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Abstract 

Background Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence 
and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer 
cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress 
and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct 
a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further 
explore its correlation with tumor immunity and the possibility of immunotherapy.

Methods Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic 
genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided 
into training and testing groups. The prognostic model was constructed by machine learning method in the train-
ing cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship 
with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular 
communication was further explored.

Results A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metas-
tasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer 
with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered 
to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. 
TIDE score was increased in high-risk group, while the infiltration levels of  CD8+ T cells and M1 macrophages were 
decreased. The number and intensity of intercellular communication were increased in the high ER stress group.
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Conclusions We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used 
as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed 
the effect of ER stress on cell–cell communication in the tumor microenvironment.

Keywords Pancreatic cancer, Endoplasmic reticulum stress, Lipid metabolism, Immune environment, Cell–cell 
communication

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the most 
prevalent pancreatic malignancies, which is aggressively 
metastatic with one of the leading mortalities of cancer 
worldwide [1]. Majority of patients are diagnosed at an 
advanced stage with missed opportunity for surgery and 
poor prognosis [2]. The 5-year survival rate for PDAC 
patients is reported to be less than 10% [1]. Liver metas-
tasis is the most common form of PDAC distant metas-
tasis, which suggests poor prognosis for PDAC patients 
[3]. And liver metastasis can be influenced both by tumor 
cells and tumor microenvironment [4]. However, the 
further mechanisms underlying the regulation and pro-
motion of PDAC cells metastasizing to liver tissues still 
remains to be elucidated.

Endoplasmic reticulum is an important place for regu-
lating calcium homeostasis, lipid metabolism, protein 
synthesis, and post-translational modification [5]. Endo-
plasmic reticulum stress (ERS) is a condition in which 
many endogenous and exogenous damaging factors hin-
der the ability of ER to properly fold, secrete and modify 
post-translationally protein, resulting in an increased 
load of misfolded proteins in this organelle [6]. If endo-
plasmic reticulum stress keeps at a high level continu-
ously, the responding cells engage in self-destruction. 
Nowadays, persistent and excessive ER stress is emerging 
as a key factor in many human diseases, including can-
cers [7]. Sustained ER stress can enhance tumor cell sur-
vival, angiogenesis, metastatic potential, drug resistance, 
and immunosuppression in tumors [8]. MYC-induced 
ER stress exhibit activation of unfolded protein response 
(UPR) in variety of human cancers, including lymphoma, 
neuroblastoma, prostate cancer, and breast cancer [9, 
10]. Induction of ER stress and activation of UPR can 
inhibit the surface expression of major histocompatibil-
ity complex Class I (MHC-I) molecules thus affect the 
tumor immune microenvironment [11]. However, the 
role of endoplasmic reticulum stress in PDAC has been 
less reported, and the influence of endoplasmic reticulum 
stress in tumorigenesis and development, apart from the 
unfolded protein response, remains unclear.

Lipid metabolic disorders are one of the most salient 
metabolic alterations in cancer, which provide energy, 
biofilm components, and signal molecules required for 
proliferation, invasion, and metastasis of tumor cells 

[12]. It has been reported that inhibition of SCD1 leads 
to differentiation of liver tumor cells through ER stress-
induced UPR [13]. Decreased Acetyl-CoA–produc-
ing enzymes (ACLY) expression reduces tumor cell 
viability and inhibits tumor progression in glioblastoma, 
melanoma cancer, PDAC and prostate cancer [14, 15]. 
Down-regulation of LDLR reduces cholesterol uptake 
and tumor proliferation in breast cancer cells, small cell 
lung cancer (SCLC) and PDAC cells [16–18]. Acyl-CoA 
oxidase 1 (ACOX1) enhances the response of HCC cells 
to oxidative stress through succinylation and increased 
activity [19]. Therefore, the disturbance of all aspects in 
lipid absorption, synthesis and hydrolysis is related to 
tumor occurrence and development. However, the role 
of lipid metabolism and endoplasmic reticulum stress in 
liver metastasis of PDAC needs to be further clarified.

The crosstalk between ER stress and lipid metabolism 
further exacerbates the malignant properties of pancre-
atic cancer [20]. ER stress can impact lipid metabolism 
by regulating the expression of key enzymes involved in 
lipid synthesis and metabolism [21]. Conversely, lipids 
can influence ER function and the UPR through various 
mechanisms, including the regulation of ER membrane 
composition and the modulation of ER stress response 
signaling pathways [22].

The heterogeneity of tumor microenvironment (TME) 
has great impact on prognosis [23]. TME plays an impor-
tant role in the regulation of the immune response to 
cancer. Tumor cells and their microenvironment typically 
produce multitudinous immunomodulatory molecules 
that can negatively or positively affect immune cell func-
tion [24]. The recruited immune cells in TME can pro-
mote anti-tumor immunity and pro-tumor immunity, 
leading to tumor growth, escaping from immune sur-
veillance and resistance to immunotherapy [25]. Hence, 
elucidating the alterations in the immune microenviron-
ment during the liver metastasis of PDAC is crucial for 
enhancing patient prognosis.

This investigation identified ERS_Lipid-associated 
genes in PDAC and discerned liver metastasis-related 
genes using single-cell and bulk transcriptional analyses. 
Subsequently, a novel prognostic signature was devised 
and authenticated employing integrated machine learn-
ing algorithms. This risk signature demonstrated efficacy 
in immune trait categorization, tumor mutational burden 
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(TMB) prognostication, and pharmaceutical selection. 
Furthermore, intercellular signaling was scrutinized in 
high and low ERS_Lipid cohorts to unveil the impact of 
ER stress and lipid metabolism on the tumor microenvi-
ronment and immune response.

Method and materials
Data collection
Original RNA_Seq data from TCGA_PAAD cohort 
was downloaded from TCGA database (https:// por-
tal. gdc. cancer. gov/). The transcriptome data of normal 
pancreatic cohort was downloaded from GTEx data-
base (https:// www. gtexp ortal. org). Transcriptome data 
from TCGA and GTEx were integrated and normal-
ized between datasets to jointly screen for differentially 
expressed genes associated with pancreatic cancer. 
Gene expression microarrays of GSE71729, GSE34153, 
GSE28735, GSE57495, GSE62452 and GSE85916 were 
collected from GEO database (https:// www. ncbi. nlm. 
nih. gov/ geo/). Single cell transcriptional data from 
GSE154778 and GSE197177 were also obtained from 
GEO database. The gene expression data of PA_CA and 
PA_AU datasets were downloaded from ICGC database 
(https:// dcc. icgc. org/). A total of 690 patients merged 
and batched from TCGA, ICGC, GEO (GSE28735, 
GSE57495, GSE62452 and GSE85916) with both clinical 
and gene expression information were randomly divided 
into a training set (n = 487) and a validation set (n = 203) 
through caret R package. Detailed information for the 
datasets mentioned above was shown in Additional file 2: 
Table S1.

Identification of the endoplasmic reticulum stress and lipid 
metabolism related genes
The ssGSEA and consensus clustering methods were 
used to classify the endoplasmic reticulum stress and 
lipid metabolism related pathways and gene sets into 
2 clusters. Then, WGCNA analysis was conducted to 
deeply screen out gene modules co-expressed with ER 
stress and lipid metabolism. Finally, the 521 lipid meta-
bolic genes and 295 ER stress related genes from lit-
eratures and 495 genes from module purple were taken 
together, and 1240 genes were subjected to the following 
analysis.

Identification of the liver metastasis related genes
Both single cell RNA data and bulk RNA data were 
used to identified the liver metastasis related genes. The 
ScRNA data was screened with nCount_RNA ≥ 1000, 
nFeature_RNA ≥ 200 & nFeature_RNA ≤ 10,000, percent.
mt ≤ 20 and percent.rb ≤ 20. RNA_snn_res. = 1.5 was 
selected for downgrading and cell grouping. Both TSNE 
and UMAP methods were used to display the results of 

cell clustering. SingleR package (Version 2.4.1) was used 
to annotate cell types. WGCNA analyses (Version 1.72-
5) were used to identify the co-expressed genes of liver 
metastasis in GSE71729 and GSE34153. Differentially 
expressed genes between primary tumor cells and liver 
metastatic cells were obtained by Seurat package (Ver-
sion 5.0.3) in ScRNA dataset and by limma R package 
(Version 3.18) in bulk RNA dataset. Then, 1331 genes 
from both liver metastatic co-expressed genes and DEGs 
were identified. Ultimately, through the intersection of 
ER stress and lipid metabolism related genes, tumor 
related differentially expressed genes and liver metas-
tasis-related genes, 92 potential prognostic genes were 
enrolled for subsequent analysis.

Construction and validation of the novel prognostic 
signature
To develop a novel prognostic model to predict the 
overall survival of pancreatic cancer, an integration and 
combination of 10 machine learning algorithms [26] 
(CoxBoost, Lasso, stepwise Cox, plsRcox, Ridge, Enet, 
SurvivalSVMS, GBMs, SuperPC and RSF) were used to 
select the prognostic genes. Then, the gene coefficients 
were calculated by multivariate cox regression analysis. 
And the risk score of every patient was calculated fol-
lowing the formula: Risk score = Σ (Coefi × Exp). Next, all 
the patients in the train set were stratified into high- and 
low-risk group according to the optimal cut-off of risk 
score. Kaplan–Meier survival analysis was performed 
to compare the OS time between the high- and low-risk 
groups. The same calculating formula and cut-off were 
utilized in the test dataset and TCGA, ICGC cohorts. 
ROC curves, DCA curves and calibration curves were 
also drawn to evaluate the accuracy and consistency of 
the prognostic model by timeROC (Version 0.4), ggDCA 
(Version 1.1), survival (Version 3.5-8) and rms R (Version 
6.8-0) packages.

GSEA and KEGG enrichment analyses
The GSEA analysis was used to identify the enriched 
pathways in the high- and low-risk groups by clusterPro-
filer (Version 4.10.1) and enrichplot (Version 1.22.0) R 
packages. The top5 signal pathways were shown. The cor-
relation of risk scores and prognostic genes with KEGG 
pathways of hallmarks in tumor were analyzed through 
GSVA analysis. The metabolism alterations of single 
cell transcriptomic data were conducted by scMetabo-
lism [27] (Version wu-yc) R package (Additional file  5: 
Table S4).

Tumor mutation burden and drug sensitivity analyses
The SNP information was collected from TCGA data-
base. Then the gene mutation information in high- and 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gtexportal.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
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low-risk groups was analyzed by maftools (Version 
2.18.0) R package. The correlation between risk score 
and tumor mutation burden in TCGA cohort was also 
explored via survminer (Version 0.4.9) R package. And 
the drug sensitivity analysis between high- and low-risk 
groups was performed by pRRophetic [28] (Version 0.5) 
R package.

Immune microenvironment analysis and cell–cell 
communication analysis
CIBERSORT algorithm [29] and ssGSEA method were 
utilized to provide a computational estimation for 

immune infiltration and tumor microenvironment. 
And immune functional pathways between two clusters 
were also analyzed via ssGSEA. TIDE [30] and TCIA 
[31] information of TCGA cohort in high- and low-risk 
groups were also analyzed by limma and ggpubr (Version 
0.6.0) R packages. The cell–cell communication analysis 
of cells between high- and low-ERS groups were analyzed 
through CellChat (Version 1.6.1) R package [32].

Cell culture
The cells used in this experiment were sourced from the 
laboratory of Department of General Surgery at Peking 

Fig. 1 Identification of ER stress and lipid metabolism related genes. A Consensus clustering analysis of ER stress and lipid metabolic pathways, 
the TCGA data set is divided into two well-differentiated subgroups when k = 2. B This section describes related parameters of WGCNA analysis. 
C Heatmap and clustering of ssGSEA fractions of ER stress and lipid metabolism-related pathways. D WGCNA analysis screened out ERS_Lipid 
co-expressed gene modules
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Union Medical College Hospital. HPNE and PANC1 cells 
were cultured in DMEM medium supplemented with 
10% fetal bovine serum, while CAPAN1 cells were cul-
tured in IMDM medium supplemented with 20% fetal 
bovine serum, the BXPC3 cell line was cultured in RPMI 
1640 medium with 10% fetal bovine serum. The BXPC3 
cell line was utilized as the parental cell strain to estab-
lish the first-generation liver metastasis cell line through 
a mouse model of liver metastasis induced by portal vein 
injection. A subset of the first-generation metastatic cell 
lines exhibited heightened tumor growth capabilities and 
significantly enhanced distant organ metastatic potential. 
Subsequently, we conducted repeated portal vein injec-
tions and screenings using these cell lines, extracted cells 
from liver metastatic foci post in vivo metastasis, further 
cultured and expanded them, leading to the derivation of 
the BXPC3_LMT cell line.

Quantitative polymerase chain reaction (qPCR) 
and immunohistochemistry
RNA was extracted from five cell lines including HPNE, 
PANC1, CAPAN1, BXPC3 and BXPC3_LMT using TRI-
zol reagent (Takara, Japan). The extracted RNA (1000 ng) 
was reverse transcribed using the PrimeScript™RT kit 
(Takara, Japan). Real-time quantitative PCR was per-
formed using SYBR Green Master Mix (Vazyme, China). 
Both the reverse transcription and q-PCR reaction sys-
tems were prepared according to the manufacturer’s 
instructions, and all procedures were conducted on ice. 
GAPDH was used as an internal control, and the primer 
sequences are listed in Additional file  3: Table  S2. The 
relative gene expression levels were calculated using the 
2^(− ΔΔCT) method.

Tumor tissues and corresponding adjacent tissues 
were obtained from 80 patients who received curative 
resection for PDAC at Peking Union Medical College 
Hospital in Beijing. Pathological verification of PDAC 
was achieved for all patients, and informed consent was 
acquired from all participants engaged in the research. 
The 4 μm paraffin sections were deparaffinized in xylene 
and rehydrated in graded alcohols. Antigen retrieval for 
SOD2, P4HB, and TNFSF10 utilized EDTA buffer (pH 
9.0). Subsequently, the sections were treated overnight 
at 4  °C with SOD2 antibody (dilution 1:40,000, Protein-
tech, USA), P4HB antibody (dilution 1:200, Proteintech, 

USA), and TNFSF10 antibody (dilution 1:400, Protein-
tech, USA). DAB Plus reagent kit (Gene Tech, Shanghai, 
GK600705) was used for staining. The evaluation of all 
tissue sections was conducted using the ImageJ-based 
IHC Profiler plugin, categorizing the sections into three 
levels: positive (≥ 2+), low positive (1+), and negative (0). 
Additionally, the sections were independently assessed by 
two pathologists unaware of the sample identities, and all 
evaluations were manually corrected.

Statistical analysis
The overall survival of patients in high- and low-risk 
groups was compared via the Kaplan–Meier analysis 
with the log-rank test. The identification of independent 
predictors for patient prognosis was performed through 
univariate and multivariate Cox regression analyses. Wil-
coxon test was performed to ascertain the gene expres-
sion levels between two groups and assess the variance in 
TMB, drug sensitivity, immune scores, TIDE scores, and 
IPS scores between the two risk groups. And the correla-
tion between the two groups was analyzed by spearman 
analysis. Each analysis was systematically repeated to 
ensure the reliability of the results. All statistical analy-
ses were performed with R software (Version 4.3.0). All p 
values two-tailed with p < 0.05 in single tests and adjusted 
p < 0.05 in multiple tests were considered statistically 
significant.

Results
Identification of endoplasmic reticulum stress and lipid 
metabolism related genes in PDAC
This study was conducted following the procedures 
shown in Additional file  1: Fig.  S1. Persistent ER stress 
and lipid metabolic disturbance are novel features of 
malignancies. To investigate the prognostic significance 
of ER stress and lipid metabolism in pancreatic can-
cer, lipid metabolic signal pathways and ER stress gene 
set were analyzed by ssGSEA and consensus cluster-
ing (Fig. 1A, C). The consensus matrix heatmap showed 
that k = 2 was the optimal classification method, dividing 
PDAC samples into Cluster 1(sample size = 89) and Clus-
ter 2(sample size = 89). The clustering heatmap in Fig. 1C 
showed that ER stress and lipid metabolism related genes 
and pathways had higher enrichment scores in Clus-
ter1. WGCNA analysis was then performed to identify 

(See figure on next page.)
Fig. 2 Identification of liver metastasis related genes. A Heatmap of cell scores. When the cell scores of a cluster significantly are higher 
in a reference cell type than other labels, they are annotated as that cell type. B Cell subpopulation clustering and annotation results 
of GSE154778 data set. C Alterations of cell cycle, purine metabolism, pyrimidine metabolism, and metabolic signaling pathways in epithelial cells 
between primary and liver metastasis groups. D, E WGCNA analysis screened the gene modules co-expressed with liver metastasis in GSE71729 
and GSE34153. F The Venn diagram illustrated the presence of 92 shared genes
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Fig. 2 (See legend on previous page.)
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Fig. 3 Construction and validation of a prognostic model for pancreatic cancer. A A combination of machine learning predictive models calculates 
the C-index for each model on the training set and the validation set. B Forest map of univariate cox regression analysis showed hazard ratios 
of the seven selected genes. C Coefficients of genes in the prognostic model. D Kaplan–Meier curves of OS in the train, test sets and TCGA, ICGC 
cohorts based on the model showed longer survival time in low-risk groups. E Univariate and multivariate Cox regression analyses were performed 
to assess the prognostic value of the risk score in conjunction with additional clinical features. F A nomogram combining risk scores and clinical 
information was constructed in the TCGA dataset
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co-expressed genes involved in high and low ERS_Lipid 
subgroups in PDAC. In the process of co-expression 
network construction, we observed that the soft thresh-
olding power β was 7 when the fit index of scale-free 
topology reached 0.9 and 18 modules were identified 
(Fig.  1B, D). The purple module was observed to have 
most significant correlations with ERS_Lipid in PDAC 
(Fig.  1D). Ultimately, 1240 ER stress and lipid metabo-
lism related genes from both marker genes and WGCNA 
module genes were screened out for further analysis.

Identification of liver metastasis related genes in PDAC
Liver metastasis is a devastating factor for the poor prog-
nosis and high mortality of PDAC. In order to elucidate 
the specific mechanism and intrinsic driving factors of 
liver metastasis in PDAC, both single cell and bulk tran-
scriptional analyses were conducted to select the differ-
entially expressed genes between primary PDAC tissues 
and liver metastatic tissues (|log FC|> 1& FDR < 0.05; 
Fig.  2 and Additional file  1: Fig.  S3). Each cell in the 
detecting samples is scored based on the cell type refer-
ence in SingleR package and the results of cell type were 
shown by the cell score heatmap (Fig. 2A). Nine cell types 
were identified in the single cell transcriptional analysis 
of GSE154778 cohort and 11 cell types were identified in 
GSE197177 cohort (Fig. 2B and Additional file 1: Fig. S3). 
The gene enrichment analysis showed that the scores 
of cell cycle, purine metabolism, pyrimidine metabo-
lism and metabolic pathways were significant higher in 
liver metastatic epithelial cells than in primary epithelial 
cells (p < 0.0001, Fig.  2C). Estrogen response, androgen 
response, protein secretion and other signaling path-
ways were significantly upregulated in both primary 
and liver metastatic epithelial cells, while reversed in 
macrophages, monocytes and T cells. And the unfolded 
protein response was significantly enriched in liver meta-
static epithelial cells, but not significantly changed in 
primary epithelial cells (Additional file  1: Fig.  S3D, E). 
Liver metastatic co-expressed genes were also screened 
through WGCNA analysis in GSE71729 and GSE34153 
cohorts (Fig.  2D, E). Finally, 722 liver metastatic DEGs 
from Single cell and bulk transcriptomic analyses, 857 
liver metastatic co-expression genes from WGCNA anal-
yses were identified. And 3887 DEGs between normal 

and tumor tissues in TCGA and GTEx cohorts were 
screened out through Limma R package with |log FC|> 1 
and FDR < 0.05 (Additional file  1: Fig.  S2). All the iden-
tified genes related to ERS_Lipid, liver metastasis and 
tumorous DEGs were intersected and 92 signatures were 
included in the subsequent analysis.

Machine learning based integration constructs 
a prognostic model for PDAC
The 92 consensus genes screened above were subjected to 
the univariate Cox analysis and 42 prognostic genes were 
identified (Additional file 4: Table S3). Then the 42 genes 
were analyzed in a machine learning based integration 
program to establish a consensus ERS_Lipid signature 
for predicting the overall survival of PDAC patients. The 
leave-one-out cross-validation (LOOCV) framework was 
employed to fit a combination of 10 machine learning 
algorithms with hyperparameter tuning in the training 
set, and the C-index of each model was further calculated 
across the testing set (Fig.  3A). The optimal model was 
the combination of stepCox[backward] and plsRcox with 
the highest average C-index (0.691) in all model types 
(Fig. 3A). Seven consensus genes with leading prognostic 
value were identified and the gene coefficients were fur-
ther calculated in the model (Fig. 3B, C). A risk score for 
each patient was then calculated with the expression of 7 
genes weighted by their regression coefficients. Accord-
ing to the optimal threshold determined, all patients were 
divided into high-risk and low-risk groups. In order to 
further assess the influence of sample size on model accu-
racy, mitigate overfitting, and enhance generalizability 
and reliability, we also validated the model in the TCGA 
and ICGC datasets and found that the model functioned 
well in distinguishing the patients into high and low risk 
groups (Fig.  3D). Univariate cox regression analysis and 
multivariate cox regression analysis suggested that risk 
score can be used as an independent risk factor for the 
prognosis of PDAC patients (Fig. 3E and Additional file 1: 
Fig. S4). A nomogram was also established to take both 
clinical variates and risk score into account for clinical 
use (Fig. 3F). Stratifying PDAC patients based on clinical 
characteristics, the study validated the prognostic pre-
dictive ability of the ERS_Lipid signature across differ-
ent clinical subgroups. The results demonstrated that the 

(See figure on next page.)
Fig. 4 Evaluation of the novel prognostic model. A The ROC curves showed the 1-year, 3-year, and 5-year survival prediction accuracy of the model 
in the training and testing sets. B AUC value of risk score was higher than that of clinical characteristics. C The DCA curves showed the respective 
benefit of risk score and other clinical features in predicting clinical outcomes. D The 1-, 3-, and 5-year calibration curves assessed the predictive 
robustness of the model. E, F Risk score was significantly associated with the Grade classification of patients in the TCGA cohort. G Survival time 
in the high- and low-risk groups. H, J The Top5 signal pathways enriched in high- and low-risk groups with adjusted P value < 0.05. I GSVA analysis 
showed relationship between KEGG pathways and the model genes
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Fig. 4 (See legend on previous page.)
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ERS_Lipid signature exhibited good prognostic discrimi-
nation in patients of varying ages, genders, grade stages, 
and T, N, M classifications (Additional file  1: Fig. S4). 
These findings suggested the prognostic model exhib-
ited robustness and generalizability across diverse patient 
populations.

Validation and evaluation of the novel model 
and the related gene enrichment analyses
To further evaluate the prognostic value of the estab-
lished model, receiver operating characteristic (ROC) 
curves were plotted and the area under the ROC curve 
(AUC) was calculated at 1, 3 and 5 years, respectively. 
The results suggested that the prognostic accuracy of 
risk score was significantly higher than that of age, gen-
der and stage (Fig. 4A, B). The Decision Curve Analysis 
(DCA) indicated that the clinical benefit of risk score in 
evaluating prognosis of PDAC was greater than that of 
age, gender and stage (Fig. 4C). The calibration curves 
of risk score at 1-, 3- and 5-year showed that risk score 
was robust in predicting the survival time in the train-
ing and testing sets (Fig.  4D). The risk scores derived 
from this predictive model exhibited a significant posi-
tive correlation with tumor grade, with a notably higher 
proportion of G3-4 patients observed in the high-risk 
group compared to the low-risk group (Fig.  4E, F). 
These findings suggest an association between this risk 
features and the clinical progression of PDAC patients. 
Patients in high-risk group had shorter survival time 
than in low-risk group across all the training and vali-
dation cohorts (Fig.  4G). The GSEA analysis was also 
performed to elucidate the signal pathways alteration 
in high- and low-risk groups. The results showed that 
focal adhesion, pancreatic cancer, pathways in cancer 
and ubiquitin mediated proteolysis were enriched in 
high-risk group, while arachidonic acid metabolism, 
oxidative phosphorylation and phenylalanine metabo-
lism were enriched in patients with low-risk scores 
(Fig. 4H, J and Additional file 5: Table S4). And the cor-
relation between risk scores and hallmark signal path-
ways was analyzed with GSVA algorithm. Risk score 
was significantly positively correlated with most of the 
tumor-related signaling pathways, such as MTOR, Insu-
lin, ERBB and Wnt signal pathways, while significantly 

negatively related to PPAR and Notch signaling path-
ways (Fig. 4I and Additional file 1: Fig. S5).

Furthermore, the comparison of the constructed 
model with 7 previously published prognostic models 
were also conducted [33–39]. All signatures exhibited 
excellent prognostic discrimination, with significantly 
lower survival times observed in the high-risk group 
compared to the low-risk group (Fig.  5A–H). How-
ever, the ERS-Lipid signature demonstrated larger AUC 
values at 1, 3, and 5 years compared to the seven pre-
viously published signatures, indicating higher prog-
nostic accuracy in PDAC (Fig. 5I–P). Additionally, the 
ERS-Lipid signature displayed higher C-index values in 
both the entire training cohort and validation cohort, 
suggesting its superior robustness (Fig. 5Q). The results 
suggested that the ERS_Lipid signature functioned well 
in predicting the survival outcomes of patients with 
PDAC (Figs. 4, 5).

Analyses of tumor mutation burden and drug sensitivity 
between high‑ and low‑risk groups
In order to further explore the correlation between 
tumor mutation burden (TMB) and risk score, the 
somatic mutation landscape of each PDAC sample in the 
high- and the low-risk groups were visualized by water-
fall diagram, and it was observed that the top 20 mutant 
genes in the two subgroups were basically the same, but 
the total mutation load was 93.55% in the high-risk group 
and 74.77% in the low-risk group (Fig. 6A, B). We found 
the top 4 genes KRAS, TP53, CDKN2A, and SMAD4 
with the highest mutation load in the high- and low-risk 
groups. For the classification of variation, missense muta-
tion, nonsense mutation and frame shift del are the top 
3 across all mutation types. The results also showed that 
risk score had significantly positive correlation with TMB 
(Fig.  6C, D). And the survival time of patients in high-
risk score and high TMB group was shorter than that of 
patients with low-risk score and low TMB (Fig.  6E, F). 
The drug sensitivity analysis in the high- and low-risk 
groups showed that the risk score was correlated with 
multiple drug sensitivity (Fig.  6G). The results showed 
that the sensitivity to 5-Fluorouracil, Afatinib, Irinote-
can, Lapatinib and Trametinib in patients with high-risk 
scores was lower than in low-risk group, while reversed 

Fig. 5 Comparison of the ERS_Lipid-related prognostic model with seven published prognostic models. A–H The Kaplan–Meier survival curves 
demonstrated that both the ERS_Lipid signature and the seven previously published prognostic signatures exhibit significant prognostic 
discrimination in the integrated training dataset. I–P The area under the ROC curve of the ERS_Lipid signature was greater than that of the other 
seven previously published signatures. Q ERS_Lipid signature demonstrated a higher C-index value in both the integrated training and validation 
datasets. “*”p < 0.05, “**”p < 0.01, “***”p < 0.001, “****”p < 0.0001

(See figure on next page.)
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Fig. 6 Analyses of tumor mutation burden and drug sensitivity in high-low risk groups. A, B The accumulated alteration of mutated genes 
in high- and low-risk groups. C, D TMB was positively related to risk scores. E, F Kaplan_Meier curves showed TMB and risk scores correlated 
with adverse prognosis. G The drug sensitivity in high- and low-risk groups. The Y-axis showed the IC50 value, which was negatively correlated 
with drug sensitivity
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results were observed in the sensitivity to some drugs, 
such as Docetaxel, Epirubicin and Gefitinib (Fig. 6G).

Analysis of tumor immune landscape between high‑ 
and low‑risk groups
The heterogeneity of tumor immune microenvironment 
is an important factor affecting tumor development and 
prognosis. To assess the immune landscape in high- and 
low-risk groups, we analyzed the alteration of TIDE [30] 
scores and IPS scores (Fig.  6A–H). The results showed 
that TIDE score, immune exclusion score and MDSC 
score are higher in the high-risk group than in low-risk 
group, indicating higher likelihood of immune escape 
(Fig.  7A–D). And IPS of CTLA(+)PD1(−) was signifi-
cantly lower in high risk group, while IPS of CTLA(+)
PD1(+), CTLA(−)PD1(+) and CTLA(−)PD1(−) had 
no significant difference in high- and low-risk groups 
(Fig.  7E–H). This suggested that patients in the high-
risk group may not respond well to immunotherapy. 
The immune infiltration alteration was also explored 
through CIBERSORT and ssGSEA analyses, which 
offered a computational estimation within the tumor 
microenvironment. The results showed that the infiltra-
tion levels of  CD8+ T cells, M1 macrophages, T follicu-
lar helper cells, T regulatory cells and resting Dendritic 
cells were down-regulated in high-risk group, while that 
of plasma cells, resting  CD4+ T cells memory, activated 
 CD4+ T cells memory, resting NK cells and activated 
Dendritic cells were reversed (Additional file 1: Fig. S6). 
The enriched scores of immune infiltration and immune 
function showed that immune cells such as activated 
B cells, activated  CD8+ T cells, CD56 bright NK cells, 
 CD4+ central memory T cells and  CD8+ effector T cells 
were significantly down-regulated in high-risk group. 
And The enrichment scores of activated  CD4+ T cells, 
natural killer T cells, Th1 helper cells and Th2 helper cells 
was higher in the high-risk group (Fig. 7I, J). The correla-
tion of check-point genes with risk score and prognostic 
genes was also analyzed and displayed in Fig. 7K. As for 
the immune functions, APC_co_inhibition, check point 
and type II IFN response signal pathways were upregu-
lated in high-risk group, while immune pathways such as 
APC_co_stimulation, CCR, cytolytic activity and type I 
IFN response signal pathway were decreased in high-risk 

group (Fig.  7L). Furthermore, Fisher’s test revealed sig-
nificant differences in the cohort distribution of response 
to immunotherapy among patients in high- and low-risk 
groups (Fig.  7M). Submap analysis provided additional 
validation that patients classified in the low-risk group 
exhibited a higher responsiveness to immunotherapy 
targeting CTLA4 compared to those in the high-risk 
group (adjusted p value < 0.05; Fig. 7N) (Additional file 6: 
Table S5).

Cell–cell communication analysis between high‑ 
and low‑ERS groups
CellChat algorithm [32] was applied to explore and esti-
mate the intercellular signaling communications based 
on gene expression information from single-cell tran-
scriptomics. Communication patterns between high- and 
low-ERS groups were compared to predict pathological 
changes in cell–cell communication of PDAC. The results 
showed that the number and interaction strength of cell–
cell communication were increased in high- ERS group 
(Fig. 8A, B). The interaction number and strength of epi-
thelial cells (sender) to macrophages and monocytes were 
augmented, while the interaction number of monocytes, 
macrophages and T cells (sender) to epithelial cells and 
the interaction strength of other cells such as epithelial 
cells (sender) to T cells were down-regulated in high-ERS 
group (Fig. 8D). The information flows of each signaling 
pathway were then calculated to identify the communi-
cating probability over all the pairs of cell types and the 
information flow between epithelial cells and other cells 
were further quantified (Fig. 8C, E). CLDN pathway was 
decreased, whereas some others like RESITIN, MIF, and 
SPP1 were increased in high-ERS group. And PECAM1 
signal pathway was turned off, while some pathways, 
such as CEACAM, DESMOSOME and PTPRM signal 
pathways were turned on in high-ERS group (Fig. 8F, G). 
We selected three interesting signaling pathways for fur-
ther analysis. The communicating interactions in MIF, 
APP and SPP1 signaling pathways among all cell types in 
the high- and low-ERS groups were analyzed and shown 
in Fig. 8G–L. We also investigated alterations of cell–cell 
communication in the high-low lipid metabolism groups. 
The number and intensity of cell–cell interactions in the 
high-lipid metabolism group also increased significantly. 

Fig. 7 Immune landscape in high- and low-risk groups. Alteration of A TIDE score, B immune dysfunction, C immune exclusion and D 
MDSC in high- and low-risk groups. E–H IPS scores of PD1 and CTLA4 in high- and low-risk groups. I, J The immune infiltration variations 
in high- and low-risk groups. K Risk scores correlated with immune checkpoints. L Immune function altered in high- and low-risk groups. M Fisher’s 
test revealed the cohort distribution of immunotherapy response among patients categorized into high and low-risk groups within the TCGA 
dataset. N The responsiveness of patients to immune checkpoint inhibitor (ICI) treatment based on submap algorithm and the TIDE scores 
with Bonferroni corrected p values

(See figure on next page.)
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Concurrently, some signaling pathways related to tumor 
proliferation and progression, such as NOTCH, APP, and 
CEACAM, were also significantly activated in the high-
lipid metabolism group (Additional file 1: Fig. S7).

Metabolism reprogramming analysis based on the single 
cell transcriptomes
Analysis of the PDAC single-cell dataset using the UCell 
(Version 2.6.2) R package revealed active ER stress sig-
nals across all cellular subtypes, particularly prominent 
in Epithelial cells. Furthermore, downstream adaptive 
pathways of endoplasmic reticulum stress, such as the 
unfolded protein response, exhibited significant activa-
tion in all cellular subtypes. Concurrently, lipid metabo-
lism-related pathways, including fatty acid metabolism, 
cholesterol homeostasis, and bile acid metabolism, were 
notably enriched in various cellular subtypes, with a 
pronounced enrichment observed in Epithelial cells. 
Notably, there was no discernible difference in DNA 
damage among the different PDAC cellular subtypes. 
Malignancy-associated gene sets related to metastasis, 
stemness, and proliferation demonstrated higher enrich-
ment scores in Epithelial cells, tissue stem cells, other 
stromal cells, and macrophages (Fig. 9A). To further elu-
cidate the metabolic alterations between high- and low-
groups of ER stress and lipid metabolism, we investigated 
the metabolic pathways by scMetabolism R package [27]. 
Apart from phenylalanine metabolism, taurine and hypo-
taurine metabolism, the majority of metabolic pathways 
from primary tumor cells were activated in the high-
groups of both ERS and lipid metabolism, such as purine 
metabolism, pyrimidine metabolism, steroid biosyn-
thesis, nitrogen metabolism and fatty acid biosynthesis 
(Fig. 9B, D). Most metabolic pathways in liver metastatic 
cells were also significantly up-regulated in the high-ERS 
and high-lipid metabolic groups, except oxidative phos-
phorylation, glycosphingolipid biosynthesis, and one car-
bon pool by folate (Fig. 9C, E). The metabolic changes of 
tumor cells represented by epithelial cells and immune 
cells represented by T cells in the primary and liver 
metastasis groups were also significant (Fig. 9F, G).

Validation of the expression and prognostic value of ERS_
Lipid‑related hub genes
In this investigation, a prognostically significant ERS_
Lipid signature comprising seven genes was identified 
through a combination of machine learning algorithms. 
Notably, among these genes, SOD2, P4HB, and TNFSF10 
were identified as hub genes associated with adverse 
prognostic outcomes in pancreatic cancer. To further 
validate the predictive value of the ERS_Lipid signature, 
experimental validation was conducted to assess the 
expression levels and prognostic relevance of the three 
risk genes. Single-cell sequencing data indicated wide-
spread expression of SOD2 and P4HB across various cell 
populations, with TNFSF10 primarily expressed in epi-
thelial cells, and APOE predominantly expressed in mac-
rophages and a small subset of stromal cells. NPC1L1, 
RAP1GAP, and ADH1C show relatively low expres-
sion levels across different cell populations (Fig.  10A). 
The qPCR results showed that the expression of SOD2 
and TNFSF10 was elevated in the PANC1, CAPAN1, 
BXPC3, and BXPC3-LMT cell lines compared to HPNE. 
The expression of P4HB was increased in PANC1 and 
CAPAN1, decreased in BXPC3, while significantly upreg-
ulated in BXPC3-LMT (Fig. 10B). The protein expression 
of the 3 hub genes was examined by IHC to determine 
significant differences between the PDAC group (n = 80) 
and the normal group (n = 80). SOD2 exhibited a total 
positive rate of 75% (60/80) in the PDAC group and 
63.75% (51/80) in the normal group. P4HB showed a total 
positive rate of 96.25% (77/80) in the PDAC group and 
100% (80/80) in the normal group. TNFSF10 displayed a 
total positive rate of 95% (76/80) in the normal group and 
100% (80/80) in the PDAC group (Fig. 10C). The positive 
areas of SOD2 and TNFSF10 in the PDAC group were 
significantly higher than those in the normal group, while 
the positive areas of P4HB showed no significant change 
(Fig.  10D). However, P4HB is predominantly expressed 
in acinar cells in normal tissues, with significantly lower 
expression levels observed in pancreatic ductal cells 
compared to tumor tissues. Furthermore, the correla-
tion between the positive area of each protein in tissues 

(See figure on next page.)
Fig. 8 Cell–cell communication analysis between high- and low-ERS groups. A The number and strength of cell interaction mediated by individual 
signal pathways in high and low ERS groups. B Circle plots of communicating number and strength between immune cells and tumor cells. 
C The ranking bar chart showed the signal axes of interactive networks in high- and low-ERS groups. The signaling pathway with red labels 
was more abundant in the low-ERS group, the signaling pathway marked black was equally abundant in both groups, and the signaling pathway 
with green labels was more enriched in the high-ERS group. D Heatmap of cell–cell communication number and strength. Blue indicated reduced 
intercellular communication in the high-ERS group compared to the control group, while red indicated enhanced intercellular communication. E 
Bubble map of altered cell–cell communication mediated by individual signaling axes, with the horizontal axis showing the cell class that initiates 
and receives the signal, and the vertical axis showing receptor-ligand pairs of the signaling pathway. F Heatmaps displayed the overall (both 
outgoing and incoming) signal flows of each cell population. G, H MIF signal pathway, I, J SPP1 signal pathway and K, L APP signal pathway 
in low- and high-ERS groups
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and progress free survival (PFS) time was examined in 
35 patients with complete follow-up data. The findings 
revealed a negative correlation between SDO2, P4HB 
and TNFSF10 expression levels and prognosis in PDAC 
patients. (adjusted p value < 0.05, Fig. 10E).

Discussion
Endoplasmic reticulum homeostasis plays a pivotal 
role in regulating cell function and viability. The ER 
homeostasis of malignant cells, stromal cells as well as 
infiltrating immune cells experience perturbations by 
carcinogenic, transcriptional and metabolic abnormali-
ties and other stimuli, which collectively contribute to 
an adverse microenvironment in response to sustained 
ER stress [40]. ER stress is mainly manifested by accu-
mulation of misfolded and unfolded proteins, which can 
promote antioxidant reaction through ATF4 and NRF2, 
reducing oxidative stress and promoting tumor metasta-
sis [41]. Some studies have shown that ER stress in can-
cer cells can regulate the functions of T cells, dendritic 
cells, natural killer (NK) cells, etc., coordinate various 
immune escape mechanisms, and mediate tumor growth 
and metastasis [42–44]. Lipid anabolism and catabolism 
as well as lipid distribution are regulated by ER to some 
extent. Both lipid metabolic reprogramming and ER 
stress can interact with other cellular functions and pro-
mote the development of diseases [45, 46]. Further study 
of ER stress and lipid metabolism may contribute to new 
understanding of tumor pathogenesis.

Pancreatic cancer is highly metastatic and refractory 
to the existing treatment including the targeted and 
immune therapy [47]. Tumor metastasis is a complex 
process driven by the combination of intrinsic proper-
ties of tumor cells (such as mutation burden) and cross-
talk between tumor cells and other immune cells, stromal 
cells, and extracellular matrix in tumor microenviron-
ment [48]. PDAC is characterized by a complex tumor 
microenvironment and is one of the least immune infil-
trated cancers [49]. Liver is not only the main site of dis-
tant metastasis of PDAC cases, but also the main site of 
metabolism. Metabolic reprogramming and the hetero-
geneity of the tumor immune microenvironment both 
play important roles in tumor development and metas-
tasis to the liver [50]. At present, the molecular mecha-
nisms driving liver metastasis of PDAC have not been 

fully clarified, and further research is needed to contrib-
ute for the development of corresponding therapies and 
improving the prognosis of PDAC patients.

In this study, we screened out the ER stress and lipid 
metabolism related genes as well as the liver metastatic 
genes and developed a novel prognostic model for PDAC 
patients with seven genes based on bioinformatics and 
machine learning methods, which may provide a poten-
tial biomarker for the diagnosis and prognosis of PDAC 
patients with liver metastasis. The results of single cell 
transcriptome analysis showed that the pathways of cell 
cycle, purine metabolism, pyrimidine metabolism and 
metabolic pathways were upregulated in liver metastatic 
epithelial cells than in primary epithelial cells, which sug-
gested the malignant progression in the liver metasta-
sis of PDAC. The prognostic model was validated in the 
test set and the TCGA, ICGC cohorts. The results sug-
gested that the risk score functioned well than the clini-
cal features, such as age, gender and stage, in predicting 
the survival time of patients. The univariate and multi-
variate cox regression analyses also demonstrated that 
risk score can be used as an independent prognosticator 
in PDAC. Comparing with seven previously published 
models, including a broad metabolic signature, a hypoxia 
signature, an immune-related signature, a cuproptosis 
signature, a ferroptosis signature, a cholesterol metabo-
lism-related signature, and a multi-omics signature cov-
ering various research directions, we found that the novel 
ERS_Lipid signature demonstrates significant advantages 
in prognostic accuracy and robustness for PDAC. This 
highlights the superiority of machine learning integrated 
screening methods and underscores the substantial role, 
as well as prognostic potential of ERS_Lipid in the occur-
rence and development of PDAC. Further gene enrich-
ment analyses between the high- and low-risk subgroups 
also showed that pathways in cancers were increased in 
the high-risk group, and the hallmarks of tumor signifi-
cantly correlated with risk scores. Patients in high-risk 
group are prone to have greater TMB, which provided 
evidence for the accuracy of this prognostic model and 
indicated that patients with high-risk scores are charac-
terized by higher genetic heterogeneity. And the drug 
sensitivity analysis found that the sensitivity of patients 
in the high- and low-risk group to different drugs varied 
significantly, which can provide a certain guidance for the 

Fig. 9 Metabolic alterations analyses based on single cell RNA_seq data. A Enrichment strength of signaling pathways related to endoplasmic 
reticulum stress, lipid metabolism, and malignant behavior in the pancreatic cancer single-cell dataset as depicted in the feature plot. B, C 
Metabolism reprogramming pathways in the high- and low-ER stress groups in primary and liver metastatic cells. D, E Metabolism reprogramming 
pathways in the high- and low-lipid metabolism groups in primary and liver metastatic cells. F The metabolic changes of epithelial cells in primary 
and liver metastatic groups. G The metabolic alterations of T cells in primary and liver metastatic groups

(See figure on next page.)
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drug selection of adjuvant chemotherapy and targeted 
therapy for PDAC patients who lost the opportunity of 
surgery and after PDAC surgical resection.

The selected seven prognostic genes were APOE, 
ADH1C, RAP1GAP, NPC1L1, TNFSF10, SOD2 and 
P4HB, in which the gene set of APOE, ADH1C, RAP-
1GAP and NPC1L1 served as protective factors and gene 
set of TNFSF10, SOD2 and P4HB played as risky factors 
in the prognosis of PDAC. The differentially expression 
levels and the prognostic value of these model genes were 
also significant (Fig.  10 and Additional file  1: Fig.  S8). 
Apolipoprotein E (APOE) is a secreted protein involved 
in lipoprotein metabolism and cholesterol transport. It 
has been demonstrated that APOE plays a role in regu-
lating the abundance of MDSC and anti-tumor immu-
nity [51]. Pencheva [52] et  al. also reported that APOE 
inhibits invasion and angiogenesis in melanoma by 
attracting tumor cell LRP1 receptors and endothelial cell 
LRP8 receptors, respectively. Alcohol dehydrogenase 
1C (ADH1C) is a member of the alcohol dehydrogenase 
family that metabolizes ethanol, fatty alcohols, and lipid 
peroxidation products [53]. ADH1C is associated with 
a poor prognosis for liver cancer and lung adenocar-
cinoma [54, 55]. In colorectal cancer, ADH1C acts as a 
tumor suppressor gene [53]. Many results of studies on 
the association of ADH1C with multiple tumors are sig-
nificant but inconsistent. The role of ADH1C in pancre-
atic cancer is rarely reported and needs further study. 
Tumor suppressor gene RAP1GAP, which is inactivated 
by hypermethylation of its regulatory region, can cause 
thyroid tumor [56]. The silencing of RAP1GAP promotes 
endometrioid adenocarcinoma cell migration and inva-
sion [57]. In addition, a research by Agarwal [58] et  al. 
on non-alcoholic fatty liver disease suggested that RAP-
1GAP can reduce the expression of genes involved in fat 
synthesis in obese mice, indicating a correlation between 
RAP1GAP and lipid metabolism. Niemann-Pick C1-like 
1 (NPC1L1) is a cholesterol transporter that plays a cru-
cial role in intestinal absorption of cholesterol [59]. And 
NPC1L1 promotes the absorption of vitamin E and can 
interact with lipid peroxidation free radicals to prevent 
oxidative stress [60]. TNFSF10 has an inhibitory func-
tion in regulating breast cancer cell metastasis, but it has 
been reported that TNFSF10 can enhance the invasion of 
PDAC cells in vitro and increase the distant metastasis of 

pancreatic tumors in vivo [61]. Huang et al. [62] treated 
macrophages with thapsigargin or tunicamycin to induce 
the ER stress response and observed an upregulation 
of TNFSF10 expression. In a separate study by Jiang 
et  al. [63], it was noted that TRAIL facilitates cytokine 
expression and activates the ER stress-dependent NF-κB 
pathway. These findings collectively suggest a close asso-
ciation between TNFSF10 and ER stress. Superoxide 
dismutase 2 (SOD2) is an enzyme that plays an impor-
tant role in reactive oxygen species (ROS) signaling. The 
study found that silencing SOD2 significantly reduced 
the growth and metastasis characteristics of PDAC such 
as migration and colony-forming ability [64]. Moreo-
ver, inhibiting SOD2 significantly promotes ER stress, 
indicating that SOD2 suppression may further enhance 
endoplasmic reticulum stress by promoting oxidative 
stress [65]. Prolyl 4-hydroxylase, β polypeptide (P4HB) 
is an endoplasmic reticulum molecular chaperone pro-
tein with oxidoreductase activity. Although downregula-
tion of P4HB was observed in the bulk RNA-seq dataset, 
its upregulation in the single-cell transcriptome dataset 
was evident. Furthermore, the experimental results in 
this study demonstrated that high P4HB expression was 
correlated with adverse prognosis in PDAC. The highly 
active interaction between LGALS9 and P4HB also sug-
gested that they played a crucial role in promoting PDAC 
[66].

The immune landscape of high- and low-risk groups 
showed that the infiltration level of anti-tumor immune 
cells such as  CD8+ T cells, M1 macrophages and NK 
cells, as well as regulatory T cells were decreased in high-
risk group, while activated  CD4+ T cells and Th2  CD4+ T 
cells were up-regulated in high-risk group. This suggests 
that the changes of immune infiltrating cells in the PDAC 
tumor microenvironment are very complex, including the 
decrease of anti-tumor related immune cells, the increase 
of negative immunomodulatory cells, and the increase of 
positive immune cells. Through the analysis of immune 
infiltrating cells in the tumor microenvironment and the 
analysis of immune function, we found that the immuno-
suppressive influence was more obvious in the high-risk 
group. By further investigating intercellular communica-
tion in the high- and low-ERS groups, we found that in the 
high-ERS group, epithelial cells’ interactions with mono-
cytes, macrophages, and T cells decreased, but the overall 

(See figure on next page.)
Fig. 10 Validation of the expression levels and prognostic relevance of hub genes. A Gene expression levels of ERS_Lipid signature in single-cell 
dataset. B Relative RNA expression of SOD2, P4HB and TNFSF10. C, D The protein expression levels of SOD2, P4HB and TNFSF10 were detected 
by immunohistochemical staining in 80 pairs of PDAC tumor tissues and non-tumor tissues using multiple tests with adjusted p values. E 
Correlation analysis of the hub gene expression levels with prognosis in PDAC. “ns” adjusted p value > 0.05, “*” adjusted p value < 0.05, “**” adjusted p 
value < 0.01, “***” adjusted p value < 0.001, “****” adjusted p value < 0.0001
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number and intensity of intercellular communication 
increased, including three interesting signaling pathways. 
These are the MIF, APP and SPP1 signaling pathways. The 
MIF receptor consists of a ligand-binding CD74 signal-
ing complex coupled with a signal transduction CD44. 
When ligands bind to MIF, downstream signal transduc-
tion can be initiated to promote inflammatory and cell 
survival [67]. APP may promote the growth of pancreatic 
cancer cells through the signaling of sAPP and serve as a 
new therapeutic target for pancreatic cancer [68]. Enrich-
ment of  SPP1+ macrophages in tumor tissues is negatively 
correlated with lymphocyte infiltration, indicating poor 
survival and resistance to immunotherapy [69]. This sug-
gested that complex cell–cell communication can activate 
downstream signaling pathways in the tumor microen-
vironment, thus playing an important role in tumor pro-
gression. Furthermore, in the liver metastasis group, a 
notable decrease in taurine metabolism was observed in T 
cells. Studies have indicated that augmenting taurine levels 
can enhance effector and memory T cell responses, while 
inhibiting taurine uptake may induce T cell death [70, 71]. 
These findings align with our research results, suggest-
ing a phenomenon of T cell immune tolerance mediated 
by metabolic reshaping during the pancreatic cancer liver 
metastasis process. There was a significant upregulation 
in taurine and hypotaurine metabolism in the high-ERS 
subgroup of primary tumors, while reversed in the liver 
metastatic cells. Taurine is known for its roles in main-
taining the normal electron transport chain, enhancing 
antioxidant responses, increasing membrane stability, and 
preventing calcium accumulation [72]. These results indi-
cated that adaptive changes with ER stress and homeo-
static imbalances may occur within tumor cells during the 
process of pancreatic cancer liver metastasis.

Conclusion
Collectively, our study constructed a novel prognostic 
model based on machine learning methods to explore 
and elucidate the important effects of ER stress and lipid 
metabolism on pancreatic cancer prognosis, immune 
microenvironment, and metabolism.
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Additional file 1: Figure S1. Flow chart of steps followed for data collec-
tion and analysis in the study. Figure S2. Effects of endoplasmic reticulum 
stress and lipid metabolism on prognosis of pancreatic cancer patients 
and identification of differentially expressed genes in pancreatic cancer. 
A NMF clustering of pancreatic patients based on ER stress genes in 
TCGA cohort. B Kaplan–Meier curve of OS time in cluster1 and cluster2. C 
Enrichment analysis of cancer related hallmarks in cluster1 and cluster2. D 
NMF clustering of pancreatic patients based on lipid metastatic genes in 
TCGA cohort. E Kaplan–Meier curve of OS time in cluster1 and cluster2. F 
Enrichment analysis of cancer related hallmarks in cluster1 and cluster2. G, 
H Differentially expression analysis between normal and tumor tissues in 
combined cohorts of TCGA and GTEx. |logFC| ＞ 1 & FDR ＜ 0.05. Figure 
S3. Identification of liver metastatic genes. A Cell score heatmap based on 
SingleR package in GSE197177 data set. B, C Cell clustering based on TSNE 
and UMAP methods and cell annotation in GSE197177. D GSVA analysis 
of hallmarks in cell populations of primary group. E GSVA analysis of hall-
marks in cell populations of liver metastatic group. F, G Enhanced volcano 
maps of differentially expression analyses in GSE154778 and GSE197177 
data sets (FDR ＜ 0.05). H, I Volcano maps of differentially expression anal-
yses in GSE71729 and GSE34153 data sets (|log FC| ＞ 1 & FDR ＜ 0.05). J, 
K, L Venn maps showing the screening of liver metastatic genes. Figure 
S4. Evaluation of the prognostic model. Univariate cox regression analyses 
(left) and the multivariate cox regression analyses (right) of risk score and 
clinical characteristics in the A, B test set, C, D TCGA set, E, F ICGC set. Risk 
score of the prognostic model can predict the survival time of patients 
in subgroups stratified by G, H Age, I, J Gender, K, L Grade, M, N T, O, P 
M, and Q, R N. Figure S5. Correlation of amino acid metabolism related 
genes with cancer hallmark signaling pathways. A–C The correlation of 
key signaling pathway characteristics with risk genes including SOD2, 
TNFSF10 and P4HB, as well as D–G protective genes including NPC1L1, 
ADH1C, RAP1GAP and APOE. The color gradient signifies the varying 
strength of correlation, with dashed lines denoting negative correlations 
and solid lines representing positive correlations. In terms of statistical sig-
nificance, shades of colors are employed: cyan corresponds to p < 0.001, 
orange to p < 0.01, purple to p < 0.05, pink indicating lack of practical 
significance, and green signifying p > 0.05. Figure S6. Immune infiltration 
analyses between high- and low-risk groups. A–C CIBERSORT analysis of 
the immune infiltration levels in high- and low-risk groups in the train set. 
D Correlation analyses of risk score in TCGA cohort with the infiltrating 
levels of immune cells from XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 
EPIC, CIBERSORT-ABS and CIBERSORT. E Lolipop maps displaying the 
relationship of immune cells with the 7 selected model genes. Figure S7. 
Cell-cell communication analysis between high- and low-lipid metabo-
lism groups. A The number and strength of cell interaction pathways in 
high- and low-lipid metabolism groups. B Circle plots of communicating 
number and strength between different cell populations. C The ranking 
bar chart showed the signal axes of interactive networks in high- and low-
lipid metabolism groups. D Heatmap of cell–cell communication number 
and strength. E Bubble map of altered cell-cell communication mediated 
by individual signaling axes. F Heatmaps displayed the overall (compris-
ing of outgoing and incoming) signal flows of each cell subgroup. Figure 
S8. Gene expression and survival analyses. A The differentially expression 
analyses of 7 selected model genes in the high- and low-risk groups. B 
Kaplan–Meier curves of OS of 7 selected model genes in the train set.
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