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Abstract

Background: A promising cancer vaccine involves the fusion of tumor cells with dendritic cells (DCs). As such, a
broad spectrum of both known and unidentified tumor antigens is presented to the immune system in the context
of the potent immunostimulatory capacity of DCs. Murine studies have demonstrated the efficacy of fusion
immunotherapy. However the clinical impact of DC/tumor fusion vaccines has been limited, suggesting that the
immunosuppresive milieu found in patients with malignancies may blunt the efficacy of cancer vaccination. Thus,
novel strategies to enhance fusion vaccine efficacy are needed. Regulatory T cells (Tregs) are known to suppress
anti-tumor immunity, and depletion or functional inactivation of these cells improves immunotherapy in both
animal models and clinical trials. In this study, we sought to investigate whether functional inactivation of
CD4+CD25+FoxP3+ Treg with anti-CD25 monoclonal antibody (mAb) PC61 prior to DC/tumor vaccination would
significantly improve immunotherapy in the murine B16 melanoma model.

Methods: Treg blockade was achieved with systemic PC61 administration. This blockage was done in conjunction
with DC/tumor fusion vaccine administration to treat established melanoma pulmonary metastases. Enumeration

of these metastases was performed and compared between experimental groups using Wilcoxon Rank Sum Test.

IFN-gamma ELISPOT assay was performed on splenocytes from treated mice.

Results: We demonstrate that treatment of mice with established disease using mAb PC61 and DC/tumor fusion
significantly reduced counts of pulmonary metastases compared to treatment with PC61 alone (p=0.002) or
treatment with control antibody plus fusion vaccine (p=0.0397). Furthermore, IFN-gamma ELISPOT analyses reveal
that the increase in cancer immunity was mediated by anti-tumor specific CD4+ T-helper cells, without
concomitant induction of CD8+ cytotoxic T cells. Lastly, our data provide proof of principle that combination
treatment with mAb PC61 and systemic IL-12 can lower the dose of IL-12 necessary to obtain maximal therapeutic
efficacy.

Conclusions: To our knowledge, this is the first report investigating the effects of anti-CD25 mAb administration
on DC/tumor-fusion vaccine efficacy in a murine melanoma model, and our results may aide the design of future
clinical trials with enhanced therapeutic impact.
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Introduction

Melanoma kills over 8,000 people in the US each year,
and its incidence is increasing faster than that of any
other malignancy, with over 65,000 diagnosed cases last
year (NCI cancer statistics). The mainstay of treatment
remains surgical excision of the primary skin lesion, with
regional lymph node dissection to remove nodal metas-
tases. For subjects with isolated nodal metastases at
presentation, the 5 year survival rate is less than 50%,
and standard treatments in both the adjuvant and
inoperable metastatic disease settings show little to no
survival benefit.

In contrast, immunotherapy with DC-tumor cell
fusion vaccines represents a particularly promising ap-
proach for the treatment of metastatic melanoma. Mel-
anoma cells express a wide spectrum of known as well
as patient-specific tumor-associated antigens and DCs
are the most potent antigen-presenting cells attributable
to their abundant expression of major histocompatibility
complex (MHC) class I and II molecules as well as co-
stimulatory and adhesion molecules which provide sig-
nals 1 and 2 for stimulation of naive T cells [1]. However,
the induction of primary T-cell responses against tumor-
associated antigens in vivo is critically dependent upon
co-administration of an adjuvant that can provide a 3"
signal to prevent T-cell tolerance or anergy and hence to
induce T-cell effector function and memory [2]. 3¢ sig-
nals include systemic IL-12 [3], agonistic antiOX40- [4],
anti4-1BB- [5] or antagonistic PD-1 [6] monoclonal anti-
bodies (mAbs), as well as DC1-polarizing Toll-like recep-
tor agonists such as poly(I:C) and CpG. [7] The success of
DC/fusion-based cancer vaccination in animal models has
prompted the initiation of several clinical trials, but des-
pite potent induction of anti-tumor T-cell immunity, only
modest clinical responses were observed in a minority of
patients [8]. Thus, it is evident that additional strategies
are needed to improve fusion vaccine efficacy.

A major obstacle to the development of any immuno-
therapeutic approach is the control of immune-balance.
Regulatory T cells (Tregs) are responsible for maintaining
tolerance to self-antigens, and immune homeostasis by
regulating the activation of non-regulatory T cells [9].
Tregs exert their effects through TGF-p [10], IL-10 [11],
CTLA-4 (cytotoxic T-lymphocyte antigen 4) [12], or
through sequestration of IL-2 via expression of CD25 [13],
the a-subunit of the high-affinity IL-2 receptor, and are
defined by their expression of the transcription factor
forkhead box transcription factor 3 (FoxP3) [14]. Recently,
several methods for the depletion or functional inactivation
of Tregs have been developed as part of a multi-pronged
approach to the immunotherapy of melanoma patients.
Treatment with low dose cyclophosphamide resulted in a
reduction of Treg frequencies [15], however Treg elimin-
ation was also associated with a concomitant reduction of
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CD8" T cells and a lack of tumor antigen priming [16].
Administration of CD25-targeted immunotoxins, designed
to have a direct cytocidal action on cells which express the
high-affinity IL-2 receptor, only leads to a modest and
transient reduction in Treg numbers and has achieved
variable results in improving immunotherapy [17,18]. The
fully human mAb Ipilimumab was approved in 2011 by
the FDA for clinical use against melanoma. Ipilumumab
exerts its therapeutic effects through direct enhancement
of CD8" T-cell function and simultaneous inhibition of
Treg function through blockade of CTLA-4 on both cell
types [19], which makes it hard to delineate its effects on a
DC vaccine that aims to induce primary immune re-
sponses against tumor-associated antigens. Lastly, the
anti-mouse CD25 mAb PC61, as well as the anti-human
CD25 mAbs Basiliximab and Daclizumab, demonstrated a
potent deactivation of Treg suppression that was mediated
through moderate reduction of Treg numbers [20-23] and
functional inhibition through blockade of IL-2 signaling
[24]. Importantly, treatment with anti-CD25 mAbs did
not abrogate tumor antigen-specific immunity elicited by
DC-based vaccines, despite the fact that activated effector
T cells transiently express high levels of CD25. We there-
fore chose to use mAb PC61 in our vaccination studies.

In this report, we demonstrate that administration of
mADb PC61 was an effective means to functionally inacti-
vate Tregs in a murine melanoma model. In addition, we
provide evidence that inactivation of Tregs enhances the
potency of vaccination with DC/tumor cell fusions in a
synergistic fashion, and that the enhancement of anti-
tumor activity was primarily mediated by CD4" T-
effector cells. Furthermore, our data provide proof of
principle that combination treatment with mAb PC61
and systemic IL-12 can lower the dose of cytokine ne-
cessary to obtain maximal therapeutic efficacy and may
therefore represent a viable strategy to reduce IL-12 me-
diated toxicity in a clinical setting.

Materials and methods

Animals

This work was approved by the Duke University School
of Medicine and Durham VA Medical Center IACUC.
Female C57BL/6 mice were purchased from Charles River
Laboratories (Raleigh, NC). Animals were maintained in a
specific pathogen-free environment and used for experi-
ments at age 8 to 12 weeks.

Tumor cells

D5lacZ is a derivative of the B16 melanoma cell line which
stably expresses the lacZ gene product P-galactosidase.
These cells are cultured in complete medium (CM, RPMI
1640, 10% fetal bovine serum, 2 mM L-glutamine, 0.1 mM
non-essential amino acids, 1 mM sodium pyruvate,
100 U/ml penicillin, 100 mg/ml streptomycin, 0.5 pg/ml
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fungizone, 50 pg/ml gentamicin and 5 x 10° M 2-
mercaptoethanol) (Invitrogen, Grand Island, NY).

Preparation of antibody

Hybridoma cells expressing anti-CD25 PC61 or Y13
(anti-HaRas) control mAbs were cultured in Hybridoma
Serum-Free Media (Invitrogen) with 1% Penicillin/
Streptomycin (Invitrogen), at the Duke University Cell
Culture Facility. Antibodies were purified by ammo-
nium sulfate precipitation of supernatants.

Regulatory T-cell inactivation

The efficacy of the anti-CD25 PC61 mAb to deplete
Treg was tested in both naive and tumor bearing mice.
250 pg/0.5 ml Hank’s Balanced Salt Solution (HBSS) of
PC61 or Y13 mAb was injected intraperitoneally into
naive C3H/HeN mice. One mouse from each group was
sacrificed at 7, 14, 21, 28, and 42 days after antibody
injection. Spleens were harvested and enriched for T
cells using the EasySep T-cell isolation kit (Stemcell
Technologies, Vancouver, BC, Canada). T cells were
stained for fluorescence-activated cell sorting (FACS)
analysis with FITC-CD4, APC-CD25, and PE-FoxP3,
respectively (eBioscience, San Diego, CA). Frequencies
of CD4"CD25"FoxP3" populations in both groups were
compared to determine Treg inactivation. In order to
confirm that the PC61 mAb was also effective in
tumor-bearing mice, a dose of 0.25x10° D5lacZ cells
was injected via tail vein into C57BL/6 mice on Day 0.
On Day 2, 250 pg/0.5 ml of PC61 or Y13 mAb were
administered intraperitoneally. Mice were sacrificed at
3, 10, 20 days after tumor inoculation and Treg inacti-
vation was determined by FACS.

Dendritic cell preparation

DCs were generated from the femoral and tibial bone
marrow cells of female C57BL/6 mice, After depletion of
B and T cells using monoclonal antibody-coated magnetic
beads (Invitrogen Dynal AS, Oslo, Norway), cells were
cultured at 0.5x10° cells/ml in CM supplemented with
10 ng/ml granulocyte macrophage colony-stimulating
factor (GM-CSF) and 10 ng/ml IL-4 (Peprotech, Rocky
Hill, NJ). On day 6, DCs were harvested and cultured in
fresh CM+GM-CSF+IL-4 at 1x10° cells/ml. One day 7,
25 ng/ml of lipopolysaccharide (Sigma-Aldrich, Saint
Louis, MO) was added to the cultured cells to stimulate
DC maturation. After 24 hours, DCs were collected for
electrofusion.

Electrofusion of dendritic cell-tumor hybrids

Irradiated D5lacZ cells (100 Gy) were stained green with
intracellular carboxyfluoroscein diacetate succinimidyl
ester (CFSE; Molecular Probes, OR) and combined at a
1:1 ratio with matured DCs. Cells were washed in
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prefusion media and suspended in fusion media at a
concentration of 2x10” cells/ml. Cells were fused using
the ECM 2001 pulse generator (BTX instruments, San
Diego, CA). First, a low voltage alternating current of
120 V/cm for 10 seconds was applied to achieve align-
ment and chain formation. Then, cells were pulsed with
a high voltage direct current of 1100 V/cm for 25 us to
cause reversible breakdown of cell membranes. The
resulting hybrid cells were cultured overnight in CM at
37°C with 5% CO,. After 24 hours, the adherent cell
population containing the fusion hybrids was harvested
and prepared for vaccination.

Animal studies

0.25x10° D5lacZ cells/200pl of Hank’s Balanced Salt Solu-
tion were injected via tail vein into C57BL/6 mice to estab-
lish pulmonary metastases for this therapeutic model. After
2 days, 250 pg/0.5 ml HBSS of PC61 or Y13 mAb were
injected into mice. One day later, animals were vaccinated
with 0.3x10° cells/10 pl HBSS of fusion cells that were
injected into their inguinal lymph nodes. IL-12 (0.2 ug/
0.5 ml HBSS) was administered intraperitoneally daily for
4 days, starting on the day of vaccination. Lungs and
spleens of mice were harvested 3 weeks after establishment
of pulmonary metastases. Metastases were enumerated and
splenocytes were frozen for further analysis.

ELISPOT analyses

The D5lacZ cell line, which was used as a stimulator, was
cultured in the presence of 0.1 pg/ml (1,000 U/ml) murine
[FN-y for 3 days to up-regulate the expression of MHC
class T and II molecules. CD4" and CD8" T cells were
separately enriched from frozen spleen cells using their re-
spective EasySep T cell isolation kits (Stemcell Technolo-
gies). IEN-y cytokine secretion from stimulated T cells
was detected according to the ELISPOT kit protocol pro-
vided by the manufacturer (BD Biosciences, San Jose,
CA). Briefly, 96-well nitrocellulose plates were coated with
purified anti-mouse IFN-y and left overnight at 4°C. The
next day, plates were washed, and blocked with CM for
2 hours. Effector cells (0.2x10°/well) were then co-
cultured with stimulator cells at a ratio of 5:1 and incu-
bated for 24 hours at 37°C, 5% CO,. After lysis of the cells,
plates were developed with biotinylated detection anti-
body, enzyme conjugate ExtrAvidin-Alkaline phosphatase,
1/10000 dilution (Sigma-Aldrich), and substrate solution
BCIP/NBT phosphatase (KPL, Gaithersburg, MD). Spots
were enumerated using a CTL-ImmunoSpot analyzer
(Shaker Heights, OH).

Results

PC61-mediated inactivation of Tregs

In a first set of experiments, the efficacy of the anti-
CD25 PC61 mAb to inactivate Tregs was tested in both
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naive and tumor bearing mice (Table 1). PC61 or Y13
(control) mAb was injected intraperitoneally into naive
C3H/HeN mice. One mouse from each group was
sacrificed at 7, 14, 21, 28, and 42 days after antibody
injection. Spleens were harvested and enriched for T
cells. T cells were stained with anti-CD4, anti-CD25, and
anti-FoxP3 antibodies and analyzed by FACS (data not
shown). Frequencies of CD4'CD25'FoxP3" Tregs in
both groups were compared and the results are shown
in Table 1 (top). We observed that 95-98% of Tregs were
undetectable for up to 21 days. After 28 days, the Treg
population began to return to 50% of the original level
and Treg frequencies increased to 64% of baseline after
42 days, which is conceivable given a PC61 half-life of
20 days in vivo.

Next, we determined the efficacy of PC61-mediated
Treg inactivation in Db5lacZ tumor bearing C57BL/6
mice to confirm that tumor-induced Tregs are also being
inhibited by PC61 administration. D5lacZ cells were
injected via tail vein into C57BL/6 mice to establish pul-
monary metastases and after 2 days, PC61 or Y13 mAbs
were administered intraperitoneally. Mice were sacrificed
at 3, 10, 20 days after tumor inoculation and Treg inacti-
vation was determined by FACS. As can be seen in
Table 1 (bottom), 87% of Tregs were inactivated as early
as 1 day after administration of PC61 mAb (day 3) and
remained at that level (86%) until day 20, the typical
duration of our tumor vaccination studies.

DC-tumor cell fusion efficiency

The electrofusion rate between DCs and D5lacZ melan-
oma cells was determined by FACS analysis. As presented
in Figure 1A (top), DCs appeared to be well-differentiated

Table 1 Assessment of PC61-mediated Treg inactivation

Naive mice
Day Y13 (%) PC61 (%)
7 164 0.887
14 155 0332
21 12.7 0.507
28 164 8410
42 14.6 9340
Tumor bearing mice

3 7.85 1.02
10 740 1.60
20 1.8 1.70

(Top) Naive C3H/HeN mice were injected intraperitoneally with PC61 mAb or
Y13 control mADb, respectively. Mice were sacrificed at the indicated time
points and splenocytes were analyzed by FACS after staining with anti-CD4,
anti-CD25, and anti-FoxP3. The percentage of triple-positive cells is presented.
(Bottom) Lung metastases were established in C57BL/6 mice via tail vein
injection of D5lacZ cells. 2 days later, animals received intraperitoneal
injections of PC61 or Y13 mAbs. Mice were sacrificed at the indicated time
points, splenocytes were analyzed by FACS as described above and the
percentage of triple-positive cells was determined.
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and expressed high levels of maturation marker CD80,
CD86 and intercellular adhesion molecule (ICAM, CD54).
In contrast, cultured D5lacZ expressed none of the above-
mentioned DC markers (data not shown). Prior to fusion,
D5lacZ cells were intracellularly and covalently labeled
with the green fluorescent dye CESE. After electrofusion,
cells were incubated in media and adherent fusion cells
were harvested 24 hours later. Cells were stained with
mAbs against DC markers CD80, CD86 and ICAM, for
FACS analysis. Figure 1A (bottom) shows the percentages
of double-positive fusion cells (upper right quadrant of
dot plots). The observed fusion efficacy of about 55% was
well in agreement with fusions yields routinely obtained in
our laboratory. In contrast, while 78% of DCs were MHC
class I positive and 84% of DCs were MHC class II posi-
tive (Figure 1B, top), only 26.6% of fusion cells expressed
MHC class I molecules and only 28.0% of fusion cells
were MHC class II positive (Figure 1B, bottom).

DC-Tumor cell fusion vaccine efficacy after inactivation of
Treg

Next, we determined whether PC61-mediated inactiva-
tion of Tregs was capable of enhancing the efficacy of
DC/tumor cell fusion vaccination in the B16 murine
melanoma model (Figure 2). A subset of animals was
also treated with fusion vaccine plus intraperitoneal IL-
12, the current ‘gold standard’ in our murine melanoma
model. Pulmonary metastases were established via tail
vein injection of D5lacZ cells three days before intranodal
vaccine administration and mice were sacrificed after
21 days. Mice were treated with saline (), intraperitoneal
Y13 control mAb (Y13), intraperitoneal PC61 mAb
(PC61), intraperitoneal IL-12 (IL-12), Y13 mAb plus DC/
Db5lacZ fusion cells (Y13+FC), PC61 mAB plus DC/
Db5lacZ fusion cells (PC+FC), and intraperitoneal IL-12
plus DC/D5lacZ fusion cells (IL-12+FC). There was no
statistically significant difference in pulmonary metastasis
counts between untreated (206.4 + 50.0), Y13- or PC61-
treated animals (198.5 = 59.17 versus 199.3 + 49.16).
However, mice treated with fusion vaccine and PC61 mAb
had significantly fewer metastases (99.3 + 89.2) than ani-
mals treated with Y13 control mAb and fusion vaccine
(134 + 74.2) (p = 0.0397) and animals treated with PC61
mAb alone (199.3 + 49.16) (p = 0.002). We conclude that
PC61 treatment synergized with fusion vaccination to in-
crease vaccine efficacy, albeit to a lesser degree than treat-
ment with fusion vaccine and IL-12 (4.7 + 10.76).

ELISPOT Analysis of IFN-y secretion by vaccine induced
CD4* and CD8" T cells

After observing that PC61-based Treg inactivation sig-
nificantly enhanced the tumor regression triggered by
fusion vaccination, we sought to understand the immune
mechanism by which this improvement occurred. Spleens
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Figure 1 FACS analysis of DCs and subsequent confirmation of DC-D5LacZ fusion hybrids. (A) Electrofusion of DCs and D5lacZ cells.
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intracellularly and covalently labeled with CFSE. 24 hours after fusion, adherent cells were harvested and stained with DC markers as indicated.
Numbers in the upper right quadrant represent percentages of double-positive fusion hybrids. (B) MHC class | (H2-kb) and MHC class II (I-Ab)
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Figure 2 Effects of Treg-inactivation on the efficacy of DC-
tumor cell fusion vaccination. Lung metastases were established
in C57BL/6 mice via tail vein injection of D5lacZ cells. After 2 days,
mice received intraperitoneal injections of saline (=), Y13 mAb (Y13),
or PC61 mAb (PC61). On day 3, DC-tumor fusion cells (FC) were
delivered intranodally. IL-12 was administered intraperitoneally daily
for 4 days, starting on the day of vaccination. Mice were sacrificed
and lung metastases were enumerated after 21 days. P-values were
calculated using the two-tailed Wilcoxon rank sum test. The number
(n) of animals used in each group is indicated. Results are presented
as box plots in which the median, the 25 percentile, the 75
percentile, as well as minimum and maximum of each group

are shown.

were harvested from vaccinated animals, CD4" and CD8"
T cells were isolated and stimulated with D5LacZ tumor
cells in IEN-y ELISPOT assays (Figure 3B). Before using
D5lacZ cells as stimulators, MHC class I and class II ex-
pression was induced by treatment with IFN-y and ana-
lyzed by FACS (Figure 3A). Data from three independent
experiments were averaged, and the results reveal an
overall difference in the number of vaccine-induced IFN-y
secreting CD4" T cells between fusion vaccine plus Y13
mADb treatment (Y13 + FC) and fusion vaccine plus PC61
mAb treatment (PC61+FC) (37 + 26 versus 243 + 120)
(Figure 3A). In contrast, our data indicate that there was
no statistically significant difference in the number of
vaccine-induced CD8" T cells between the fusion + Y13
and fusion + PC61 conditions (mean=4, SD=1.54 for
fusion+Y13; mean=11, SD=5.72 for fusion+PC61)
(Figure 4B).

Combination treatment with PC61 mAb and
intraperitoneal miL-12

Even though treatment with PC mAb demonstrated
therapeutic efficacy against murine melanoma, it was
not capable of completely eradicating pulmonary metas-
tases. On the other hand, IL-12 administration has
resulted in severe toxicity in cancer patients, hence
preventing systemic application at therapeutically rele-
vant levels. We therefore sought to determine whether
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PC61 mAb treatment could synergize with systemic IL-
12 administration in order to decrease the dose of the
cytokine needed to obtain maximal therapeutic efficacy.

Pulmonary metastases were established via tail vein in-
jection of D5lacZ cells three days before intranodal vac-
cine administration with fusion cells and mice were
sacrificed after 21 days. Mice were treated with intraper-
itoneal PC61 mAb (PC61 only), intraperitoneal IL-12
(0.1 pg) plus DC/D5lacZ fusion cells (Fusion + % dose),
intraperitoneal IL-12 (0.1ug), plus PC61 mAB, plus DC/
D5lacZ fusion cells (Fusion + PC61 + % dose IL-12), and
with intraperitoneal IL-12 (0.2 pg) plus DC/D5LacZ fu-
sion cells (Fusion + full dose IL-12).

As shown in Figure 4, treatment of mice with PC61
mAb alone did not lead to any reduction in tumor bur-
den and, expectedly, administration of 0.2 pg IL-12 (full
dose IL-12) in combination with fusion vaccine resulted
in complete eradication of lung metastases in 4 out of 5
animals. The remaining mouse in this group appears to
be an outlier. In contrast, considerable numbers of lung
metastases (35.6 + 26.1) were observed, when the ad-
ministered dose of IL-12 was reduced by 50% (Fusion +
1/2 dose IL-12). Remarkably, treatment of animals with
PC61 mADb, half dose IL-12 and DC/D5LacZ fusion cells
led to a complete protection from lung metastasis (Fu-
sion + PC61 + % dose IL-12). Thus, our data provide
proof of principle that combination treatment with
PC61 mAb and systemic IL-12 can indeed lower the
dose of IL-12 necessary to obtain maximal therapeutic
efficacy and may therefore represent a viable strategy to
reduce IL-12 mediated toxicity in a clinical setting.

Discussion
The aim of this study was to examine whether PC61
mAb-mediated functional inactivation of Tregs would
enhance the potency of a DC/tumor fusion-based vac-
cine in a murine melanoma model with established pul-
monary metastases. In agreement with previous reports,
we were able to demonstrate that administration of mAb
PC61 causes significant inactivation of Tregs that is
maintained for about 3 weeks until the Treg population
returns [20,21,25]. It is important to note that after PC61
mAb treatment only a small portion of Tregs is actually
being depleted by phagocytes expressing the FcyRIII re-
ceptor [26]. The majority of Tregs is being functionally
inactivated through antibody-mediated blockade of IL-2
signaling [24]. Remarkably, administration of anti-CD25
in murine models and clinical studies has not resulted in
treatment related morbidity due to autoimmune disease
[25], and it is tempting to speculate that tissue-residing
Tregs might be affected to a lesser degree by antibody
treatment than Tregs found in the lymphatic system.
Furthermore, we observed that PC61 treatment en-
hanced DC/tumor fusion vaccination in a synergistic
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fashion, and did not abrogate the induction of T-effector
cells despite their transient expression of CD25
molecules. These observations are in disagreement with
a recent report which examined the ability of the hu-
manized anti-IL-2Ra mAb daclizumab to deplete T,egs
in metastatic melanoma patients receiving antitumor
vaccination with peptide- and KLH (keyhole limpet
hemocyanin)-loaded DCs [27]. The authors demon-
strated that while T, were effectively depleted and
anti-tumor T cells were induced, daclizumab impaired
the acquisition of T-effector function in vivo. A different
report as well as our own data suggest otherwise. First,
Sampson et al. [23] showed that depletion of Tregs
correlated with increased vaccine-stimulated humoral
immunity in glioblastoma patients during temozolomide-
induced lymphopenia. Second, after mAb PC61-treatment,
we observed increased frequencies of vaccine-induced
CD4" T cells that secreted IFN-y upon stimulation with
tumor cells. And last, administration of mAb PC61 greatly
enhanced the efficacy of vaccination with fusion cells and
systemic IL-12 which clearly indicates that PC61 does not
seem to have any immunoinhibitory effects.

In our studies, the vaccine-induced immune response
after treatment with PC61 and fusion cells consisted pri-
marily of tumor-specific CD4" T cells. This is not with-
out precedence and in accordance with several studies,
which have demonstrated that CD4" T cells play a

pivotal effector role during tumor rejection [28]. While
the mechanisms responsible for the observed antitumor
effect are still being explored, possible effector mechanisms
may include Fas/FasL-mediated killing [29], interferon-
y-mediated angiostasis [30], interferon-y—mediated
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injections of 250 pug/0.5 ml PC61 mAb (PC61 only, Fusion + PC61 +
5 dose IL-12). On day 3, DC-tumor fusion cells (Fusion) were
delivered intranodally. IL-12 was administered intraperitoneally daily
for 4 days at 0.2 ug/0.5 ml (full dose) or 0.1 ug/0.5 ml (1/2 dose),
respectively, starting on the day of vaccination. Mice were sacrificed

after 21 days and lung metastases were enumerated.
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restoration of the antigen-presenting pathway [31], or the
recruitment or activation of innate effectors, including
macrophages and eosinophils [32].

Even though, CD4" T-effector cells may play an im-
portant role in anti-tumor responses, the lack of
vaccine-induced CD8" cytotoxic T cells in the presence
of a potent Th-1-biased T-helper cell response is unset-
tling and may indicate that efficient cross-presentation
of tumor-associated antigens did not occur in DC/tumor
fusions. B16 melanoma cells are poorly immunogenic
due to downregulation of transporters associated with
antigen processing (TAP-1 and TAP-2) [33], resulting in
reduced MHC class I expression and a diminished ability to
present antigens to CD8" T cells. TAP downregulation has
been observed in multiple human malignancies and plays a
critical role in the clinical course of malignant melanoma
[34]. It is conceivable that factors leading to downregulation
of TAPs in B16 melanoma cells may act in a negative trans-
dominant fashion in fusion cells, thereby impairing MHC
class I presentation and hence the induction of CD8" T cells
by DC/tumor cell hybrids. If this was true, the observed in-
duction of CD8" T-cell responses by fusion vaccine in the
presence of IL-12 would be either a result of IFN-y induced
antigen-presentation by fusion cells [35] or due to stimula-
tion of tumor-infiltrating lymphocytes and T cells in
draining lymph nodes, as has been described [36,37].
Therefore, strategies aiming to overexpress TAP1 and
TAP2 in fusion cells may represent a promising new ap-
proach to increase the immunogenicity of fusion vaccines.

Systemic administration of IL-12 in combination with
DC-tumor fusion vaccination has demonstrated impres-
sive anti-tumor responses in murine models. In cancer
patients, however, IL-12 administration and the con-
comitant induction of high IFN-y levels have resulted in
severe toxicity including adverse hematopoietic, intes-
tinal, hepatic, and pulmonary side effects, which pre-
cludes systemic application of IL-12 at therapeutically
relevant levels [38]. Here, we provide proof of principle
that combination treatment consisting of mAb PC61
and systemic IL-12 can lower the dose of cytokine ne-
cessary to obtain maximal therapeutic efficacy and may
therefore represent a viable strategy to reduce IL-12 me-
diated toxicity in a clinical setting. Further studies will be
needed to determine the therapeutic window of this novel
approach.ken together, we conclude that PC61-mediated
inactivation of Tregs is a viable strategy to improve the ef-
ficacy of DC/tumor fusion vaccination and that combining
vaccination with Treg depletion and systemic administra-
tion of IL-12 may represent a novel approach to unleash
the full potential of DC/tumor fusion vaccines.

Abbreviations

CFSE: Carboxyfluoroscein diacetate succinimidyl ester; CM: Complete media;
CTLA-4: Cytotoxic T-lymphocyte antigen 4; DC: Dendritic cell;

ELISPOT: Enzyme-linked immunospot; FACS: Fluorescence-assisted cell

Page 8 of 9

sorting; FoxP3: Forkhead box transcription factor 3; GM-CSF: Granulocyte
macrophage colony-stimulating factor; IFN: Interferon; IL: Interleukin: mAb,
monoclonal antibody; RPMI: Roswell Park Memorial Institute; Treg: Regulatory
T cell.

Competing interests
The authors declared that they have no competing interests.

Authors’ contributions

CT and VR equally contributed by performing experiments, data analysis, and
drafting manuscript. JD and SKN made significant contributions to
experimental design and manuscript revisions. JD also assisted in
experiments. ED assisted in experiments and review of manuscript drafts.
DST and SKP provided input on experimental design, data analysis, and
manuscript revisions. WTL was responsible for experimental design,
experimental supervision, data analysis, manuscript drafting and review. All
authors read and approved the final manuscript.

Acknowledgements

We thank Mark Berrong and Guido Ferrari for their expertise and assistance
with use of their ELISPOT reader, and Greg Sempowski for help with
antibody production and purification.

Financial support

This project was funded by a Career Development Grant —2 Award
(I01BX007080) from the Biomedical Library Research and Development
Service of the Department of Veterans Affairs Office of Research and
Development (WTL).

This work was presented at the American Association for Cancer Research
2012 Annual Meeting, April 3, Chicago IL, USA.

Author details

'Division of Otolaryngology, Duke University Medical Center, Durham, USA.
’Duke University School of Medicine, Durham, USA. *Department of Surgery,
Duke University Medical Center, Durham, USA. “Department of Surgical
Sciences, Duke University Medical Center, Durham, USA. *Department of
Surgery, Durham VA Medical Center, Durham, USA.

Received: 26 February 2013 Accepted: 4 June 2013
Published: 17 June 2013

References

1. Schuler G, Schuler-Thurner B, Steinman RM: The use of dendritic cells in
cancer immunotherapy. Curr Opin Immunol 2003, 15:138-47.

2. Curtsinger JM, Lins DC, Mescher MF: Signal 3 determines tolerance versus
full activation of naive CD8 T cells: dissociating proliferation and
development of effector function. J Exp Med 2003, 197:1141-51.

3. Hayashi T, Tanaka H, Tanaka J, Wang R, Averbook BJ, Cohen PA, et al:
Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid cells
generated by electrofusion. Clin Immunol 2002, 104:14-20.

4. Kuriyama H, Shimizu K, Lee W, Kjaergaard J, Parkhurst MR, Cohen PA, et al:
Therapeutic vaccine generated by electrofusion of dendritic cells and
tumour cells. Dev Biol Basel 2004, 116:169-78. discussion 79-86.

5. Zhang H, Snyder KM, Suhoski MM, Maus MV, Kapoor V, June CH, et al: 4-
1BB is superior to CD28 costimulation for generating CD8+ cytotoxic
lymphocytes for adoptive immunotherapy. J Immunol 2007, 179:4910-8.

6.  Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D, et al: PD-1 is a
regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma
patients. J Immunol 2009, 182:5240-9.

7. Zheng R, Cohen PA, Paustian CA, Johnson TD, Lee WT, Shu S, et al: Paired
Toll-like receptor agonists enhance vaccine therapy through induction
of interleukin-12. Cancer Res 2008, 68:4045-9.

8. Koido S, Hara E, Homma S, Namiki Y, Ohkusa T, Gong J, et al: Cancer
vaccine by fusions of dendritic and cancer cells. Clin Dev Immunol 2009,
2009:657369.

9. Sakaguchi S, Sakaguchi N: Regulatory T cells in immunologic self-
tolerance and autoimmune disease. Int Rev Immunol 2005, 24:211-26.

10.  Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA: CD4+CD25+ T
regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-
beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 2003,
100:10878-83.



Tan et al. Journal of Translational Medicine 2013, 11:148
http://www.translational-medicine.com/content/11/1/148

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F: An essential role
for interleukin 10 in the function of regulatory T cells that inhibit
intestinal inflammation. J Exp Med 1999, 190:995-1004.

Paust S, Lu L, McCarty N, Cantor H: Engagement of B7 on effector T cells
by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci
USA 2004, 101:10398-403.

Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY: A function for
interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005,
6:1142-51.

Ono M, Yaguchi H, Ohkura N, Kitabayashi |, Nagamura Y, Nomura T, et al:
Foxp3 controls regulatory T-cell function by interacting with AML1/
Runx1. Nature 2007, 446:685-9.

Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H:
Inhibition of CD4(+)25+ T regulatory cell function implicated in
enhanced immune response by low-dose cyclophosphamide. Blood 2005,
105:2862-8.

Traverso |, Fenoglio D, Negrini S, Parodi A, Battaglia F, Kalli F, et al:
Cyclophosphamide inhibits the generation and function of CD8(+)
regulatory T cells. Hum Immunol 2012, 73:207-13.

Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, et al:
Enhancement of vaccine-mediated antitumor immunity in cancer
patients after depletion of regulatory T cells. J Clin Invest 2005,
115:3623-33.

Powell DJ Jr, Felipe-Silva A, Merino MJ, Ahmadzadeh M, Allen T, Levy C, et
al: Administration of a CD25-directed immunotoxin, LMB-2, to patients
with metastatic melanoma induces a selective partial reduction in
regulatory T cells in vivo. J Immunol 2007, 179:4919-28.

Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP: Blockade of
CTLA-4 on both effector and regulatory T cell compartments contributes
to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009,
206:1717-25.

Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ,
et al: Cutting Edge: Anti-CD25 monoclonal antibody injection results in
the functional inactivation, not depletion, of CD4+CD25+ T regulatory
cells. J Immunol 2006, 176:3301-5.

Matsushita N, Pilon-Thomas SA, Martin LM, Riker Al: Comparative
methodologies of regulatory T cell depletion in a murine melanoma
model. J Immunol Methods 2008, 333:167-79.

Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, Congdon KL,
et al. Monoclonal antibody blockade of IL-2 receptor alpha during
lymphopenia selectively depletes regulatory T cells in mice and humans.
Blood 2011, 118:3003-12.

Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, Reap EA, et al.
A pilot study of IL-2Ralpha blockade during lymphopenia depletes
regulatory T-cells and correlates with enhanced immunity in patients
with glioblastoma. PLoS One 2012, 7:e31046.

Goebel J, Stevens E, Forrest K, Roszman TL: Daclizumab (Zenapax) inhibits
early interleukin-2 receptor signal transduction events. Transp/ Immunol
2000, 8:153-9.

Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, et al:
Systemic anti-CD25 monoclonal antibody administration safely enhances
immunity in murine glioma without eliminating regulatory T cells.
Clinical cancer research: an official journal of the American Association for
Cancer Research 2006, 12:4294-305.

Setiady YY, Coccia JA, Park PU: In vivo depletion of CD4+FOXP3+ Treg
cells by the PC61 anti-CD25 monoclonal antibody is mediated by
FcgammaRlll+ phagocytes. Eur J Immunol 2010, 40:780-6.

Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg
NM, et al: Dendritic cell vaccination in combination with anti-CD25
monoclonal antibody treatment: a phase I/1l study in metastatic
melanoma patients. Clinical cancer research: an official journal of the
American Association for Cancer Research. 2010, 16:5067-78.

Mumberg D, Monach PA, Wanderling S, Philip M, Toledano AY, Schreiber
RD, et al: CD4(+) T cells eliminate MHC class Il-negative cancer cells

in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci USA 1999,
96:8633-8.

Caignard A, Guillard M, Cai Z, Asselin-Paturel C, Carayol G, Chouaib S: The
renal cell carcinoma lysis by a specific cytotoxic T cell clone is
independent of the Fas/Fas-L cytotoxic pathway. Tissue Antigens 1996,
48:295-300.

Page 9 of 9

30. Qin Z Blankenstein T: CD4+ T cell-mediated tumor rejection involves
inhibition of angiogenesis that is dependent on IFN gamma receptor
expression by nonhematopoietic cells. Immunity 2000, 12:677-86.

31, Seliger B, Hammers S, Hohne A, Zeidler R, Knuth A, Gerharz CD, et al: IFN-
gamma-mediated coordinated transcriptional regulation of the human
TAP-1 and LMP-2 genes in human renal cell carcinoma. Clinical cancer
research: an official journal of the American Association for Cancer Research.
1997, 3:573-8.

32, Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H:
The central role of CD4(+) T cells in the antitumor immune response.

J Exp Med 1998, 188:2357-68.

33. Agrawal S, Reemtsma K, Bagiella E, Oluwole SF, Braunstein NS: Role of TAP-
1 and/or TAP-2 antigen presentation defects in tumorigenicity of mouse
melanoma. Cell Immunol 2004, 228:130-7.

34. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S: Down-regulation of HLA
class | antigen-processing molecules in malignant melanoma:
association with disease progression. Am J Pathol 1999, 154:745-54.

35. Terabe M, Berzofsky JA: The role of NKT cells in tumor immunity.

Adv Cancer Res 2008, 101:277-348.

36. Indrova M, Bieblova J, Rossowska J, Kuropka P, Pajtasz-Piasecka E, Bubenik J,
et al: HPV 16-associated tumours: IL-12 can repair the absence of
cytotoxic and proliferative responses of tumour infiltrating cells after
chemotherapy. Int J Oncol 2009, 34:173-9.

37. Zheng R, Kjaergaard J, Lee WT, Cohen PA, Shu S: Significance of regional
draining lymph nodes in the development of tumor immunity:
implications for cancer immunotherapy. Cancer Treat Res 2007,
135:223-37.

38. Car BD, Eng VM, Lipman JM, Anderson TD: The toxicology of interleukin-
12: a review. Toxicol Pathol 1999, 27:58-63.

doi:10.1186/1479-5876-11-148

Cite this article as: Tan et al: Impact of anti-CD25 monoclonal antibody
on dendritic cell-tumor fusion vaccine efficacy in a murine melanoma
model. Journal of Translational Medicine 2013 11:148.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Animals
	Tumor cells
	Preparation of antibody
	Regulatory T-cell inactivation
	Dendritic cell preparation
	Electrofusion of dendritic cell-tumor hybrids
	Animal studies
	ELISPOT analyses

	Results
	PC61-mediated inactivation of Tregs
	DC-tumor cell fusion efficiency
	DC-Tumor cell fusion vaccine efficacy after inactivation of Treg
	ELISPOT Analysis of IFN-γ secretion by vaccine induced CD4+ and CD8+ T cells
	Combination treatment with PC61 mAb and intraperitoneal mIL-12

	Discussion
	Abbreviations
	Competing interests
	Authors’ contributions
	Financial support
	Author details
	References

