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considered palliative, as disease recurrence is the rule 
rather than the exception. Coventional treatment modali-
ties include systemic chemotherapy as well as cytore-
ductive surgery, both of which are plagued with limited 
efficacy and significant toxicity. Intraperitoneal chemo-
therapy holds theoretical advantages in selected patients, 
although there is mixed evidence regarding its contribu-
tion to oncologic outcome in most cancer types [3–6].

Given the limitations of conventional modalities in 
treating PC, there is a pressing need to develop novel and 
innovative strategies for this metastatic pattern. Immu-
notherapy presents an obvious candidate approach, to 
which the peritoneal space may be well suited as a dis-
tinct immune environment segrated from the systemic 
circulation. Regional immunotherapy directed toward 
the peritoneal cavity has been explored as a an alterna-
tive strategy to systemic therapy and complementaty to 
cytoreductive surgery. Such strategies include the use 
of cytokines, monoclonal antibodies, immune check-
points, vaccines, viral oncotherapy and adoptive cellular 

Background
Peritoneal carcinomatosis (PC) is a late manifestation 
of abdominopelvic malignancies, commonly associated 
with gastrointestinal and gynecological cancers, such as 
ovarian, colorectal, and pancreatic cancer [1, 2]. Marked 
by poor prognosis and limited treatment options, PC 
causes severe symptoms related to intestinal obstruc-
tion and nutritional compromise. Treatment is generally 

Journal of Translational 
Medicine

*Correspondence:
Patrick L. Wagner
patrick.wagner@ahn.org
1Translational Hematology & Oncology Research, Enterprise Cancer 
Institute, Cleveland Clinic, Cleveland, OH 44106, USA
2Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, 
PA 15212, USA
3Center for Proteomics & Artificial Intelligence, Center for Clinical Mass 
Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh,  
PA 15224, USA
4University of Pittsburgh School of MedicineDepartment of 
Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; 
Allegheny Health Network Cancer Institute, Pittsburgh, USA

Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited 
treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble 
receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging 
potential therapeutic target. This review article provides a comprehensive overview of the current understanding 
of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 
pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion 
and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway 
in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and 
appendiceal cancer, and mesothelioma.
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therapeutics [7–12]. In spite of a strong rationale, none 
of these therapeutic modalities has gained footing in rou-
tine clinical management for PC patients to date.

In order to improve the prospects for success in using 
regional therapy to treat PC, we and others have recently 
sought to better define the immune milieu of the peri-
toneal environment [13, 14]. It is hoped that by further 
characterizing the baseline physiologic status of the peri-
toneal environment and the changes that occur during 
carcinomatosis, we will identify potential targets and 
novel combination strategies to address this metastasis-
prone anatomic compartment [15]. Based on our discov-
ery of high concentration of both IL-6 and its cognate 
soluble receptor in the peritoneal cavity of PC patients 
[16, 17], we have identified the IL-6 signalling pathway 
as one such potential target [18–21]. Recent studies have 
shed light on the potential association between IL-6 and 
the development of PC, as well as the role of IL-6 in peri-
toneal tumour dissemination, mesothelial adhesion and 
invasion, stromal invasion and proliferation, and immune 
response modulation [22–25]. Furthermore, the use of 
immunotherapy in the treatment of PC has shown signif-
icant promise in preclinical and clinical studies [26, 27].

In this review article, we will provide an overview of 
the current understanding of the integral role of IL-6 in 
the development and progression of PC and discuss the 
potential therapeutic implications in cancers that com-
monly cause PC, including ovarian cancer, gastric cancer, 
colorectal cancer and ovarian cancer. By reviewing the 
current state of knowledge on the impact of the IL-6 axis 
in PC biology, we aim to reveal or expose opprotunities 
to target this pathway intra-peritoneally in patients with 
PC.

The intricacies of IL-6 biology: from signaling pathways to 
therapeutic potential
IL-6 is a pleiotropic master cytokine with normal physi-
ologic functions, as well as a central role in a number 
of pathologic states including inflammation, infectious 
disease, autoimmune disorders and cancer [28, 29]. IL-6 
serves as a diagnostic and prognostic biomarker in sev-
eral diseases, aiding in detection, monitoring, and pre-
dicting treatment response [30]. The diverse effects of 
IL-6 on cellular signaling and immune responses make 
it an attractive target for developing effective therapies 
for these pathologic conditions [31]. The downstream 
signaling pathways activated by IL-6 are multifaceted 
and context-dependent. Classical signaling involves 
the binding of IL-6 to its membrane-bound recep-
tor, the IL-6Rα-gp130 complex, leading to activation of 
the JAK/STAT3 and MAPK pathways and subsequent 
downstream gene transcription via NF-κB [32, 33]. The 
membrane-bound IL-6R complex is composed of two 
subunits, one of which (IL-6Rα) is specific to IL-6 and 

the other, gp130, is shared among all type I cytokine 
family members [34, 35]. Trans signalling occurs when 
IL-6 binds to the soluble form of IL-6Rα (sIL-6Rα) [36]. 
Because gp130 expression is far more widespread among 
a variety of cell types, trans signaling can affect a much 
broader set of target tissues, as may be the case in the 
peritoneal cavity, since both IL-6 and sIL-6Rα are present 
at extremely high concentration in patients with PC [21].

In the context of inflammation [37], infectious dis-
ease, or autoimmunity, IL-6 signaling is a key stimulus 
for innate immune responses and, when dysregulated, 
is implicated in the pathogenesis of autoimmune disor-
ders [38, 39]. In cancer, IL-6 signalling promotes tumor 
growth, metastasis [40, 41] and immune evasion [42]. 
The central position of IL-6 at the intersection between 
inflammation, innate immune response, and cell pro-
liferation offers significant opportunities for therapeu-
tic intervention [43]. Monoclonal antibodies directed 
against IL-6 or its receptor, as well as small molecule 
inhibitors of the IL-6 signaling pathway are being inves-
tigated as potential therapeutic modalities [44] (Table 1). 
Combining antagonists of the IL-6 pathway with other 
treatment approaches holds promise for enhancing effi-
cacy and improving patient outcomes [45], and ongoing 
clinical trials are evaluating the safety and efficacy of IL-6 
inhibition in cancer patients [44]. However, challenges 
such as treatment resistance and patient heterogeneity 
need to be addressed in order to further optimize IL-
6-based therapeutics.

IL-6 in peritoneal pathophysiology
The peritoneal cavity serves as a crucial site for immune 
responses and plays a significant role in maintaining 
homeostasis within the body [46]. Within the peritoneal 
cavity, IL-6 is produced by several cell types. Mesothelial 
cells, a monolayer of specialized cells lining the peritoneal 
cavity, are known to secrete IL-6 in response to inflam-
matory signals [47, 48]. Resident macrophages within the 
peritoneal cavity have also been shown to produce IL-6 
in response to various stimuli, presumably as an early 
response mechanism to breaches of the intestinal tissue 
due to injury or by invading pathogens [49]. Fibroblasts 
within the peritoneal cavity are also capable of produc-
ing IL-6 upon activation [50, 51], as are neutrophils in 
the setting of early response to inflammation or infection 
[52]. T lymphocytes, including CD4 + and CD8 + T cells, 
infiltrate the peritoneal cavity during immune responses 
and can produce IL-6, either directly or indirectly, 
depending on the context and activation status [53, 54]. 
Other infiltrating immune cells, such as activated B cells 
[55, 56], natural killer (NK) cells, and dendritic cells, have 
been implicated in IL-6 production within the peritoneal 
cavity, albeit to a lesser extent [57]. Within these cells, 
signaling pathways, such as NF-κB, STAT3, AP-1, MAPK, 
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and PI3K-Akt, mediate IL-6 production and downstream 
effects [58–60]. While the precise molecular mechanisms 
governing IL-6 production by different peritoneal cell 
populations remain poorly characterized, a better under-
standing of these processes could potentially facilitate the 
development of therapies aimed at modulating IL-6 pro-
duction and its downstream effects fig. 1

IL-6 exerts diverse effects in different peritoneal dis-
eases. As a central cytokine, its effects have been docu-
mented to promote inflammatory processes, immune 
responses, and tumor biology, and to contribute to the 
pathogenesis and progression of peritonitis, peritoneal 
dialysis-related complications, ascites, peritoneal fibro-
sis, and peritoneal cancer, as referenced below. While 
IL-6 exhibits distinct roles in various conditions, com-
mon effects are shared among them. IL-6 promotes the 
recruitment and activation of immune cells [61], resulting 
in an inflammatory response within the peritoneal cav-
ity. This inflammatory environment can contribute to tis-
sue damage, fibrosis, and disease progression [62, 63]. In 
peritonitis, IL-6-induced immune responses contribute 
to leukocyte recruitment and activation [64]. However, 
excessive or dysregulated immune responses mediated by 
IL-6 can also contribute to the chronic inflammation and 
tissue damage seen in peritoneal dialysis-related compli-
cations and peritoneal fibrosis [65]. IL-6 stimulates the 
production of extracellular matrix components, such 
as collagen, leading to fibrotic tissue deposition. Exces-
sive fibrosis can impair organ function and compromise 

peritoneal dialysis efficiency, and elevated levels of IL-6 
have been associated with poor prognosis in peritoneal 
fibrosis [66, 67]. In peritoneal dialysis-associated perito-
nitis, inflammatory factors and fibrotic mediators reduce 
the secretion of decorin by peritoneal mesothelial cells 
(PMCs), causing excessive deposition of fibronectin 
secreted by PMCs and fibrosis [68–70]. Inhibition of IL-6 
signaling, either through monoclonal antibodies or small 
molecule inhibitors, has shown promise in preclinical 
and clinical studies for the management of inflammation 
and fibrosis [43]. In endometriosis, the IL-6 pathway has 
long been implicated as a central driver of fibrotic pathol-
ogy [71–73], with more recent studies identifying per-
sistent activation of STAT3 via IL-6 trans-signaling as a 
driving mechanism, and highlighting IL-6 inhibition as a 
potential therapeutic intervention [74].

The impact of IL-6 on tumor biology: hallmarks and 
progression
Circulating IL-6 has been defined as a prognostic marker 
in various cancer types, implying significance in tumor 
biology [75]. The classic and trans-signaling pathways of 
IL-6 provide insights into the intricate mechanisms by 
which IL-6 may contribute to cancer progression [76]. 
The prototypical hallmarks of cancer biology, as defined 
by Hanahan and Weinberg [77], encompass essential 
characteristics of tumor development and progression, 
including: sustaining proliferative signalling, evading 
growth supressors, avoid immune destruction, enabling 

Table 1 IL-6 Pathway inhibitors in clinical use or investigation
Drug Mechanism of Action Stage of 

Development
Company Ref.

Tocilizumab Monoclonal antibody interleukin-6 (IL-6R) receptor Approved Roche/Genentech  [252, 253]
Sarilumab Monoclonal antibody targeting nterleukin (IL)-6 receptors 

(sIL-6Rα and mIL-6Rα)
Approved Sanofi/Regeneron  

[254–256]
Vobarilizumab Monoclonal antibody interleukin-6 (IL-6) receptor Phase II/III Ablynx  [257]
Satralizumab Monoclonal antibody interleukin-6 (IL-6) receptor Phase III Roche  [258]
NI-1201 Monoclonal antibody interleukin-6 (IL-6) receptor Preclinical Tiziana  [259]
Olokizumab Monoclonal antibody interleukin-6 (IL-6) receptor Phase III R-Pharm  [260]
Ziltivekimab Monoclonal antibody directed against the IL-6 ligand Phase II Novo Nordisk  [261]
Canakinumab Monoclonal antibody targeting IL-1β Phase II Novartis  [262]
GSK3196165 Small molecule inhibitor of IL-6 Phase II GlaxoSmithKline  [263]
Atlizumab(MRA) Recombinant human anti-interleukin-6 (anti-IL-6) recep-

tor monoclonal antibody
phase I/II Chugai Pharmaceutical  

[264–266]
Elsilimomab(B-E8) Monoclonal antibodies against interleukin-6 preclinical Diaclone  [267]
Levilimab(BCD-089) IL-6 receptor inhibitor phase III phase III  [268]
Olamkicept (sgp130Fc) IL-6 receptor antagonist Phase II Olam Labs  [269, 270]
Clazakizumab Anti–IL-6 Antibody Phase II/III CSL Behring/Vitaeris/ 

Novartis
 [271, 272]

Siltuximab Monoclonal antibody targeting IL-6 Approved EUSA Pharma  [273]
Sirukumab Monoclonal antibody targeting IL-6 Phase III Janssen  [274, 275]
Leronlimab Monoclonal antibody targeting CCR5 Phase III CytoDyn  [276]
Emapalumab Monoclonal antibody targeting IFN-γ Phase II/III Swedish Orphan Biovitrum 

(Sobi)
 [277]
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replicative immortality, tumor-promoting inflammation, 
activating invasion and metastasis, inducing or accessing 
vasculature, genome instability and mutation, resisting 
cell death, and deregulating cellular metabolism. In this 
section, we highlight mechanisms whereby IL-6 biology 
can influence a number of these central processes in can-
cer biology.

IL-6 plays a crucial role in sustaining proliferative sig-
naling in tumors that express IL-6Rα or gp130. IL-6Rα 
and gp130 expression have been characterized and cor-
related with prognosis in gastric, colorectal, and ovarian 
cancers, in which various downstream effector pathways, 
such as JAK-STAT, PI3K-Akt, and MAPK, led to mito-
genic effects [78–80]. In a number of in vitro and cell line 
experiments, targeted inhibition of IL6-Rα abrogated 
these effects, consistent with a model in which IL-6 is a 
driver of tumorigenesis in tumor types often associated 
with PC [81–87]. IL-6 is centrally involved in activating 
EMT and promoting invasion and metastasis in tumors 
[41]. In colorectal cancer, for example, IL-6 signalling via 
STAT3 results in repression of a micro-RNA (miR-34a), 

that in turn results in increased expression of EMT signa-
ture genes associated with invasion and metastasis, such 
as vimentin, SNAIL, SLUG and ZEB1, with concomm-
itant loss of E-cadherin [86].

While the direct relationship between IL-6 and 
genomic instability is not fully understood, IL-6-induced 
inflammation can contribute to this hallmark through 
various mechanisms. Firstly, IL-6 activates signaling 
pathways like JAK-STAT, which directly affects DNA 
repair processes, potentially leading to DNA damage 
accumulation and subsequent mutations [88]. Secondly, 
IL-6 promotes the recruitment and activation of immune 
cells, triggering the release of inflammatory media-
tors and reactive species that can cause oxidative DNA 
damage, increasing mutation risk [89]. Additionally, 
IL-6 modulates transcription factors involved in DNA 
repair and cell cycle regulation, disrupting DNA replica-
tion fidelity and increasing errors during synthesis [90]. 
Moreover, IL-6 influences the tumor microenvironment 
by promoting angiogenesis, EMT, and altering the extra-
cellular matrix, creating a hypoxic and nutrient-deprived 

Fig. 1 Overview of interleukin-6 (IL-6) impact on key hallmarks of cancer. IL-6 drives sustained proliferative signaling, activation of invasion and metastasis, 
and contributes to genome instability and immune evasion within the tumor microenvironment. Additionally, IL-6 enables replicative immortality, pro-
motes angiogenesis, exerts anti-apoptotic effects, and influences cellular energetics, collectively driving cancer progression and highlighting its pivotal 
role in tumor biology. Created with BioRender.com
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environment that further contributes to genomic insta-
bility and the selection of aggressive cancer cell popula-
tions [90, 91].

IL-6 has also been shown to promote angiogenesis via 
VEGF secretion by human peritoneal mesothelial cells, 
in the context of trans signalling (i.e., simultaneous expo-
sure to IL-6 and sIL6-Rα) [92], as well as in the context of 
tumor stromal fibroblast-secreted IL-6 acting in an auto-
crine fashion to drive VEGF expression in colorectal can-
cers [93]. IL-6 facilitates replicative immortality in cancer 
cells by influencing the equilibrium between cancer stem 
cells and non-stem cells through regulation of OCT-4 
gene expression [94]. IL-6 exerts anti-apoptotic effects, 
by potentiating expression of STAT3-driven genes such 
as BCL-xL and survivin [95]. BCL-xL is a member of 
the Bcl-2 family of anti-apoptotic genes which prevents 
mitochondrial release of cytochrome C, which cleaves 
caspases to initate the apoptotic cascade [96]. Survivin 
prevents apoptosis by direct inhibitory binding to cas-
pases 3 and 7 [97]. IL-6 influences dysregulated cellular 
energetics, leading to enhancing glycolysis and suppress-
ing mitochondrial function, enabling cancer cells to adapt 
to the demanding metabolic needs associated with rapid 
proliferation and survival with the necessary resources to 
support their growth and progression [98, 99].

As a master cytokine, IL-6 may play a role in immune 
evasion by tumors. Adaptive anti-tumor immunity, in 
general terms, relies heavily on cytotoxic responses 
to tumor neoantigens—a process largely driven by 
interferon-γ secretion by Th1 CD4 + T cells. IL-6 pro-
motes differentiation of CD4 + T cells to a pro-inflam-
matory Th17 phenotype, and can even stimulate 
trans-differentation of Th1 cells into Th17 cells [100, 
101]. In the context of cancer immunity, a Th17 polar-
ity is maladaptive, driving the immune response toward 
chronic inflammation and away from adaptive cyto-
toxic immunity [102]. IL-6 and G-CSF from stromal or 
tumor sources can activate STAT3 signaling, resulting 
in an increase in suppressive immune effects of PMN-
MDSCs by enhancing C/EBPβ expression and inhibiting 
IRF8 expression. Relatedly, IL-6 contributes to tumor-
promoting inflammation in the tumor microenviron-
ment by recruiting and activating MDSC’s, macrophages 
and tolerogenic dendritic cells [103]. The level of IL-6 in 
tumors has been linked to increased necrosis, prolifera-
tion, differentiation, and vascular invasion, while higher 
levels of IL-6 in the systemic circulation are associated 
with advanced T-stage, elevated CRP levels, and lower 
survival rates. As a result, IL-6 has been proposed as crit-
ical mediator of the connection between tumor necrosis, 
local and systemic inflammation, and patient outcomes 
in colorectal and other cancers [104].

The potential association between interleukin-6 (IL-6) and 
the development of peritoneal carcinomatosis
Beyond its generic tumor-promoting effects, the IL-6 axis 
could make unique contributions specifically to PC as a 
unique metastatic pattern, irrespective of primary tumor 
site. A central role for IL-6 in promoting peritoneal car-
cinomatosis has been inferred from research consistently 
demonstrating elevated levels of IL-6 in the serum and 
ascites of patients with PC compared to those without it, 
in ovarian [105, 106], colorectal [107–109], gastric [110] 
and other cancers [17, 111–113]. In a recent study across 
multiple primary tumor types, we not only found ele-
vated levels of IL-6 in the peritoneal fluid of patients with 
PC, but that the soluble receptor sIL6-Rα was present at 
exorbitant concentration regardless of disease state [21]. 
Thus, in the context of PC, the IL-6 cytokine and soluble 
receptor combination would create conditions ripe for 
trans signalling via the IL6 pathway to dominate perito-
neal physiology during PC, and specifically to polarize 
the immune environment toward a counterproductive 
innate or chronic inflammatory response, allowing tumor 
cells to evade adaptive cytotoxic immunity [18, 114].

Bootsma et al. have recently described processes 
involved in PC as distinct from other routes of metastatic 
spread, such as lymph node or solid organ metastases 
[115]. These processes are briefly reviewed here to dis-
cuss the role of the IL-6 axis in each. PC can arise from 
metastatic cells through direct seeding of the peritoneal 
cavity by transmural tumor growth from an abdomino-
pelvic organ, or by lymphatic or hematogenous routes. 
The nidus of metastatic growth could be either individ-
ual cancer cells, or clusters of cell aggregates that rely on 
adhesion molecules and fibrin deposition for cohesive-
ness. Once within the potential space of the peritoneum, 
tumor cells or clusters must adhere to and grow on the 
mesothelial surfaces. Several central themes emerge at 
this step, including the expression of cell adhesion mol-
ecules (integrins, ICAM, VCAM and others) on tumor 
and mesothelial cells, as well as features of EMT pheno-
type, promoting the etablishment of metastatic tumor 
implants complete with stroma and vascularization. The 
peritoneal cavity has an immune milieu that is quite dis-
tinct from that within the systemic circulation or indi-
viudal organs [116]. For example, the mucosal immune 
system of the gut is well known to promote tolerance of 
commensal organisms, whereas the peritoneal immune 
system appears polarized toward an immediate innate 
response to violation of luminal barriers in the context 
of infection or injury [70, 117]. Much work remains to 
decipher the influence of these underlying immune con-
figurations on the processes at play in primary gastroin-
testinal tumor growth and on peritoneal progression in 
PC [115]. Below, we discuss the examples of the contribu-
tion of IL-6 on each of these elements of PC biology.
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Direct proliferative effects of IL-6 on peritoneal meta-
static cells have been documented in several tumor types 
relevant to PC, both in cell lines and in murine models. 
These include ovarian [118], bladder [119] and colorec-
tal [120] cancer. The IL-6 axis has been shown to pro-
mote mesothelial adhesion and invasion in peritoneal 
carcinomatosis. For instance, one study found that ovar-
ian cancer cells increased the production of IL-6, which 
stimulated the production of VEGF, which in turn caused 
lymphatic vessels to form in the peritoneum, facilitating 
the spread of cancer cells [121, 122]. During the forma-
tion of peritoneal tumor deposits, IL-6 promotes neutro-
phil and macrophage recruitment and activation, leading 
to amplification of the inflammatory response [123, 124]. 
IL-6 stimulates the expression of plasminogen activator 
inhibitor-1 (PAI-1) and the inhibition of tissue-type plas-
minogen activator (t-PA), leading to the excessive deposi-
tion of fibrin and further promoting PC formation [125]. 
Signaling pathways involved, including phosphoinositide-
dependent kinase 1 (PDK1), have been shown in ovarian 
cancer to promote tumor-mesothelial adhesion, invasion, 
and angiogenesis via α5β1 integrin and JNK/IL-8 signal-
ing [126, 127]. ICAM-1 and VCAM-1 are cell adhesion 
molecules that play a crucial role in the binding of can-
cer cells to mesothelial cells [128]. IL-6 has been shown 
to increase the expression of ICAM-1 and VCAM-1 on 
mesothelial cells, thereby promoting adhesion of tumor 
cells [129]. This process is further facilitated by the pres-
ence of TNF-α, another cytokine that is often upregu-
lated in cancer and can synergize with IL-6 to enhance 
ICAM-1 expression [130].

IL-6 also induces epithelial to mesenchymal transition 
(EMT), which is a critical step in the development of 
metastasis [131–134]. During PC formation, the produc-
tion of inflammatory mediators regulates the extracel-
lular matrix (ECM), and IL-6 is involved in this process 
by inducing the expression of matrix metalloproteinases 
(MMPs). IL-6 has been shown to induce the expression of 
stromal cell-derived factor-1 (SDF-1), a chemokine that is 
known to promote the recruitment of mesenchymal stem 
cells (MSCs) and the formation of a premetastatic niche 
[135]. IL-6 signaling may also drive the proliferation 
and migration of mesothelial cells and MSCs, thereby 
contributing to stromal invasion and proliferation by 
activating the AKT/mTOR pathway and increasing the 
expression of cyclin D1 [136–138]. IL-6 potentiates 
angiogenesis in PC by increasing the expression of VEGF 
on mesothelial cells, along with stimulating proliferation 
and migration of endothelial cells, which may contribute 
to angiogenesis in the tumor microenvironment [139].

The immune response plays a crucial role in the devel-
opment and progression of PC. As a pivotal mediator 
of innate immunity, IL-6 suppresses adaptive immune 
responses within the peritoneum, creating a maladaptive 

immune environment that enables evasion by tumor cells 
in peritoneal cancer and mesothelioma. In these diseases, 
higher IL-6 levels are correlated with more advanced dis-
ease stage, increased tumor aggressiveness, and worse 
clinical outcomes [140]. IL-6 has been shown to inhibit 
the differentiation of T cells into Th1 cells, which are 
central to specific cytotoxic anti-tumor immunity; and 
to promote the differentiation of CD4 + T cells into Th2 
and Th17 cells, which are less effective at controlling 
tumor growth. IL-6 has also been shown to promote the 
differentiation of regulatory T cells, which suppress the 
immune response and promote tumor growth [141–143], 
although the relevance of this finding in the peritoneal 
cavity remains to be assessed. The cytokine milieu in 
the tumor microenvironment tends toward promotion 
of immunosuppressive tumor-associated macrophages 
(TAMs) [144]. Local cytokines such as CSF-1 block the 
maturation of dendritic cells, which are unable to pres-
ent antigens and therefore promote the development of 
immunosuppressed TAMs. Inhibition of IL-6 and CSF-1 
can reverse this effect and favor cytotoxic T cell polariza-
tion [145]. Experimental administration of IL-6 inhibitors 
or receptor antagonists has been shown to reduce tumor 
growth increase the activity of cytotoxic T cells or natural 
killer cells in mouse models of PC [146–148]. As a pleio-
tropic factor, IL-6 may play both pro-tumorigenic and 
anti-tumorigenic effects, however, and in other studies 
has been shown to promote the activity of natural killer 
cells and enhance the immune response to PC [149, 150].

Although not specific to PC, cachexia commonly 
accompanies end-stage peritoneal progression, and is 
characterized by the breakdown of carbon sources, pro-
teins, and lipids for energy due to hypercatabolism. This 
systemic manifestation of cancer is attributed to circula-
ing cytokines [151, 152], IL-6 being central among them. 
IL-6 inhibits lipid biosynthesis and promote muscle 
atrophy and increased catabolism. However, research 
using IL-6 transgenic mice has been equivocal, and IL-
6-induced cachexia appears to require additional sig-
nals in what is presumed to be a highly complex process 
[153–155].

Taken together, these mechanisms make the IL-6 axis 
an attractive target for the unique characteristics of PC 
as a specific pattern of metastatic disease and cancer pro-
gression. These common effects of IL-6 provide insights 
into the shared mechanisms underlying the pathogen-
esis and progression of these diverse peritoneal diseases. 
Targeting IL-6 and its associated pathways represents a 
potential therapeutic approach to mitigate inflamma-
tion, modulate immune responses, reduce fibrosis, and 
improve patient outcomes in these conditions fig. 2.
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The use of targeted therapy for interleukin-6 (IL-6) in the 
treatment of peritoneal carcinomatosis
Therapy for IL-6 has emerged as a promising approach 
for the prevention and treatment of PC [79, 156, 157]. 
Tocilizumab (Actemra) and siltuximab (Sylvant) are the 
two FDA- approved anti-IL6 drugs with tocilizumab 
approved for the treatment of rheumatoid arthritis(RA) 
[158], it has been investigated in the context of cancer for 
its potent anti-inflammatory effects like large-cell lung 
carcinoma [159] and siltuximab approved for the treat-
ment of multicentric Castleman’s disease [160]. Other 
agents in clinical trials include sarilumab [161], oloki-
zumab [162], elsilimomab [163], clazakizumab [164], 
sirukumab [165], levilimab, CPSI-2364, ALX-0061, and 
ARGX-109, while preclinical agents include FE301 and 
FM101 [37]. These agents have shown promising results 
in various cancers, including ovarian cancer, renal cell 
carcinoma, and metastatic castration-resistant prostate 
cancer (Table  1). Mechanistically, blockade of trans sig-
naling accounts for the anti-proliferative effect in cer-
tain PC cell lines, along with de-repression of tumor 

suppressor genes, such as maspin, which impedes stro-
mal invasion and mestastasis [166].

Targeted therapy against IL-6 has shown promising 
results in mouse models and in vitro cell lines of vari-
ous cancers, by dampening the IL-6/JAK/STAT3 signal-
ing pathway in gastric cancer [167], ovarian cancer [107, 
112, 168–170], and pancreatic cancer [171]. Beyond spe-
cific anti-neoplastic activities, targeting IL-6 may benefit 
patients with PC by preventing the formation of post-
operative adhesions [172] or ascites [173]. Pre-clinical 
and clinical studies have also demonstrated benefit of 
therapy for IL-6 in cancers not associated with PC. Inhi-
bition of IL-6R function by tocilizumab was shown to 
decrease angiogenesis in oral squamous cell carcinoma 
[174]. IL-6 induced programmed death ligand 1 expres-
sion through the mTOR pathway in intrahepatic cholan-
giocarcinoma, suggesting that IL-6 antibodies may help 
to overcome resistance to immune checkpoint inhibitors 
in intrahepatic cholangiocarcinoma [175]. Tocilizumab 
has also been shown to inhibit tumor growth in trastu-
zumab-resistant breast cancer cells and is the subject of 
ongoing phase I clinical trials [164, 176]. Tocilizumab has 

Fig. 2 Illustrated here is the crucial role of IL-6 in driving peritoneal carcinomatosis (PC) progression. It shows IL-6’s involvement in tumor proliferation, 
adhesion, epithelial-mesenchymal transition (EMT), and other oncogenic pathways. The figure spotlights the IL-6/STAT3 signaling pathway’s redundancy 
and its systemic effects, emphasizing molecular alterations that lead to PC’s aggressive nature. “Created with BioRender.com.”
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been proposed as a potential treatment option of cancer-
related cachexia in lung and other cancers [177]. It has 
also been indicated for steroid-resistant immune-related 
adverse events [178]. Below, we have summarized pre-
clinical studies and clinical trials examining IL-6 pathway 
blockade in cancers that are commonly associated with 
PC.

Ovarian cancer
Ovarian cancer is one of the leading causes of PC, often 
in the context of recurrent disease with poor prognosis 
and limited treatment options. An association between 
IL-6 and ovarian cancer has been described in the liter-
ature for over 30 years, beginning with the observation 
of IL-6 production by ovarian cancer cell lines, primary 
ovarian tumors and malignant ascitic fluid [179]. Treat-
ing ovarian cancer cell lines with an antisense IL-6 oligo-
deoxynucleotide resulted in decreased IL-6 production 
as well as an approximately 80% inhibition in cellular 
proliferation [180]. Further studies demonstrated that 
IL-6 levels were significantly higher in ascitic fluid than 
in the serum of ovarian cancer patients, and the IL-6 lev-
els correlated with higher ascites volume, tumor burden, 
and worse overall survival [181–183]. Guo et al. noted an 
increase in IL-6 expression in recurrent ovarian tumors 
relative to their matching primary, suggesting a role for 
IL-6 in disease progression and metastasis [161]. There 
is also data suggesting that IL-6 is involved in chemore-
sistance in ovarian cancer, with higher levels of IL-6 seen 
after treatment with platinum chemotherapy in in vitro 
and murine models [184]. Finally, emerging data from 
several groups indicate that IL-6 signalling may be criti-
cal to EMT in epithelial ovarian cancer [113, 121, 185]. 
Based on these findings, IL-6 and its pathway have gained 
increasing interest as a potential therapeutic target in 
ovarian cancer.

Translational research and clinical trials of IL-6 path-
way inhibition in ovarian cancer have had mixed results, 
but on the balance provide hope for a potential synergis-
tic role of IL-6 inhibition with standard chemotherapy 
(Table S1). Ovarian cancer cell lines treated with siltux-
imab monotherapy did not show reduced cell prolifera-
tion or protein expression [122, 161], whereas multiple 
murine models with intraperitoneal ovarian cancer xeno-
grafts treated with siltuximab or tocilizumab mono-
therapy did show a significant impediment to tumor 
progression [122, 186, 187]. This could reflect the impor-
tance of IL-6 inhibition in the physiologic context of 
the intraperitoneal tumor environment. IL-6 pathway 
blockade using siltuximab or tocilizumab enhanced the 
effect of chemotherapy in multiple in vitro and murine in 
vivo studies [82, 187, 188]. Guo et al., however, did not 
demonstrate any notable effect on tumor growth with 
paclitaxel and siltuximab in xenograft mouse models of 

paclitaxel-resistant ovarian cancer cells [161]. Additional 
translational studies have been performed with non-anti-
body IL-6 inhibitors such as butein [189], a compound 
with anti-IL-6 activity derived from Butea monosperma 
flowers; bazedoxifene, a third-generation selective estro-
gen receptor modifier (SERM) found to be a novel inhibi-
tor of the IL-6/GP130 interaction [190]; minocycline, a 
second-generation tetracycline found to have an inhibi-
tory effect on IL-6 signaling; and sgp130Fc, a protein that 
inhibits IL-6 trans-signaling [173]. Table S1 highlights 
the mechanisms by which these agents impaired metas-
tasis in vitro and in vivo.

Four clinical trials have examined the use of monoclo-
nal antibody IL-6 pathway inhibitors in treating ovarian 
cancer. Coward et al. performed a single-arm, phase II 
clinical trial with platinum-resistant recurrent ovarian 
cancer patients, in which 18 patients were treated with 
siltuximab monotherapy. A 5.6% overall response rate 
was noted, with eight additioanl patients having stable 
disease. Median progression free survival was 12 weeks, 
similar to other alternate line chemotherapy agents [122]. 
Dijkgraaf et al. conducted a multi-center, phase I clini-
cal trial with carboplatin/doxorubicin and tocilizmab in 
recurrent epithelial ovarian cancer patients. 23 patients 
were treated in a dose-escalation fashion and an accept-
able safety profile was noted. Levels of IL-6 and sIL-6Rα 
increased with the higher doses of tocilizmab, and CRP 
and TNF-α levels decreased; however, no efficacy data 
were available [191]. Angevin et al. conducted a phase I/
II, dose escalation study with siltuximab in patients with 
advanced solid tumors, including 29 patients with ovar-
ian cancer, but an objective tumor response was not 
observed in any subgroup [192]. Stone et al. evaluated sil-
tuximab in ovarian cancer patients in the setting of para-
neoplastic thrombocytosis. Patients were treated with 
siltuximab and a significant reduction in platelet count 
was observed, but tumor response was not evaluated 
[187]. Overall, these studies have shown little promise 
for the utility of IL-6 pathway inhibition as a standalone 
treatment for ovarian cancer, while supporting the possi-
bility that combination regimens may be a fertile area for 
future investigation.

Gastric cancer
PC is a common complication of advanced gastric cancer 
that is associated with poor prognosis and limited treat-
ment options. Targeted therapy against the IL-6 pathway 
has emerged as a promising approach for the preven-
tion and treatment of PC metastasis from gastric cancer, 
based largely on pre-clinical studies [193, 194]. Kinoshita 
et al. explored the role of IL-6 in mediating epithelial-
stromal interactions and promoting gastric tumorigen-
esis via crosstalk between epithelial and stromal cells 
within the gastric microenvironment, contributing to the 
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development of gastric cancer [195]. In another study, 
STAT3 signaling was found to enhance mesothelial-mes-
enchymal transition, particularly within the peritoneal 
cavity [132]. Pre-operative serum IL-6 and CRP levels are 
associated with poor prognosis in patients with operable 
gastric cancer, suggesting potential prognostic utility as 
biomarkers [196]. Ruzzo et al. found that patients har-
boring genetic variants resulting in up-regulation of IL-6 
pathway levels experienced poorer overall survival in GC 
[197]. Further, elevated perioperative IL-6 and TNF-α 
levels are negatively associated with 5-year survival in 
patients with locally advanced GC [198].

As in ovarian cancer, there are theoretical benefits to 
combining anti-IL-6 therapy with chemotherapy for 
GC-PC. For example, Wang et al. investigated the tumor-
suppressive effects of maslinic acid on human gastric 
cells, demonstrating that maslinic acid potentiated apop-
tosis of GC cells in a JAK/STAT3-pathway-dependent 
mechanism [199]. However, at the present time no clini-
cal trials have reported the use of IL-6 inhibition in the 
treatment of GC (Table S2).

Colorectal cancer
IL-6 pathway inhibition has been explored in treating PC 
from colorectal cancer (CRC) [157], largely as a result of 
the repeated demonstration that the downstream JAK/
STAT3 signaling plays a central role in CRC progres-
sion by causing downstream overexpression of VEGF-A 
and matrix metalloproteinase A (MMP2) [157, 200]. IL-6 
trans-signaling has been shown to drive cellular prolif-
eration and inhibit apoptosis in murine models of CRC 
[201–203]. CRC-derived mesenchymal stem cells were 
shown to enhance CRC cell migration, invasion through 
EMT, and metastasis; each of these phenotypes was abro-
gated by anti-IL6 antibody and STAT3 inhibitors, and 
was associated with downstream PI3K/AKT signaling 
[204]. The source of IL-6 within the CRC microenviron-
ment may include tumor cells themselves [35], as well as 
TAMs [205] and cancer-associated fibroblasts (CAFs) 
[206]. Li et al. demonstrated a positive feedback loop 
promoting IL-6 production by macrophages and CRC 
cells, via a STAT3-dependent mechanism [207]. Yin et 
al. highlighted the role of macrophage-derived IL-6 in 
chemoresistance in CRC, showing that miR-155-5p/C/
EBPβ/IL6 signaling in TAMs induced chemoresistance 
via the IL6R/STAT3/miR-204-5p axis in CRC cells [208]. 
CAF-derived IL-6 was shown to promote angiogenesis 
by upregulating VEGFA expression in two independent 
studies, implying a rationale for combining IL-6 inhibi-
tion with angiogenesis inhibitors in treating CRC [93, 
209].

IL-6 inhibition has been investigated in a number 
of pre-clinical CRC models (Table S3). Anti-IL-6 anti-
body administration hindered CRC progression by 

down-modulating the Ras/MAPK and PI3K/AKT signal-
ing in a murine model [210]. In another murine model 
of colitis-associated CRC, anti-IL-6 antibody treatment 
significantly inhibited tumor growth and was associated 
with downregulation of the pleiotropic transcription fac-
tor HIF-1α [211]. Jiang et al. explored the effect of luteo-
lin on CRC cells, confirming suppression of growth and 
migration/invasion by inhibiting the IL-6/STAT3 signal-
ing pathway [212]. Recently, a novel IL-6-targeted anti-
body-drug conjugate was shown to effectively inhibit the 
growth of CRC cells in vitro and in vivo [207]. As in other 
cancer types, combinatorial activity of IL-6 pathway 
inhibition with cytotoxic chemotherapy has also been 
explored. Li et al. demonstrated enhancement of 5-FU 
response in CRC by simultaneously targeting the IL-6/
GP130 signaling pathway [207]. Bazedoxifene, a third-
generation SERM with IL-6/GP130 inhibitory effects, 
markedly potentiated the anti-tumor 5-FU activity in 
vitro and in vivo, implying a potential role for IL-6 path-
way inhibition in reversing chemoresistance [207]. Ying 
et al., in a study focused on CRC stem-like cells, demon-
strated that IL-6 or Notch 3 inhibition may be superior to 
STAT3 inhibition for cancer stem cell-targeting therapies 
concomitant with anticancer drugs [213].

In spite of a strong rationale, the clinical literature on 
IL-6 inhibition in CRC is sparse. A clinical trial examin-
ing siltuximab monotherapy in solid tumors included 
35 CRCs. Among those treated, only three (< 10%) CRC 
patients experienced stable disease for > 6 weeks, and 
there were no objective responses. The overall results 
provided little rationale for continued investigation of 
IL-6 monotherapy in solid tumors [192].

Pancreatic cancer
In pancreatic ductal adenocarcinoma (PDAC), another 
intra-abdominal cancer with a strong propensity toward 
PC, IL-6 appears to heavily influence pathogenesis and 
prognosis (Table S4), as has been expertly reviewed by 
van Duijneveldt et al. [214]. Elevated serum IL-6 levels 
are a negative prognostic marker in patients with PDAC, 
and are consistently associated with advanced clinical 
stage and decline in nutritional and functional status 
[215], suggesting that IL-6 levels could augment tradi-
tional markers such as CRP, CEA, and CA19-9 [216]. In 
the tumor microenvironment, IL-6 is overexpressed 
in PDAC tumors compared to adjacent normal tissue 
[217]. This overexpression, originating from various 
cell types such as cancer cells, PSCs, and TAMs, corre-
lates with reduced survival [218]. Mechanistically, IL-6 
exerts its effects on tumor initiation, progression, angio-
genesis, immune modulation, and metastasis primarily 
via the STAT3 pathway [219]. IL-6 stimulates produc-
tion of angiogenic factors like VEGF, which drives the 
EMT process and enhances the invasive and metastatic 
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capabilities of PDAC cells [220]. Finally, IL-6 may con-
tribute to a maladaptive immune environment in PDAC 
through complex mechanisms including stimulation of 
type 2 cytokine secretion, suppression of dendritic cell 
differentiation and antigen presentation, and recruitment 
of TAMs and MDSCs [210, 220–223].

Preclinical and animal model studies have been piv-
otal in understanding IL-6’s role in PDAC and assessing 
the effectiveness of anti-IL-6 treatments. Murine mod-
els show that IL-6 inhibition enhances the sensitivity of 
PDAC cells to gemcitabine [217, 224, 225], leading to 
reduced cell proliferation and invasion, and increased 
apoptosis. This finding is supported in PDAC cell line 
xenograft models, where IL-6 knockdown, combined 
with gemcitabine, significantly reduces tumor burden 
[224]. Advanced models, such as KrasG12D/+/p53fl/+ 
mutant mice, demonstrate that IL-6-neutralizing anti-
bodies significantly reduce the growth of early-stage 
PDAC lesions, highlighting the potential importance of 
IL-6 in tumor initiation [226]. Combination therapies, 
including anti-IL-6R and anti-PD-L1 immunotherapy, 
also showed promising results in reducing tumor growth 
and improving survival [227]. Inhibition of the IL-6 trans 
signaling pathway, specifically, may be more effective, 
as evidenced by more pronounced reduction in PanIN 
lesions in sgp130Tg mice [224].

Several clinical trials have focused on targeting IL-6 
family cytokines and their downstream mediators like 
JAK1/2 and STAT3 in PDAC treatment [228–230]. Nota-
bly, a trial involving the JAK1/2 inhibitor ruxolitinib, 
combined with capecitabine for patients with metastatic 
pancreatic cancer post-gemcitabine treatment, showed a 
marginal increase in median overall survival [231]. Other 
trials, such as those testing momelotinib [228] and the 
STAT3 inhibitor napabucasin [232] in combination with 
standard chemotherapy, did not demonstrate significant 
clinical benefits or are still ongoing. Trials involving IL-6 
inhibition, such as those using siltuximab in combination 
with PD-L1 inhibition (NCT04191421 [233]), and tocili-
zumab [234], are currently underway. These trials are 
expected to provide insights into the potential for inhibit-
ing IL-6 in the treatment of this aggressive malignancy.

Malignant peritoneal mesothelioma
Although there has been only recent interest in IL-6 
pathobiology in malignant peritoneal mesothelioma 
(MPM), IL-6 has long been suspected to contribute to 
pathophysiology of pleural malignant mesothelioma 
(MM) [235, 236]. IL-6 was initially implicated as a key 
driver of paraneoplastic symptoms in MM, and was 
found in higher concentrations in MM effusions relative 
to malignant effusions from lung adenocarcinoma [237]. 
However in our series, IL-6 was elevated in both MM and 

lung cancer pleural effusions, and the IL-6 levels were not 
statistically different between the two diseases [40].

Early pre-clinical models explored the contribution 
of IL-6 in pleural effusions to constitutional MM symp-
toms (Table S5), and cell line experiments suggested that 
anti-IFN-γ therapy could alleviate these symptoms [238]. 
Anti-IL-6 pathway therapy was utilized as early as 1995 
to treat or reverse constitutional toxicity in murine mod-
els, without an effect on tumor growth per se [239]. MM 
cell lines were later shown to account for at least some 
of the IL-6 found in pleural fluid, with autocrine trans 
signaling accounting for cellular proliferation, VEGF 
production, constitutional symptoms, and subject to dif-
ferential suppression with cytotoxic agent therapy [240, 
241]. An engineered viral gene delivery vector encoding 
a tocilizumab-based IL-6 receptor inhibitor was shown to 
reduce VEGF production in MM cells [242].

More recent research has cemented the concept of the 
IL-6 trans signaling axis as a central driver of a maladap-
tive immunosuppressive pleural environment in MM, 
and a potentially ideal target for rational therapy [40, 
243]. Analogous to pleural fluid in MM [40], elevated 
IL-6 levels have been confirmed in peritoneal fluid from 
patients with MPM, and these levels were shown to cor-
relate with disease volume (peritoneal carcinomatosis 
index) [244]. Given the exorbitant concentration of IL-6 
in malignant ascites from MPM, Judge et al. proposed a 
model in which tumor and stromal cells within the peri-
toneal cavity undergo reciprocal, synergistic activation 
[245]. To our knowledge, no clinical trials to date have 
investigated the specific utility of anti-IL-6 therapy in 
MM or MPM.

Appendiceal cancer
Mucinous appendiceal neoplasms, while rare, are an 
important clinical subset of patients with PC [246]. In 
many cases, patients with low grade histology can experi-
ence long-term survival following surgical cytoreduction 
and intra-peritoneal chemotherapy, even with a signifi-
cant degree of disease burden at the onset of treatment. 
Given the overall favorable prognosis of these patients, 
relative to PC from other gastrointestinal primary tumor 
sites, it is imperative to focus on novel treatment modali-
ties to provide long-term symptom and disease control 
for appendiceal carcinomatosis (AC).

At present, little is known of the influence of the IL-6 
axis in AC (Table S6). Serum IL-6 levels in a series of 
12 AC cases were markedly elevated relative to control 
individuals with uncomplicated appendicitis. A separate 
series of gastrointestinal neuroendocrine tumors, includ-
ing 12 appendiceal tumors, showed frequent expression 
of IL-6 in these tumors, and a trend toward correlation 
of IL-6 production with tumor grade [247]. Lohani et al. 
reported an analysis of peritoneal fluid cytokine levels 
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in 23 patients with AC, and peritoneal fluid IL-6 con-
centrations in this study were elevated ∼ 200-fold above 
serum levels, with immunohistochemical staining for 
IL-6 localized to the tumor stroma [248]. At this time, 
much pre-clinical and clinical investigative work remains 
to determine whether IL-6 is a key driver of tumor pro-
gression and potential target for directed intervention in 
patients with AC.

Common themes and future directions
Despite the promising results of preclinical and clinical 
studies, the use of anti-IL-6 pathway therapy in the treat-
ment of PC faces several challenges, one of which is the 
heterogeneity of primary cancer types commonly associ-
ated with PC. Moreover, the IL-6 pathway is well-known 
to have complex and diverse functions in the tumor 
microenvironment, which may have both pro- and anti-
tumorigenic effects [249], underscoring the importance 
to carefully define molecular predictors of response and 
the selection of appropriate therapeutic candidates. For 
example, elevation in peritoneal fluid IL-6 levels could 
be utilized as a selection criterion for clinical trials tar-
geting the IL-6 pathway. Another challenge that must 
be addressed is the potential immunosuppressive effect 
of IL-6-targeted therapy and attendant increased risk of 
infection [250, 251]. Systemic toxicity of IL-6 blockade 
could theoretically be mitigated by using intra-peritoneal 
drug administration. Such an approach would lever-
age significant pharmacokinetic advantages by allowing 
supra-physiologic dosing of IL-6 antagonists within the 
sequestered peritoneal environment. To determine the 
feasibility of this approach, we recently opened a clinical 
trial examining the safety and pharmacokinetic profile of 
intra-cavitary (peritoneal and pleural) delivery of tocili-
zumab for patients with malignant pleural or peritoneal 
effusions/ascites (NCT06016179).

The available clinical data across cancer types suggests 
that IL-6 inhibition as monotherapy is unlikely to provide 
meaningful oncologic benefit. Nevertheless, a combina-
torial benefit with conventional chemotherapy has been 
strongly suggested in a number of models, and therefore 
it is hoped that IL-6 pathway inhibition could show ben-
efit in combination regimens either in the de novo set-
ting, or in the context of overcoming chemoresistance 
at the time of progression through standard-of-care 
options. It is also speculated that IL-6 pathway inhibition 
could modulate response to other immunotherapeutic 
regimens currently in standard or investigational use. As 
a central cytokine with pleiotropic effects, the IL-6 path-
way could be manipulated to potentiate the impact of 
checkpoint inhibition, local/intra-tumoral injection ther-
apies, or other emerging immunotherapeutic options. 
Finally, in the context of surgery for PC, the IL-6 path-
way is likely to be a central mediator of the inflammatory 

response to surgery or surgical complications, and to 
contribute to long term morbidity from adhesive disease 
and fibrosis that challenges our ability to offer operative 
approaches in many patients. IL-6 inhibition has been 
considered as a therapeutic approach to peritoneal dial-
ysis-related fibrosis and endometriosis, for example, and 
might yield benefit in palliating the debilitating digestive, 
nutritional and cachectic consequences of PC beyond 
any direct anti-neoplastic activity.

Conclusion
Peritoneal carcinomatosis is a devastating sequela of 
many primary tumor types, with poor prognosis and lim-
ited treatment options. A significant body of evidence 
implicates the IL-6 pathway as a rational therapeutic tar-
get for treatment of PC, due to IL-6 involvement in peri-
toneal tumor dissemination, proliferation, mesothelial 
adhesion and invasion, stromal invasion, and immune 
response modulation. Targeting IL-6 and its downstream 
signaling pathways in combination regimens has shown 
promise in preclinical and clinical studies for various 
types of cancer that commonly cause PC. Ongoing pre-
clinical and clinical studies are planned to explore the 
utility of regional IL-6 blockade in patients with PC.
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