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Abstract

Background: Breast cancers are phenotypically and genotypically heterogeneous tumors containing multiple
cancer cell populations with various metastatic potential. Aggressive tumor cell subpopulations might more easily
be captured in lymph nodes metastases (LNM) than in primary tumors (PT). We evaluated mRNA and protein levels
of master EMT regulators: TWIST1, SNAIL and SLUG, protein levels of EMT-related markers: E-cadherin, vimentin, and
expression of classical breast cancer receptors: HER2, ER and PgR in PT and corresponding LNM. The results were
correlated with clinicopathological data and patients outcomes.

Methods: Formalin-fixed paraffin-embedded samples from PT and matched LNM from 42 stage II-lll breast cancer
patients were examined. Expression of TWISTT, SNAIL and SLUG was measured by reverse-transcription quantitative
PCR. Protein expression was examined by immunohistochemistry on tissue microarrays. Kaplan-Meier curves for
disease-free survival (DFS) and overall survival (OS) were compared using F-Cox test. Hazard ratios (HRs) with 95%
confidence intervals (95% Cl) were computed using Cox regression analysis.

Results: On average, mRNA expression of TWIST1, SNAIL and SLUG was significantly higher in LNM compared to PT
(P <0.00001 for all). Gene and protein levels of TWIST1, SNAIL and SLUG were highly discordant between PT and
matched LNM. Increased mRNA expression of TWISTT and SNAIL in LNM was associated with shorter OS (P = 0.04
and P =0.02, respectively) and DFS (P =0.02 and P=0.01, respectively), whereas their expression in PT had no
prognostic impact. Negative-to-positive switch of SNAIL protein correlated with decreased OS and DFS (HR =4.6;
1.1-18.7; P=0.03 and HR=3.8; 1.0-48.7; P =0.05, respectively).

Conclusions: LNM are enriched in cells with more aggressive phenotype, marked by elevated levels of EMT
regulators. High expression of TWIST1 and SNAIL in LNM, as well as negative-to-positive conversion of SNAIL confer
worse prognosis, confirming the correlation of EMT with aggressive disease behavior. Thus, molecular profiling of
LNM may be used as surrogate marker for aggressiveness and metastatic potential of PT.
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Background

Distant metastasis remain the main cause of cancer-
related death in breast cancer. Metastatic lymph node
involvement is still the most powerful prognostic factor
for relapse and death, but lymph node dissection does
not affect patients survival [1]. It is still the matter of de-
bate if positive lymph nodes are able to metastasize [2].
Currently, lymph node metastases (LNM) are considered
rather a manifestation of the widespread metastatic
process and a marker of aggressive phenotype of the pri-
mary tumor (PT) than the “bridge-heads” for further
metastatic spread [3]. It has been confirmed by the clin-
ical observation of poorer survival after relapse in node-
positive patients compared to node-negative ones [4].
Experimental models provide further evidence that de-
velopment of LNM indicates the increased potential of
PT to disseminate aggressive cells and produce metasta-
sis promoting growth factors [3], according to the re-
cently proposed stromal progression model [5]. In this
model mutual regulatory interactions between stroma
and tumor cells play equally important roles in tumor
progression as genetic and epigenetic changes. Those
interactions contribute to the process of epithelial-
mesenchymal transition (EMT), similarly to the bone
marrow mesenchymal stem cells actively recruited by
tumor cells to the surrounding stroma [6].

EMT has been found to be crucial in cancer dissemin-
ation, endowing cells with metastatic and cancer stem cell
properties [7,8]. It is characterized by downregulation of
epithelial markers (e.g. cytokeratin 8, 18, 19, E-cadherin,
claudins, occludins) and upregulation of mesenchymal
markers (e.g. vimentin, N-cadherin) [9], what results in
numerous phenotypic changes such as the loss of cell-cell
adhesion and cell polarity, and the acquisition of migra-
tory and invasive properties [10,11]. TWIST1, SNAIL and
SLUG are transcription factors among those governing
EMT (EMT-TFs) [10]. Increased expression of EMT-TFs
examined in PT has been associated with poor prognostic
clinico-pathological features and outcome in breast and
other cancers [12-14] as well as multidrug resistance [15].
However, to the best of our knowledge there are no data
available on the status of TWIST1, SNAIL and SLUG in
LNM.

Phenotype of the aggressive cancer cells subpopula-
tions resulting from EMT might not be easily captured
in the PT since they form a minority of cells within
tumor bulk [16-18]. Moreover, expression of genes asso-
ciated with EMT is transient and space-limited [19]. We
hypothesized that the analysis of pre-selected subpopula-
tions of cancer cells found in LNM could be more in-
formative in terms of aggressiveness than the analysis of
the PT bulk. The primary objective of the present study
was to evaluate possible changes occurring in classical
and EMT-related marker status between PT and
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corresponding synchronous axillary LNM before initi-
ation of the therapy and to relate them to clinical out-
come. Additionally, we aimed to investigate the
feasibility of the quantitative PCR-based gene expression
profiling of low-level transcripts TWIST1, SNAIL and
SLUG in formalin-fixed, paraffin-embedded (FFPE) tis-
sues compared to matched frozen counterparts.

Material and methods

Tissue specimens

Studied material included 44 tissue specimens from
patients with operable breast cancer and lymph node in-
volvement who were treated between 2006—2008 at the
Medical University of Gdansk Hospital. Patients were
treated with surgery by modified radical mastectomy or
local tumor resection, with axillary node dissection fol-
lowed by postoperative breast irradiation. Adjuvant ther-
apy with chemotherapy and/or hormone therapy was
given in standard care settings based on the nodal and
hormone receptor status. Availability of PT and matched
LNM was mandatory. Patients with no evidence of
lymph node involvement or earlier chemotherapy were
not eligible for this study. Non-cancer control breast tis-
sue samples were acquired during mastectomy ensuring
the greatest possible distance to the main tumor mass,
and sections of non-involved lymph nodes were col-
lected. The study was conducted in accordance with the
Declaration of Helsinki and approved by the Ethics
Committee of the Medical University of Gdansk. All
patients signed informed consent forms.

RNA extraction from formalin-fixed paraffin-embedded
(FFPE) tissue

Tissue specimens were fixed in 10% (v/v) neutral-
buffered formalin for up to 24 h, dehydrated in 70%
ethanol and embedded in paraffin. FFPE tissue blocks
were stored at room temperature for up to 6 years. The
percentage of tumor cells in each FFPE specimen was
evaluated by hematoxylin and eosin staining reviewed by
a certified pathologist. Only the tissue section with con-
firmed presence of invasive carcinoma and tumor cells
content over 50% were included. 2—4 slices of 10 pum
thickness were cut using a microtome and placed in
1.5 ml centrifuge tubes. Tissues were de-paraffinized by
treatment with xylene and 100% ethanol. Total RNA
was isolated using RNeasy FFPE Kit (Qiagen, Germany)
according to the manufacturer's protocol, including on-
column DNase I treatment.

RNA extraction from fresh-frozen (FF) tissue

After collection, tissue samples were immediately frozen
in liquid nitrogen and stored at —80°C for further ana-
lysis. 20-30 mg tissue sections were homogenized with
zircon beads in MagNA Lyzer (Roche, Germany) for
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40 s. Total RNA was isolated using RNeasy Mini Kit
(Qiagen, Germany) according to the manufacturer’s
protocol, including on-column DNase I treatment.

RNA analysis and reverse transcription

For all samples RNA concentration and purity was
determined using the Nano-Drop ND-1000 spectropho-
tometer (Thermo Scientific, USA). Qualitative analysis
of RNA was performed by microcapillary electrophoresis
using the Agilent 2100 Bioanalyzer (Expert software ver-
sion B.02.08) with an RNA Nano Chip (Agilent Tech-
nologies, UK). For each sample, whenever possible, 1 pg
of RNA was used as the template in the reverse tran-
scription reaction using Transcriptor First Strand cDNA
Synthesis Kit (Roche, Germany) in a 20 pl volume with
random hexamer primers, according to the manufac-
turer's protocol.

gPCR and gene expression analysis

Gene expression levels were determined by RT-qPCR on
the CFX96 Real-Time System (Bio-Rad, USA) with spe-
cific TagMan Gene Expression Assays (Applied Biosys-
tems/Life Technologies, USA) containing validated
primers and probe set spanning exon-exon boundaries
for detection of TWIST1I (Hs00361186_ml), SNAIL
(Hs00195591_m1) and SLUG (Hs00950344_m1). Relative
expression values of each gene were calculated by the
delta-delta-C; method normalized to the reference gene
GAPDH (glyceraldehyde 3-phosphate dehydrogenase,
Hs99999905_m1), and non-cancer breast tissue as a cali-
brator with the use of qBasePLUS software (Biogazelle,
ver. 2.0).

Stability of four reference genes: S-actin (Hs99999903_m1),
HPRT (Hs99999909_m1), GAPDH and YWHAZ (Hs03044281_g1)
was evaluated in 11 breast cancer samples. GAPDH was
chosen as a reference gene based on its highest expression
stability measure (M) calculated in GeNorm.

The qPCR cycling profile was programmed as follows:
predenaturation at 95°C for 10 minutes, followed by am-
plification phase, which included denaturation at 95°C
for 15 seconds, annealing and extension at 60°C for
60 seconds for 45 cycles. 40 ng of cDNA in 4 pl was
added per reaction and mixed with 10 pl of TagMan
Universal PCR Master Mix (Applied Biosystems/Life
Technologies, USA), 5 pl of water and 1 pl of specific
primer and probe mix (20x concentrated). To verify that
the qPCR signals derived from cDNA, not genomic
DNA, for each gene tested a control without reverse
transcriptase in the RT reaction (no RT control) was
included. Each sample was analyzed in duplicate, and
the average C, value of duplicates was used as a quanti-
tative value. The specificity of the polymerase chain re-
action was confirmed by gel electrophoresis using 1.5%
agarose gel containing Gel-Red (Gentaur, Belgium) and
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viewed under ultraviolet illuminator Gel Doc (Bio-Rad,
USA). Positive result was defined when a relative gene
expression was higher than median expression in all
tumor samples.

RT-qPCR standardization/validation

To evaluate the suitability of the low-level transcripts ex-
pression analysis in FFPE samples, we standardized the
method and compared it with the gold-standard — the ex-
pression in frozen samples. To ensure RT-qPCR experi-
ments’ relevance and accuracy, analytical sensitivity was
measured in accordance with MIQE (Minimum Informa-
tion for Publication of Quantitative Real-Time PCR
Experiments) guidelines [20]. For 30 matched frozen and
FFPE primary tumors the following parameters were eval-
uated for the TWIST1 gene, as it has been expressed at
lowest levels throughout all our experiments:

1. Efficiency of the reaction

2. Sensitivity: limit of detection (LOD) and limit of
quantification (LOQ)

3. Intra- and interassay variation

Detailed description of the standardization method-
ology is described in the Additional file 1.

Immunohistochemistry (IHC) on tissue microarrays (TMA)
TMAs were prepared as described before [21]. Protein
expression was examined using antibodies against
TWIST1 [ab50581, Abcam], SNAIL [ab85936, Abcam],
SLUG [ab38551, Abcam], E-cadherin [Nch 38, Dako],
vimentin [V9, Dako], HER2 [HercepTest Kit, Dako], ER
[1D5, Dako], PgR [636, Dako] and peroxidase-based de-
tection system (Novolink Polymer Detection System,
Novocastra, UK) in accordance with the manufacturer’s
guidelines. Antigen retrieval was carried out by heat
induced epitope retrieval at pH 6. Positive and negative
controls for each marker were used according to the
supplier’s data sheet. The material was analyzed using a
transmission light microscope (Olympus BX 41) with
400x magnification. Two cores from each tumor were
assessed individually. IHC analysis was performed by
two independent observers blinded to the clinical data
and patients outcomes. Discordant results were reviewed
to achieve agreement. The same protocol of staining and
scoring was used for both PT and LNM. There was half
a year difference in staining of PT and LNM.

ER and PgR were scored according to classical Allred
system with cut-point 3 for positive result, while HER2 -
according to HercepTest criteria, with 3+ score defining
positive result. For vimentin and E-cadherin positive re-
sult was considered when 10% or more cells stained
positively [22,23]. For TWIST1, SNAIL and SLUG only
nuclear staining was considered with a 10% cut off value
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of positivity [22-24]. Results were considered concordant
if PT and LNM were both positive or both negative,
other combinations were considered discordant and
denoted the conversion rate.

Statistical analysis

To fulfill the primary objective of determining the prob-
ability of conversion in biomarker status, 28 paired sam-
ples were required to detect a discordance rate of 20%
with 80% power using a one-sided alpha of 5%.

Concordance between PT and LNM was measured by
estimating Cohen’s kappa coefficient (k) with Medcalc
software, version 12.2.1.0 (MedCalc Software, Belgium).
The level of agreement based on k values was assessed
using the Landis and Koch criteria: 0.00-0.20, slight
agreement; 0.21-0.40, fair agreement; 0.41-0.60, moder-
ate agreement; 0.61-0.80, substantial agreement; and
0.81-1.00, almost perfect agreement [25].

Categorical variables were compared by Fisher’s exact
test, and continuous variables were compared by the
Spearman’s rank order test. Kaplan-Meier curves for
disease-free survival (DFS) and overall survival (OS)
were compared using F-Cox test. DFS was defined as the
time from surgery to an event (local or distant relapse,
second malignancy or death, whichever came first) or
censoring. A censoring was defined as lost to follow-up
or alive without relapse at the end of follow-up. Hazard
ratios (HRs) with 95% confidence intervals (95% CI)
were computed using Cox regression analysis. Signifi-
cance was defined as P <0.05. STATISTICA software
version 10.0 for Windows was used for all statistical
analyses.

Results

The median age of the patients was 56.5 years (Table 1).
The estimated median follow up, as calculated by the
reverse Kaplan-Meier method [26], was 4.2 years. The
median follow up of patients who did not have an event
(n =34) was 4.1 years, and those with an event — 2.6 years
(n=10). The average number of metastatic lymph nodes
was 5.2 (range 1-27).

Of the 44 paired PT and LNM, 29 pairs (66%) had
amplifiable RNA (Figure 1A). Relative expression of
TWIST1, SNAIL and SLUG was significantly higher
in LNM compared to PT: 1.75+241 vs. 0.25+0.32
for TWISTI (P <0.00001), 2.8 +3.06 vs. 0.96 +2.32 for
SNAIL (P<0.00001), 1.03+0.93 vs. 0.16+0.19 for
SLUG (P <0.00001). The conversion rates in TWISTI,
SNAIL and SLUG mRNA status between PT and
paired LNM were 52%, 28% and 45%, respectively
(Table 2). Detailed representation of all the analyzed
markers conversion rates is shown in Additional file 2:
Table S1.
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Variable Number of cases N =44 %
Age (years)
median 56.5
range 33-77
T stage
T1-2 38 86.4
T3-4 6 136
Missing data
N stage
N1 21 48
N2 18 41
N3 5 1
Missing data
ER status
Negative 17 386
Positive 25 56.8
Missing data 2 46
PgR status
Negative 15 341
Positive 27 61.3
Missing data 2 46
HER2 status
Negative 24 54.5
Positive 12 273
Missing data 8 18.2
Histological type
Ductal 34 773
Lobular 6 136
Other 4 9.1
Missing data
Grade
G1-2 36 818
G3 8 182
Missing data

IHC staining was successful for paired samples of
PT and LNM for TWIST1, SNAIL and SLUG in 88%,
86% and 88% of cases (Figure 1B). Cores were miss-
ing, folded, or contained no invasive cancer in 12%,
14%, and 12%, respectively. Exemplary photographs of
immunohistochemical staining of lymph nodes metas-
tases are presented in Additional file 3: Figure S3 and
in Additional file 4: Figure S4.

The conversion rates in TWIST1, SNAIL and SLUG
protein status between PT and paired LNM were 46%,
53% and 28%, respectively (Table 2). Negative-to-positive
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N
A Available LNM samples
(n=42)
Low RNA
concentration
n=6
No PCR product
[ detected
n=2
TWIST expression analyzed SNAIL expression analyzed SLUG expression analyzed
(n =36; 81%) (n = 38; 86%) (n =38; 86%)
Low RNA Low RNA Low RNA
concentration in PT concentration in PT concentration in PT
n=7 n=9 n=9
Matched pairs of PT and LNM
(n = 29; 66%)
B Available LNM samples
(n=44)
Samples lost in Samples lost in Samples lostin Samples lost in Samples lost in Samples lost in Samples lost in
— TMA pr i — TMA pr — TMA processing — TMA pr — TMA — TMA processing [— TMA processing
n=1 n=2 n=4 n=2 n=3 n=3 n=2
TWIST SNAIL SLUG PgR expression ER expression HER2 E-cadherin Vimentin
expression expression expression analyzed analyzed pressi pi expression
analyzed analyzed analyzed (n=42; 95%) (n=41; 93%) analyzed analyzed analyzed
(n=43; 98%) (n =42; 95%) (n=40; 90%) (n=41; 93%) (n =44; 100%) (n=42; 95%)
Samples lost in Samples lost in Samples lostin Samples lost in Samples lost in Samples lost in Samples lost in
[ PTTMA | PTTMA PT TMA PTTMA PTTMA PTTMA PTTMA
processing pr i ~ pr g |~ processing [~ processing |~ processing [~ processing
n=4 n=4 n=1 n=1 n=1 n=7 n=4
Matched pairs Matched pairs Matched pairs Matched pairs Matched pairs Matched pairs. Matched pairs Matched pairs
of PT and LMN of PT and LMN of PT and LMN of PT and LMN of PT and LMN of PT and LMN of PT and LMN of PT and LMN
samples samples samples samples samples samples samples samples
(n=39; 88%) (n = 38; 86%) (n=39; 88%) (n=41; 93%) (n = 40; 90%) (n=34; 81%) (n=40; 77%) (n=42; 95%)
Figure 1 Flow chart of samples analyzed with A) RT-qPCR and B) IHC. Abbreviations: PT — primary tumor, LNM - lymph node metastasis,
TMA - tissue microarrays, ER — estrogen receptor, PgR — progesterone receptor, n — number of cases.
- J

Table 2 Biomarkers’' conversion rate between paired PT and LNM

Marker N Positive in PT Positive in LNM Conversion rate PT — LNM

N (%) N (%) (=)= (+) N (%) (+) — (=) N (%) N (%) kappa coefficient (95% Cl)
mRNA TWIST1 29 14 (48) 17 (59) 9(31) 6 (21) 5(52) —0.03 (-0.38-0.33)
mRNA SNAIL 29 16 (55) 14 (48) 3(10) 5(17) 8(28) 045 (0.13-0.77)
mRNA SLUG 29 14 (48) 15 (52) 6 (21) 7 (24) 3 (45) 0.1 (-0.26-047)
TWIST1 39 15 (38) 17 (44) 10 (26) 8 (20) 8 (46) 0.05 (-0.26-0.36)
SNAIL 38 15 (39) 29 (76) 17 (45) 3(8) 20 (53) 0.05 (-0.18-0.29)
SLUG 39 10 (26) 7 (18) 7(18) 4 (10) 11 (28) 0.18 (-0.16-0.52)
Vimentin 42 5012 4 (10) 102 2(5 3(7) 063 (0.24-1)
E-cadherin 40 35 (87) 35(87) 0(0) 0(0) 0(0) 1(1.0-1.0)
ER 40 23 (57) 28 (70) 6 (15) 13) 7 (18) 0.63 (0.39-0.87)
PgR 41 26 (63) 32 (78) 9(22) 3(7) 12 (29) 0.31 (0.02-06)
HER2 34 5(15) 6(18) 103 0(0) 1) 0.89 (0.68-1)

Conversion described as the number (percentage) of discordant cases and kappa coefficient of concordance.
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conversion of all TF occurred more frequently than
positive-to-negative one (Table 2).

[HC staining of TWIST1 protein was concordant with
expression levels of TWIST1 mRNA measured by RT-qPCR
in 83% (P =0.002). No correlation was observed for other
TFs. The conversion rates of E-cadherin and vimentin
were much lower (0% and 7%, respectively), while the
HER?2, ER and PgR conversion occurred in 3%, 18% and
29% of cases, respectively.

Expression of TWIST1, SNAIL and SLUG on mRNA
and protein level in PT and LNM was correlated with
the number of involved lymph nodes. Increased num-
ber of involved lymph nodes (more than 3) correlated
with elevated expression of TWIST1 protein in LNM
(P=0.02) and showed a trend towards increased

expression of TWISTI mRNA in LNM (P =0.07) and
SNAIL protein in LNM (P =0.07) (in Additional file 5:
Table S2).

Increased mRNA expression of TWISTI and SNAIL
in LNM was associated with shorter OS (P =0.04 and
P =0.02, respectively) and DFS (P=0.02 and P =0.01,
respectively), whereas their expression in PT had no
prognostic impact (Figure 2). Negative-to-positive switch
of SNAIL protein correlated with shorter OS and DFS
(P=0.02 and P =0.04, respectively) (Figure 2). SNAIL
protein negative-to-positive switch was associated with
significantly increased HR for both OS (HR = 4.6; 1.1-
18.7; P = 0.03) and DFS (HR = 3.8; 1.0-48.7; P = 0.05).
Conversion of ER, PgR and other biomarkers had no sig-
nificant impact on survival.
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Table 3 Comparison of RNA quantity, quality and RT-
qPCR performance for FF and FFPE derived templates

FF FFPE P value
RNA yield [ng/1 mg tissue]* 210+ 217 227 +159 NS
median 260/280 ratio 197 1.98
RIN* 95+06 21£05 <0.0001
LOD 0.043 0.048
LOQ 0.143 0.147
efficiency of qPCR 95.5% 94.3%
average Ct* 299+ 2.1 354+27 <0.0001
interassay variation CV 12.96% 23.34%
intraassay variation CV 9.83% 21.65%

* Data are given as mean + standard deviation.

Abbreviations: FF fresh frozen specimens, FFPE formalin-fixed paraffin-
embedded specimens, RIN RNA integrity number, LOD limit of detection, LOQ
limit of quantification, CV coefficient of variation, NS not significant.

RT-qPCR standardization results

RNA extracted from FF material had better quality than
from FFPE, as presented by higher mean RIN 9.5+ 0.6
vs. 2.1 +0.5 (Table 3 and in Additional file 1: Figure S1).
The efficiencies of the post-PCR TWISTI standard amp-
lification reactions were comparable: 95.5% for FF and
94.3% for FFPE material. For LOD and LOQ calculation
the following values were taken: slopes of the generated
standard curves (in Additional file 1: Figure S2) for rela-
tive TWISTI expression level in FF (0.977) and FFPE
(1.218) and SD of TWIST1 relative expression level in FF
(0.014) and FFPE (0.018). In case of FFPE tissues
TWISTI LOD was 0.048 and LOQ 0.147, for FF tissues
0.043 and 0.143, respectively. Intra- and interassay vari-
ation in FF samples was: 9.83% and 12.96%, respectively.
For FFPE samples intra- and interassay variation equaled

Page 7 of 11

21.65% and 23.34%, respectively. The expression level of
each gene was significantly higher in the FF tissues than
in FFPE tissues (Figure 3). For SNAIL and SLUG the
expression correlated between FFPE and corresponding
FF samples (R=0.58, P=0.001; R=0.44, P=0.02, re-
spectively). For TWISTI the correlation was borderline
(R=0.35, P=0.07).

Discussion

Despite the years of routine use of lymph node dissec-
tion in breast cancer management, inspired by Halstedt
[27], our understanding of the role of lymph nodes in
the metastatic process is still marginal. The analysis of
pre-selected subpopulations of cancer cells found in
lymph nodes metastases could provide insights into bio-
logical background of cancer progression. Our work
explored patterns of conversion in classical and EMT-
related biomarker status between primary breast tumors
and corresponding synchronous axillary lymph node
metastases to determine whether phenotypic variability
is associated with different clinical outcome.

Numerous studies have shown discordant expression
of classical molecular markers, ER, PgR and HER2 be-
tween the PT and both lymph nodes and distant metas-
tases [28-32]. Discordance in ER and PgR status has
been demonstrated within the range of 10-32% and
34%—-41% cases, respectively [28,33-35] and 3%—-24% for
HER?2 status [28,32,34-36] when PT were compared with
metastatic relapse. Generally, lower discordance rates
have been observed in LNM, as showed in individual
studies [30,31,37] and confirmed in recent meta-analysis
on HER2 status in primary and metastatic cancer, in-
cluding 26 studies of 2520 subjects [38]. However, there
are also reports showing the opposite, as exemplified by
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Figure 3 Expression level of TWIST1, SNAIL, SLUG and GAPDH in FFPE and FF specimen presented as two to the power of minus Ct 2.
Asterisk (*) indicates statistically significant difference (p < 0.0001) in average expression levels between FF and FFPE samples. Bars represent standard
errors. As recommended by Livak and Schmittgen [57] statistical analysis and errors were calculated on transformed (2°“!) data instead raw Ct values.
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the study of Aitken et al, who found different breast/
node status of at least one receptor (ER, PgR or HER2)
in almost 47% of cases [29].

Receptor discordance has been frequently associated
with poor survival [32,34,35], what has been attributed
to the inappropriate use of hormone and targeted ther-
apy prescribed based on the characteristics of PT [35] or
selection of tumors with more unstable phenotype and
therefore more aggressive behavior [28]. Adverse impact
of receptor discordance was abolished, when treatment
was modified according to the results of metastatic bi-
opsy [28]. In general, the cancer management scheme in
14-20% patients was changed on the basis of metastasis
biopsy [28,33,39]. The growing body of evidence sup-
ports reassessment of ER, PgR and HER?2 at the time of
relapse diagnosis to tailor the most effective treatment
for each patient at all times [40].

Until now, main research focus has been put on the
discordance of ER, PgR and HER2 status between the
PT and metastasis, as discussed above. Some studies
examined cell proliferation, differentiation and apoptosis
markers [30,37,41]. However, to the best of our know-
ledge there is no data available on the status of EMT
regulators: TWIST1, SNAIL and SLUG in LNM com-
pared to PT. The clinical outcome in relation to these
biomarker status in lymph nodes has not yet been
reported.

Our results show frequent conversion of TWISTI,
SNAIL and SLUG status between PT and LNM, occur-
ring both at mRNA and protein level (within the range of
28-53% of cases). Expression levels of EMT-TFs were sig-
nificantly higher in LNM compared to PT. This could be
explained by the higher frequency of pre-selected aggres-
sive subpopulations of cancer cells resulting from EMT
present in LNM than in the PT, where these aggressive
cells constitute a minority of cells [16,17] and therefore
might not be easily captured. It seems that indeed mo-
lecular profile of LNM might be a surrogate marker of ag-
gressive phenotype of the PT, as postulated [3].

We have found that both the elevated level of TFs in
LNM and their negative-to-positive switch were asso-
ciated with poor clinical outcome. Increased TWIST1
and SNAIL expression in LNM correlated with shorter
OS (P=0.04 and P =0.02, respectively) and DFS (P =
0.02 and P =0.01, respectively), whereas their expression
in PT had no prognostic impact. Negative-to-positive
conversion of SNAIL status also correlated with worse
survival compared to unchanged status (OS: HR = 4.6;
1.1-18.7; P = 0.03; DFS: HR = 3.8; 1.0-48.7; P = 0.05). Nu-
merous studies show poor prognostic impact of
increased expression of TWIST1, SNAIL and SLUG in
PT [12-14,42-44]. The contradictory results have also
been reported [24]. But no study have examined their
clinical outcome in lymph nodes until now.
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We also described the protein status of EMT markers
— E-cadherin and vimentin in PT and LNM. We have
observed no or little change in E-cadherin and vimentin
status between PT and LNM. Our results and the results
of other groups [45] show that E-cadherin is at least as
frequently expressed in LNM as in primary tumors and
it is not downregulated in LNM, what would be
expected if EMT was involved. However, this observa-
tion does not exclude the possibility that E-cadherin
undergoes transient downregulation during EMT and is
re-expressed at the stage of circulating tumor cells to fa-
cilitate adhesion and metastases formation [46]. Similar
to other groups we observed that vimentin is rarely
expressed in LNM [47] or is reduced in comparison to
the PT [48]. However, expression of vimentin in metas-
tases was also shown to be heterogeneous, metastasis
size and side dependent [49], what supports the notion
that vimentin expression is transient and environment-
controlled. As the observed change in EMT-TFs status
between PT and LNM is a new finding, a question arises
if it results from true biological variation or from incon-
sistent measurement.

There are many hypotheses that could explain biomar-
kers change between PT and corresponding metastasis
at biological level. Clonal selection, with subsequent
clonal expansion during tumor progression, has been
proposed as the mechanism inducing the differences in
the genetic composition of primary and metastatic
breast cancer [50,51]. Clonal selection may be related to
intra-tumor heterogeneity [52,53] and/or to various se-
lective pressures such as the immune surveillance of the
host, stromal or growth factor interactions, nutritional
deficiencies, hypoxia, and therapy. Indeed, Niikura
reported recently a significantly higher discordance rate
in HER2 status among women who received chemother-
apy than among those who did not [32]. To the bio-
logical variation between primary and metastatic tumor
could also contribute independent evolution of an early
stem cell clones in both sites, instead of a linear progres-
sion from the PT to metastasis [54].

The discordance between PT and LNM may also be
caused by inconsistent measurement resulting from nu-
merous technical issues [55]. For example, recent meta-
analysis revealed 15 pre-analytical variables capable of
impacting IHC, including fixation delay, fixative type,
time in fixative, reagents and conditions of dehydra-
tion, clearing, and paraffin impregnation, and conditions
of slide drying and storage [56]. Analytical procedures of
antigen retrieval, immunostaining and interpretation of
results add additional variance to the final result [55].
To ensure maximal consistency, in our study all speci-
mens were from single cancer hospital, examined by the
same two observers with the same protocol of staining
and scoring for PT and LNM. Additionally, independent
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observers were blinded to the clinical data and patient
outcome.

The results should be, however, interpreted with cau-
tion because there is a possibility of selection bias due to
retrospective character of the study. Another limitation
might be the small sample size. But even with that num-
ber of patients the study had still sufficient power to de-
tect reliably the 20% difference in biomarker status, and
all of the discussed differences are above that value. It
has been claimed that to reduce reporting errors the use
of confirmatory test is recommended [40]. To strengthen
our study we confirmed increase of EMT-TFs at both
mRNA and protein level with RT-qPCR and IHC, re-
spectively. Taking into consideration discussed biological
and technical issues, it seems that current study demon-
strates true biological variation in TWIST1, SNAIL and
SLUG in PT and LNM.

To make gene expression most reliable we have care-
fully validated the method we used. Since gene expres-
sion profiling in lymph nodes could only be examined in
formalin-fixed, paraffin-embedded (FFPE) material, we
have undertaken the methodological substudy to assess
the reliability of obtained results of RT-qPCR. We aimed
to investigate the feasibility of RT-qPCR-based gene ex-
pression profiling of low-level transcripts TWISTI,
SNAIL and SLUG in FFPE tissues compared to matched
frozen counterparts.

Expression of genes associated with EMT is transient
and space-limited [19], what makes them specially diffi-
cult to study in clinical setting. Technical difficulties that
interfere with reliable gene expression analysis can be
particularly prominent in FFPE samples, in which RNA
is degraded and chemically modified, resulting in lower
RNA Integrity Number (RIN) values and rendering it in-
accessible for amplification.

In order to examine to what extent tissue fixation influ-
ences RT-qPCR based methods we have measured sensi-
tivity of the method in use by defining limits of detection
and quantification (LOD and LOQ). No sample presented
relative gene expression value of TWIST1 lower than cal-
culated LOD and LOQ, which confirms the reliability of
our data, as experimental results less than the theoretic-
ally possible LOD should never be reported.

The overall profile of TWISTI, SNAIL and SLUG ex-
pression was similar to that generated with well-
preserved RNA from matched FF tissue. We presume
however, that decreased functionality of RNA (due to
degradation or modification) is the underlying factor re-
sponsible for increased intra- and interassay variation
performed on FFPE samples. This process did not affect
the sensitivity of the method as the assay measures rela-
tive quantity of the gene expression, which does not
change due to similar degree of reference gene and
examined genes degradation.
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Thus, despite low RIN values RNA from FFPE samples
may work fine in quantitative PCR in terms of specificity,
sensitivity and reproducibility, even for low-level tran-
scripts, as exemplified by TWIST1, SNAIL and SLUG.

Conclusions

In conclusion, this is the first study to date demonstrat-
ing that samples derived from LNM are enriched in cells
with more aggressive phenotype marked by elevated
levels of EMT regulators. High expression of these mar-
kers correlates with increased number of involved lymph
nodes and decreased survival of breast cancer patients.
We postulate that examination of molecular profile of
lymph node metastasis could provide information about
aggressiveness potential of the PT and the characteristics
of seeded cells. It therefore has the potential to be devel-
oped into a powerful prognostic biomarker in breast
cancer, ensuring an accurate prognosis and treatment se-
lection. A prospective study of larger cohort of patients
would be necessary to confirm the clinical significance
of the changes in EMT-related molecular markers.
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Additional file 1: Figure S1. Qualitative analysis of RNA from matched
FFPE and FF samples. In microcapillary electrophoresis FF tissues afforded
a clear band of complete fragments derived from 28S and 18S rRNA. The
RNA fragments in FFPE are highly degraded. Samples from five
representative tumors are shown. Figure S2. Standard curves for TWIST1
relative expression levels in: A) FF and B) FFPE tissues.

Additional file 2: Table S1. Summary of the examined marker
conversion status in matched LNM and PT. Green, cases with negative-to-
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