
without RSV (0.1 and 25 pM). Medium was changed
every 24 h and the experiment lasted until control cells
achieved 70% of confluence (3 days) (Figure 1B).

Every day, the cells were trypsinized and stained with
trypan blue. Both viable (non-stained) and non-viable
(blue) cells were counted using a hemacytometer. The
total cell count average values for each single day were
used to plot a growth curve for myoblasts treated with
RSV (0.1 and 25 pM) and control (GM and DM). Cell
viability was calculated by dividing the non-stained vi-
able cell count by the total cell count.

In addition, every day morphological changes were
examined.

Real-Time-PCR (RT-PCR) array analysis

RT%.PCR Array plates produced by SABiosciences
(SABiosciences Corporation, Frederick, MD 21703 USA)
were utilized to simultaneously analyze the expression
levels of a panel of genes.

Page 4 of 15

We studied the following genes expression during pro-
liferation phase (24 h): Cyclin A2, Cyclin B1, Cyclin C,
Cyclin D1, Cyclin E1 and Cyclin F, using Mouse Cell
Cycle RT? Profiler™ PCR Array, as described [52].

Total RNA was isolated from C2C12 using the RNeasy
Plus Mini Qiagen Kit (Qiagen GmbH, Germany). Total
RNA (1 pg) was reverse transcribed using RT> First Strand
Kit (SABiosciences Corporation, Frederick, MD 21703
USA). The reverse transcripts were used as templates for
analysis of gene expression level using RT*> — PCR Arrays
plates according to the manufacturer’s instructions. Each
sample was run in triplicate. The expression level of the
housekeeping genes chosen for normalization in the thresh-
old cycle (Ct) for each experimental conditions and then
the fold-change (AACt) for each gene from treated group
compared to the control group (GM control time 0), was
calculated. If the AACt is greater than 1, the result may be
reported as a fold up-regulation. If the AACt is less than 1,
the result may be reported as a fold down-regulation.

Electrophoretic techniques and immunoblotting analysis
C2C12 myofibers were homogenized in lysis buffer
(50 mM Tris/HCI, pH 7.4, 150 mM NaCl, 1% Triton X-
100, 1 mM sodium orthovanadate (Na3VO,), 1 mM
EDTA, 1 mM PMSE 1 mg/ml aprotinin, 1 mg/ml leu-
peptin, 1 mg/ml pepstatin) and shaked for 1 h at 4°C.
Detergent-insoluble material was removed from the cell
suspension by centrifugation at 12,000 x g for 30 min.
Proteins content was quantified using Bradford method.
Aliquots of 30 pg supernatant proteins from the differ-
ent samples were resolved by SDS-PAGE. Electropho-
resed proteins were transferred to nitrocellulose
membrane (Protran®, Whatman® Schleicher & Schuell)
as described [53]. The membranes were incubated with
specific antibodies and then incubated with HRP-
coniugated anti species-specific secondary antibodies.
Immunoreactive bands were visualized by an enhanced
chemiluminescence method (Amersham Pharmacia Bio-
tech, Piscataway, NJ, USA) The membrane was stripped
and reprobed with an antibody o-calnexin to confirm
equal protein loading per sample.

Quantitative measurement of immunoreactive bands
was performed by densitometric analysis using the Scion
image software (Scion Corporation, Frederick, MD,
USA).

Data were then presented as fold change (FC) of the
control.

Immunofluorescence analysis

For indirect immunofluorescence, C2C12 cells were
fixed in 4% paraformaldehyde, permeabilized with 0.2%
Triton X-100, and blocked with PBS containing 1% bo-
vine serum albumin. Cells were then immunostained
with specific antibodies rhodamine-conjugated (Santa
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Cruz Biotechnology, California, USA) and nuclei re-
vealed with DAPI staining. Cells were observed using
fluorescence Leica DM IRE2 microscopy and Nikon
Eclipse 50 microscopy and images of myotubes
were captured using respectively IM50 software and
Nis-Elements D 4.00 software (Leica Microsystems,
Switzerland and Nikon Instruments Europe BY,
Netherlands) for size comparison. Data were displayed
and analyzed using Adobe® Photoshop® CS4.

For myotubes length and diameter size, the average
measurement on each slide was generated from approxi-
mately 150 myotubes. 10 fields were randomly chosen
and all MyHC-positive multinucleated cells containing
at least 3 nuclei in each field were measured. The data
were then converted to percentage increase of the con-
trol (DM). To quantify the differentiation and fusion of
C2C12 cells after treatments, we calculated the fusion
index as the average number of nuclei in of MyHC-
positive multinucleated cells above total nuclei. In the
same way, the data were then converted to percentage
increase of the control (DM).

Statistical analysis

All experiments were performed three times. For array,
immunoblotting and Immunofluorescence analysis, stat-
istical evaluations were performed by t-test. Data are
presented as the mean + SD. Results were considered
statistically significant if p < 0.05.

Results

Proliferative phase

In proliferative phase, we investigated MRFs protein syn-
thesis and morphologic features in C2C12 cells after ex-
posure to 0.1 or 25 uM of RSV for different time periods
(Figure 1B). We used a control in which RSV was not
added to the medium (GM or DM).

We first examined RSV action on C2C12 proliferation
rate. Every day, growth time and morphologic feature
changes of C2C12 were evaluated.

Proliferation curve, in Figure 2A, showed that RSV
treatment induced a decrease of cell division with re-
spect to untreated control cells (GM). This effect was
dose-dependent: RSV 0.1 uM had a minimal effect, com-
parable to untreated cells, while the highest concentra-
tion, RSV 25 uM, showed an important action on
proliferation control. (Day 1: DM vs GM p < 0.05; Day 2:
DM vs GM p<0.05. Day 3: DM vs GM p <0.05, RSV
25 pM vs GM p < 0.05).

In Figure 2B, viability assay graph showed the absence
of cell mortality in all treatment conditions.

A very important support to those data were the mor-
phological changes observed in cells treated with 25 uM
of RSV: the cells seem to lose their characteristic circular
shape, typical of the active proliferation phase, to achieve
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a new elongated morphology. Phase contrast images,
collected at day 3 of growth curve, confirmed those
morphological features (Figure 2C): morphological
changes in cell size and shape are compared in detail,
emphasizing the analogy between DM cells (differenti-
ation control) and 25 uM RSV-treated cells.

Most Cyclins expression seems to decrease with the
onset of differentiation, when cells are blocked in G1
phase [1]. To achieve additional confirmation of data ob-
tained from the growth curve, viability test and morpho-
logical studies, we performed quantitative Real-Time-
PCR during proliferation phase (24 h), to prove an actual
decrease in Cyclins expression levels (Figure 3A). As
shown in the panel, RSV treatments cause a significantly
down-regulation in Cyclins expression, following DM
control condition, in respect to GM time 0 control (Cyc-
lin A2: DM vs GM TO p <0.01; RSV 25 pM vs GM TO
p <0.01. Cyclin B1: DM, RSV 0.1, RSV 25 uM vs GM TO
p £0.01. Cyclin D1: DM vs GM TO p <0.01; RSV 25 uyM
vs GM TO p<0.01. Cyclin E1: RSV 0.1 pM vs GM TO
p<0.01; RSV 25 uM vs GM TO p <0.01. Cyclin F: DM,
RSV 0.1, RSV 25 uM vs GM TO p < 0.01).

To verify the absence of RSV cytotoxic effects on
C2C12, we evaluated in Western Blot analysis the pro-
tein levels of the apoptotic marker p53 [54] during pro-
liferation phase (Figure 3B), showing how RSV
treatment does not modify p53 protein amount in re-
spect to GM control condition. Phase contrast images in
Figure 3C, collected at 24 h and 72 h of proliferative
phase, illustrated the morphological changes in RSV-
treated cells with respect to control.

Furthermore, to corroborate RSV action on cell cycle
regulation, we measured the protein content of cell cycle
regulator p21 during proliferative phase. RSV treatment
(both 0.1 and 25 pM) seems to cause a significant de-
crease in p21 protein levels with respect to control (DM
vs GM p £0.01; RSV 0.1 vs GM pM p <0.01; RSV 25 pM
vs GM p <0.01) (Figure 3B). The lower protein content
in RSV-treated cells with respect to growth control
(GM) is comparable to differentiation control cells
(DM). Since p21 promotes cell cycle exit and induces
cellular differentiation [5,55,56], we might suppose that
RSV could induce cell cycle arrest and differentiation.

To investigate RSV action on differentiation induction,
we determinated protein amount of two early MRFs:
MyoD and Myf-5, key markers of differentiation induc-
tion [1-8].

Figure 4A elucidated the significant increase of Myf-5
and MyoD protein levels after RSV stimulation (Myf-5: DM
vs GM p<0.01; RSV 25 pM vs GM p<0.01; RSV 0.1 vs
GM p <0.05) (MyoD: DM vs GM p <0.01; RSV 25 uM vs
GM p <0.05).

In addition, we studied morphological changes in myo-
blasts through MyoD and Myf-5 Immunofluorescence
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analysis during proliferative phase (24 h, Figure 4B-C).
Knowing that MyoD and Myf-5 represent important
markers for early myogenesis stage and regulates skeletal
muscle commitment [6,7], these results prove that RSV can
advance differentiation induction.

The absence of resveratrol cytotoxicity, associated with a
decrease in mRNA expression of most important Cyclins, a
decrement of proliferation rate and morphological changes
coupled with a significant rise in early MRFs protein ex-
pression led us to suppose that this polyphenol could pro-
mote differentiation induction through cell cycle control.

RSV seems to be able to direct the acquisition of a
specific myogenic phenotype: from undifferentiated
myoblasts to myocites [2,8].

Differentiation induction and progression

Sequential expression of MRFs at a specific stage is pivot-
ally important for the success of the myogenesis
[1-3,6,8,11,12].

To study differentiation induction and progression, we
analyzed protein levels of main MRFs and skeletal pro-
teins during early (24 h), intermediate (48—72 h) and late
(96 h) differentiation by Western Blot.

Figure 5A shows Myf-5 protein levels during differen-
tiation phases: in RSV-treated cells protein content of
this early MRFs decreased during differentiation pro-
gression until it appeared undetectable (72 h). Instead,
in DM condition Myf-5 protein levels diminished but
more slowly than in RSV-treated cells and at 72 hours
are still detectable (RSV 0.1 uM vs DM 24 h p <0.05;
RSV 0.1 vs DM 48 h p<0.05; RSV 25 pM vs DM 48 h
p <£0.05). RSV treatment might anticipate the protein ex-
pression of early MRFs.

Myogenin protein levels, in Figure 5A, confirmed how
both 0.1 and 25 pM RSV treatments could advance the
expression of early MRFs in respect to DM control, pro-
moting differentiation progression (RSV 25 puM vs DM
48 h p<0.05).



Montesano et al. Journal of Translational Medicine 2013, 11:310
http://www.translational-medicine.com/content/11/1/310

A AA Cyclins Expression
2
1
0 9
6]
3 :
e
2 g
§
-3
-4
Q\Q *\(‘ » *\Q *\(‘ N
C© ©' 3 O <" )
b o < b S o
p53
B 1,5

FC

N
N & &

P21 [ ——] p21
caln [— 15 -

CHEED

RSV01 RSV25 DM

FC

Figure 3 RSV action on cell cycle regulation in proliferation
phase. A) Real-Time-PCR during proliferation phase (24 h), proves
an actual decrease in Cyclins expression levels after treatment with
RSV, in a similar way to DM condition, in respect to GM time 0 con-
dition. Significance: * p £0.05; ** p < 0.01. B) p53 Western Blot ana-
lysis, during proliferation phase, shows how RSV treatment does not
modify p53 protein amount in respect to GM control condition. p21
Western Blot analysis reveals a significant decrease in protein con-
tent in both 0.1 and 25 uM RSV-treated cells, following DM trend, in
respect to growth control GM. Significance: * p < 0.05; ** p < 0.01.
Representative immunoblots of analyzed proteins are shown.

C) Phase contrast images collected at 24 and 72 h of proliferative
phase show morphological changes mentioned in Figure 2.
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For myotubes to form, fusion-competent myoblasts
need to migrate towards each other or towards existing
myotubes, align and establish close cell-cell contacts so
that membranes can fuse [57-59]. N-Cadherin is of ut-
most importance in this process [14,60]. RSV revealed
an imperative action on protein levels of key structural
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proteins N-Cadherin, p120 Catenin, associated with M-
Cadherin activity, and Alpha-Sarcomeric Actinin pro-
teins. Blot in Figure 5A elucidates this effect: during all
differentiation stages, RSV treatment significantly in-
creased protein content of specific skeletal proteins re-
sponsible of neo-myotubes formation (N-Cadherin: RSV
0.1 uM vs DM 24 and 48 h p <0.05; RSV 25 uM vs DM
24 and 48 h p <0.05); (p120: RSV 0.1 uM vs DM 72 and
96 h p<0.05 RSV 25 uM vs DM 72 and 96 h p <0.05);
(Alpha-Sarcomeric Actinin: RSV 01 pM vs DM
24,72,96 h p<0.05 RSV 25 puM vs DM 24,48,72,96 h
p <0.05).

Graph in Figure 5A illustrates 0.1 uM and 25 pM RSV
effects on MyHC protein expression during all differen-
tiation phases. In particular, 25 pM RSV caused an im-
portant increase in MyHC protein content in respect to
DM (RSV 25 uM vs DM 48 and 72 h p <0.05).

Immunofluorescence analysis after 48 hours of differ-
entiation (Figure 5B-C) provided an additional prove of
RSV role in differentiation progress: images of MyHC
(Figure 5B) and Alpha-Sarcomeric Actinin (Figure 5C)
protein expression showed a difference in the number of
cells positive for these two structural proteins. Moreover,
Figure 5B-C illustrates the highest density of MyHC and
Alpha-Sarcomeric Actinin positive cells in 25 pM RSV-
treated cells in respect to DM. In RSV conditions cells
became more elongated and assumed a bipolar morph-
ology, showing the presence of early myoblasts clusters,
in respect to control.

IGF-1 represents the major anabolic factor in skeletal
muscle, promoting mitogenic and anabolic effects
through the activation of the AKT signaling pathway. Its
biological activity requires its binding to a specific recep-
tor (IGF-1 R) [61,62]. IGF-1 R is synthesized as a single
polypeptide chain (Pro IGF-1 R) that is processed to ma-
ture receptor. As shown in Figure 6A, RSV caused a ten-
dency to increase levels of Pro-IGF-1 R protein and IGF-
1 R protein during all analyzed differentiation time (Pro-
IGF-1 R: RSV 0.1 uM vs DM 24 h p <0.01; 48 h p < 0.05;
RSV 25 uM vs DM 24 h p<0.05) (IGF-1 R: RSV 0.1 uM
vs DM 24 h p <0.05).

As expected, RSV stimuli increases the phosphoryl-
ation state representing activated AKT (Figure 6B): in
particular, RSV 0.1 pM at 96 h of differentiation and
RSV 25 uM at 72 and 96 h after differentiation induction
(pAKT/AKT: RSV 0.1 pM vs DM 96 h p <0.05; RSV uM
vs DM 72, 96 h p <0.05).

Widely described in literature is the important role of
ERK 1/2 MAP kinases signaling in muscle differentiation
and cell fusion to induce hypertrophy [63,64]. Protein
quantification in Figure 6C shows RSV action on ERK 1/
2 activation during differentiation (pERK1/ERK: RSV
0.1 uM vs DM 24 h, 48 h, 72 h, 96 h p<0.05; RSV
25 uM vs DM 24 h, 48 h, 72 h p <0.05) (pERK2/ERK2:
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RSV 0.1 pM vs DM 48 h, 72 h, 96 h p<0.05; RSV
25 uM vs DM 48 h, 72 h, 96 h p < 0.05).

AMPK seems to be an essential regulator of muscle
cell size maintenance through the control of mTORC1
pathway and can play a major role in the metabolic pro-
gram that organize muscle plasticity [16-18]. RSV is able
to significantly regulate the levels of this important pro-
tein. As shown in blot in Figure 6D, RSV caused a sig-
nificant raise in AMPK protein content during all phases
of differentiation (AMPK: RSV 0.1 pM vs DM 24 h,
48 h, 72 h p<0.05; 96 h p<0.01; RSV 25 pM vs DM
24 h, 48 h, 72 h p<0.05). Furthermore, it is important
to note how RSV treatment is able to activate AMPK
protein also during the last phases of differentiation
(PAMPK: RSV 0.1 uM vs DM 96 h p <0.05; RSV 25 uM
vs DM 72 h, 96 h p <0.05).

Given the essential role in cellular metabolism of
AMPK protein, this RSV effect, obtained after stimula-
tion by these doses, assumes a critical relevance.

Study of the hypertrophic process

To confirm RSV involvement in the process of hyper-
trophy, after 72 hours of differentiation, we performed
Western Blot analysis to evaluate protein content after
30 min and 4,8,24 hours of treatment (Figure 1B). Results
confirmed the important MyHC protein content increase
in RSV stimulated cells (RSV 0.1 uM vs DM 30 min, 4 h,

24 h p<0.05 RSV 0.1 uM vs DM 8 h p<0.01; RSV 25 uM
vs DM 30 min, 4 h, 8 h, 24 h p <0.05) (Figure 7B).

Furthermore, during post-differentiation phase, the
levels of key structural proteins like N-Cadherin
remained high compared to DM control (Figure 7B)
(RSV 0.1 uM vs DM 30 min, 4 h p<0.01; 8 h, 24 h p<
0.05; RSV 25 uM vs DM 30 min p<0.01; 4 h, 8 h, 24 h
p <0.05).

The same happened for AMPK protein content (RSV
0.1 uM vs DM 8 h p <0.01; RSV 25 uM vs DM 30 min, 4 h
p<0.01; 24 h p<0.05) in Figure 7B. In Figure 7A, phase
contrast images after 72 and 96 hours of differentiation de-
scribed morphological features in neo-formed hypertrophic
myotubes.

After 8 hours of RSV treatment, Immunofluorescence
was performed to study morphological changes of neo-
formed myotubes (Figure 7C), monitoring the espression
of most important cytoskeletal structural proteins:
N-Cadherin and Catenin p120.

Images in Figure 8, collected after 72 hours of differenti-
ation and 8 hours of RSV treatment, showed the significant
increase in size of neo-formed myotubes: increase of length
and diameter along with the new central disposition of the
nuclei was the evidence of hypertrophy genesis [59,65-67].

To support the RSV involvement in muscle hyper-
trophy, myotubes dimensions were measured in MyHC
images (Figure 8B).
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We showed the significant increment in length, diam- increase in myofiber size (Figure 8) (Myotubes length:
eter and fusion index of RSV-treated myotubes com- RSV 25 uM vs DM p<0.01; Myotubes diameter: RSV
pared to DM condition, in agreement with the evidence 0.1 uM vs DM p <0.05; RSV 25 uM vs DM p <0.01; Fu-
that skeletal muscle hypertrophy is characterized by an  sion index: RSV 25 uM vs DM p < 0.05).
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To assess changes in myotubes nuclear disposition
during late phase of differentiation, we performed Im-
munofluorescence studies (Figure 8A-C-D) using anti-
bodies against MyHC, Myostatin and p21 proteins,
which are involved in terminal muscle differentiation.
RSV-treated myotubes are characterized by a particu-
lar arrangement of the nuclei to form a ring, repre-
senting a morphological marker of in vitro muscle
hypertrophy and maturation [65,67].

Discussion

Previous studies have demonstrated that the natural poly-
phenolic phytoalexin Resveratrol possesses various bio-
logical, biochemical and physiological actions including
anti-inflammatory, anti-oxidant, anti-proliferative, promot-
ing differentiation, and chemo preventive effects in patho-
logical conditions like age-related diseases, cardiovascular

diseases, cancer, type 2 diabetes and neurological conditions
[26-40].

In skeletal muscle, RSV is involved in muscle metabol-
ism regulation, protein catabolism and function, is able
to confer resistance against oxidative stress, injury and
death of skeletal muscle cells. Besides, RSV has been
shown to improve strength and endurance of skeletal
muscle [41-46].

Increasing evidence suggests that RSV has an active
role in skeletal muscle differentiation [26,41-46]. How-
ever, the mechanisms underlying these RSV-induced ad-
aptations have not been completely elucidated.

In our in vitro work, investigating the role of RSV on
C2C12 myoblasts growth capacity, we observed its abil-
ity to reduce cells proliferation. In support to this result,
proliferation rate observed in cell growth curve, eluci-
dates RSV role in the interruption of proliferation. RSV
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ments during post-differentiation phase cause a significant increase in MyHC protein content. Key structural N-Cadherin protein expression is sig-
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with antibodies anti N-Cadherin and p120 Catenin, shows the main increase in size of neo-formed myotubes treated with RSV in respect to DM
condition. Scale bar 200 pum.

effect was visible not only in the kinetics of cell growth,  phenotype. It is important to specify that RSV inhibits
but also in the morphological analysis: RSV-treated cells  proliferation without causing cell injury: count and daily
lose their originally circular shape to achieve a new, observation of C2C12 cells showed the absence of
specific, elongate morphology, typical of muscle cell cellular mortality.



Montesano et al. Journal of Translational Medicine 2013, 11:310
http://www.translational-medicine.com/content/11/1/310

Page 12 of 15

DM p21

Figure 8 RSV action on MyHC expression, myotubes dimension, nuclei arrangement in hypertrophy (8 h treatment). A)

MYOTUBES LENGTH
50 -

*k
40
30
20 -
10 -
0

-10 -

% INCREASE

MYOTUBES DIAMETER
120 +

100 4 =
80 -
60 -
40 *
20 -
0|

FUSION INDEX

20 *
15 1

10 -

5

0

[ rsvo1 M Rsv25

% INCREASE

% INCREASE

DAPI

Merge

Immunofluorescence analysis shows hypertrophic morphological changes in MyHC-positive neo-formed myotubes after RSV treatment. Scale bar
50 um. B) Graphical representation of the significant increment in length, diameter and fusion index of RSV-treated myotubes compared to DM.
Significance: *p < 0.05; **p < 0.01. €) Myostatin Immunofluorescence images show the nuclei arrangement to form a ring in the central section of
myotube, marker of in vitro hypertrophy and maturation, particularly evident in the DAPI nuclei coloration. Scale bar 50 um. D) p21 Immunofluor-
escence images and DAPI also confirm the nuclei arrangement in neo-formed myotubes after RSV treatments in respect to DM condition. Scale

bar 50 um.

Since activation of muscle differentiation program
requires irreversible cell cycle withdrawal of C2C12
myoblasts and tissue-specific gene expression, our
study was extended investigating the effect of 0.1 and
25 pM RSV on C2C12 myoblasts cell cycle exit. p21
expression is a key event in triggering cell cycle
withdrawal and myoblasts differentiation [13,55,56].

During proliferative phase, Western Blot analysis re-
vealed how p21 protein content in DM and RSV
(both 0.1 and 25 uM) were super imposable, showing
that in these two conditions differentiation process
progresses faster than in the growth control condition
(GM), wherein the differentiation is only determined
by cell contact.
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Protein expression of Myf-5 and MyoD transcrip-
tion factors, myogenic markers already expressed in
undifferentiated proliferating myoblasts, was also in-
creased with RSV treatment. In phase contrast and
Immunofluorescence images during proliferation phase,
the morphological changes mentioned above were
clearly visible.

All together, these data support the hypothesis that
RSV could regulate myoblasts cell cycle, inducing differ-
entiation process.

The study of differentiation showed how RSV seems
to be able to promote the process: 1) inducing the
muscle phenotype determination by early expression of
MRFs (Myf-5, MyoD and Myogenin), muscle marker
proteins (MyHC) and key skeletal structural proteins
(N-Cadherin, p120, Alpha Actinin); 2) activating impor-
tant signaling pathways, including AKT and MAP
kinases; 3) causing morphological changes like myo-
blasts elongation, increase in length and diameter, rise
of fusion trend of mono-nucleated myocytes into multi-
nucleated myotubes.

In neo-formed myotubes, RSV seems to maintain
hypertrophy process, increasing myotubes size and
regulating nuclei arrangement.

Importantly, the present in vitro finding may have a
potential impact in in vivo regulation of protein metab-
olism. In fact, given RSV action on MRFs and muscle-
specific skeletal proteins synthesis joined to the control
of AMPK, IGF-1 R [68], AKT [69] and ERK proteins, we
may speculate a hypothetical clinical use of this natural
polyphenol in conditions of muscle mass damage/hypo-
trophy. To achieve this aim it is important to further
clarify the connection between used RSV doses and ob-
served effects. In fact, several authors indicated that
RSV, used in other different doses, shows controversial
anti-inflammation and insulin resistance effects [70].

Conclusions

In summary, our data demonstrate that Resveratrol could
control proliferation, start myogenesis process and induce
hypertrophy. RSV seems to be able to regulate cell cycle
progression, the following cell cycle arrest and early induc-
tion of differentiation, through its action on the expression
of specific cell cycle regulators, myogenic regulatory fac-
tors and muscle-specific structural proteins.

Our in vitro studies may constitute novel proof of
principle to potential applications of the compound to
prevent or reverse muscle impairment by stimulating
myogenesis, and emphasize new possible use of RSV to
enhance muscle performance.
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