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Abstract
Recent studies have increasingly revealed the connection between metabolic reprogramming and tumor 
progression. However, the specific impact of metabolic reprogramming on inter-patient heterogeneity and 
prognosis in lung adenocarcinoma (LUAD) still requires further exploration. Here, we introduced a cellular 
hierarchy framework according to a malignant and metabolic gene set, named malignant & metabolism 
reprogramming (MMR), to reanalyze 178,739 single-cell reference profiles. Furthermore, we proposed a three-
stage ensemble learning pipeline, aided by genetic algorithm (GA), for survival prediction across 9 LUAD cohorts 
(n = 2066). Throughout the pipeline of developing the three stage-MMR (3 S-MMR) score, double training sets 
were implemented to avoid over-fitting; the gene-pairing method was utilized to remove batch effect; GA was 
harnessed to pinpoint the optimal basic learner combination. The novel 3 S-MMR score reflects various aspects 
of LUAD biology, provides new insights into precision medicine for patients, and may serve as a generalizable 
predictor of prognosis and immunotherapy response. To facilitate the clinical adoption of the 3 S-MMR score, we 
developed an easy-to-use web tool for risk scoring as well as therapy stratification in LUAD patients. In summary, 
we have proposed and validated an ensemble learning model pipeline within the framework of metabolic 
reprogramming, offering potential insights for LUAD treatment and an effective approach for developing 
prognostic models for other diseases.
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Introduction
Prior studies have shown that cancer cells frequently 
undergo epigenetic modifications to address challenges 
within the microenvironment and enhance their adapt-
ability [1, 2]. Cell metabolism reprogramming, a vital 
tumor epigenetic change responding to varying energy 
demands [3], permits cancer cells to dynamically regulate 
bioenergetics and energy production by multiple meta-
bolic pathways, including glycolysis [4], fatty acid metab-
olism [5], as well as lactic acid metabolism [6]. Malignant 
behaviors, such as proliferation, invasion, as well as 
metastasis, have been demonstrated to be associated 
with the reprogramming of cell metabolism, revealing a 
growing understanding of the underlying biological pro-
cesses [7]. Although confirmed studies indicated altera-
tions in the metabolic characteristics of LUAD cells via 
various metabolic pathways, leading to the induction of 
malignant behaviors as well as chemotherapy resistance 
[8, 9], the relationship between these alterations and 
patient prognosis has not been thoroughly elucidated. 
Furthermore, prior studies utilized tissue-level sequenc-
ing data constrained by cellular heterogeneity. Now, 
leveraging single-cell technology allows exploration of 
tumor characteristics at the single-cell level, effectively 
dissecting cellular heterogeneity and its impact on the 
tumor microenvironment (TME) [10]. However, the lim-
ited patient data from scRNA-seq samples has resulted 
in inadequate comprehensive studies on the relationship 
between metabolic reprogramming in cellular hierar-
chy structures and patient-to-patient variability, factors 
potentially responsible for the unfavorable prognosis and 
chemotherapy resistance in LUAD.

Historically, computational methods for predicting sur-
vival in LUAD patients have often relied on either single 
tumor-related pathways or individual machine learn-
ing algorithms or models, thereby severely constraining 
the robustness and precision of prognostication. Utiliz-
ing ensemble learning technique is an effective strat-
egy to establish a robust model, as these methods have 
demonstrated superior accuracy compared to individual 
machine learning approaches across numerous biologi-
cal prediction tasks, particularly in forecasting survival 
states. For instance, Kaur et al. devised an ensemble 
learning framework that incorporated support vector 
machine, random forest, as well as decision tree models 
as basic learners to predict the survival of ovarian can-
cer patients, achieved better predictive performance [11]. 
Zhu et al. collected glioma prognosis-related key genes 
and further constructed a high-performance ensemble 
learning model using GA [12]. Nonetheless, the preci-
sion as well as robustness of the ensemble learning model 
frequently encounter hurdles stemming from the feature 
engineering process and the variety in the basic learners. 
When basic learners and the ensemble learning model 

are concurrently trained on an identical cohort, there is a 
significant risk of overfitting, and the unique distributive 
traits of transcriptomic data, attributed to techniques like 
microarrays or RNA sequencing, further complicate the 
scenario [13]. Moreover, models constructed solely from 
bulk RNA-seq data tend to overlook the underlying bio-
logical rationale of the disease, lack adequate universality, 
and frequently encounter challenges in practical clinical 
applications.

In this study, we defined a set of genes correlated 
LUAD tumorigenesis and cell metabolism reprogram-
ming named “MMR” according to LUAD scRNA-seq 
profiles. Machine leaning methods including Cox regres-
sion, random survival forest (RSF), CoxBoost, support 
vector machine (SVM), as well as Gradient Boosting 
Machine (GBM) were used to clarify the relationships 
between MMR and LUAD prognosis. We introduced an 
innovative ensemble learning pipeline, the three-stage 
MMR (3  S-MMR), augmented by genetic algorithm. 
This framework employs double training sets for feature 
engineering as well as model development, respectively, 
thereby mitigating the risk of severe overfitting. To bol-
ster the robustness of the 3 S-MMR score, a novel gene-
pairing method was implemented to remove the batch 
effects. Moreover, the integration of a GA automates the 
selection of basic learners within the ensemble learning 
model, facilitating the attainment of heightened accuracy 
[14]. The 3 S-MMR framework, which takes into account 
the fundamental biological aspects of cancer and meta-
bolic reprogramming, has been validated as an impor-
tant risk indicator in pan-cancer analyses. Subsequently, 
an easy-to-use web-tool has been developed to assist in 
predicting the future survival and guiding the therapy 
stratification of LUAD patients (https://xintisunlab.shin-
yapps.io/appLUAD/). Consequently, our study may offer 
insights for a deeper understanding of the genetic char-
acteristics of metabolism in LUAD, as well as how meta-
bolic reprogramming influences tumor malignancy and 
prognosis in LUAD patients.

Methods and materials
Data source
The scRNA-seq including 48 samples from normal lung 
(nLung, n = 11), normal lymph nodes (nLN, n = 10), early 
stage tumor lung (tLung, n = 11), advanced stage tumor 
lung (tL/B, n = 4), pleural fluids (PE, n = 5), as well as 
metastasis lymph node (mLN, n = 7) were downloaded 
from GEO database with accession ID: GSE131907 [15]. 
In total nine LUAD patient cohorts which contained 
overall survival (OS) information and expression data 
were collected. Among these cohorts, TCGA-LUAD 
obtained from the TCGA database, while GSE72094, 
GSE68465, GSE50081, GSE37745, GSE31210, GSE30219, 
GSE14814, and GSE3141 were downloaded from the 

https://xintisunlab.shinyapps.io/appLUAD/
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GEO database. Immunotherapy cohorts: GSE126044 
(NSCLC), GSE35640 (melanoma), GSE78220 (mela-
noma) cohorts and two scRNA-seq datasets: GSE207422 
(NSCLC), and GSE145281 (Bladder Carcinoma) were 
also downloaded from the GEO database. One spa-
tial transcriptomics sequencing (stRNA-seq) sample of 
LUAD with the accession ID GSE189487 was included in 
this study. The detailed information of all enrolled datas-
ets is summarized in Supplementary Table 1. Metabolic 
gene sets were obtained from the KEGG, REACTOME, 
C5.BP, Hallmark MSigDB v5.2, and previous study [16].

Data processing
For the processing of scRNA-seq data, we preserved 
high-quality cells that had fewer than 20% mitochon-
drial genes and expressed more than 200 genes. We also 
focused on genes that were expressed at levels between 
200 and 7000 and were active in at least three cells. A 
total of 178,739 eligible cells were kept for further explo-
ration. After that, the integration workflow conducted 
by Seurat pipeline [17]. The remaining cells were further 
scaled and normalized using a linear regression model 
with the “Log-normalization” method and the top 3000 
highly variable genes were detected by the “FindVariable-
Features” function. Subsequently, the dimensionality of 
the scRNA-seq data was diminished through Principal 
Component Analysis (PCA). To remove the batch effects 
among the samples, soft k-means clustering was executed 
using the “Harmony” package [18]. The cell clustering 
was conducted using the “FindClusters” function, with 
the resolution parameter set at 0.8. The methodology 
for annotating cell clusters involved focusing on genes 
with elevated expression levels, genes exhibiting unique 
expression patterns, and documented canonical cel-
lular markers. For Bulk-seq data, samples devoid of OS 
details were excluded. The TCGA-LUAD and GSE72094 
cohorts were employed as training set 1 and training set 
2, respectively, while all cohorts were amalgamated and 
defined as a meta set (n = 2066). We used gene-pairing 
method followed Eq. (1) to remove the batch effect.

 
Gene (ab) =

{
1, Ea > Eb

0, Ea < Eb
 (1)

scRNA-seq analysis
To pinpoint malignant cells exhibiting clonal exten-
sive chromosomal copy number variation (CNV), the 
CNV profiles of cells were deduced employing the pack-
age “inferCNV” [19]. The CNV score was formulated as 
the average of the squares of the ultimate CNV values 
for each chromosome. Labels indicating malignancy or 
non-malignancy were assigned by assessing the distribu-
tion of malignancy scores relative to the reference and 

identifying their bimodal characteristics. “FindMarkers” 
function were used to identify the differential expressed 
genes (DEGs) between malignant and normal cells. MMR 
gene set was quantified using AUCell, UCell, AddMod-
uleScore, Singsore, and ssGSEA algorithms [20, 21].

The pipeline of the 3 S-MMR ensemble learning model 
construction
In the creation of the 3 S-MMR score, a three-stage step-
wise approach was employed. In the Stage 1, we per-
formed feature engineering and gene-pairing to remove 
the batch effect in training set 1. In the Stage 2, to 
avoid over-fitting, training set 2 was applied to perform 
a 10-fold cross-validation (CV) as well as grid search 
before 47 basic learners were constructed. In the Stage 3, 
we applied training set 1 to establish the ensemble learn-
ing model, and GA was used to identify the optimal basic 
learner combination in the ensemble learning model.

The details of pipeline are as follows
Stage 1: feature identification and engineering
A total of 1290 MMR genes were matched with expres-
sion data from 10 different cohorts using gene symbols, 
leading to a selection of 1066 genes for subsequent fea-
ture engineering. In the training set 1 (TCGA-LUAD 
cohort) for feature engineering, we first reduced the 
number of features using univariate Cox regression with 
a cutoff value of P < 0.05. Subsequently, the genes were 
paired as per Eq. (1) to remove the batch effect. To ensure 
adequate sample variation in the gene-pair features, only 
those gene pairs with a frequency ranging from 20 to 80% 
were retained in the training set 1. Afterward, we applied 
univariate Cox regression once again to select gene pair 
features (P < 0.05). Following this, we employed LASSO 
regression [22] for further screening, aiming to reduce 
the impact of multicollinearity on the results and identify 
gene pairs capable of predicting patients’ survival status.

Stage 2: Basic learner construction
In the training set 2 (GSE72094 cohort), we conducted 
a 10-fold CV as well as grid search using five machine 
learning methods. For the 10-fold CV, training set 2 is 
partitioned into 10 folds, with the C-index and predicted 
values of the sub-model derived from each fold averaged 
to obtain the final values. Meanwhile, the predicted val-
ues for training set 1 are generated by the basic learners, 
and the resulting predictions are ultimately incorporated 
into the construction of the ensemble learning model 
in Stage 3. More precisely, in Cox models [23], the grid 
is selection = “forward”, “backward” or “both”; in RSF 
models [24], the nodesize is depth = 5, 10, 15 and 30, 
ntree = 50, 100, 200 and 500; in CoxBoost [25], the step-
nos is depth = 50, 100, 150, 200, 250 and 300; in GBM 
models [26], the grid is depth = 1, 2, 5 and 10, ntree = 20, 
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50, 100 and 200; in SVM models, the grid is kernel = “lin-
ear”, gamma.mus = 0.1, 0.5, 1, 5, 10 and 50. Finally, we 
obtained 47 basic learners and they were sorted accord-
ing to C-index [27] from high to low labeled as m1-m47.

The details of machine learning methods of basic 
learners
In the Cox model, patient risk is influenced by two main 
factors: time and the patient’s own genetic character-
istics. This model emphasizes the comparison of risks 
associated with these genetic characteristics. Moreover, 
we solely require the parameter β that maximizes the 
likelihood value of the current cohort event, as illustrated 
in Eq. (2):

 
1(β) =

N∑

i=1



β • X (i) − ln




∑

j:tj�ti

exp(β • X(j))







  (2)

In this equation, N and X represent the total number 
of samples and the number of features in each sample, 
respectively. The symbol β signifies the coefficient of the 
regression model, while t denotes the survival time. The 
Cox regression models were built using the “survival” and 
“survminer” packages.

The RSF model is a robust approach for predicting 
patient survival outcomes, leveraging an ensemble of 
Decision Trees (DTs). The model begins by employing 
the bootstrap method [28] to randomly sample subsets of 
the input data, typically using about two-thirds for train-
ing each tree, with the remaining one-third serving as 
out-of-bag (OOB) data for model validation. During the 
construction of each survival tree, features are selected 
randomly, enhancing the diversity and robustness of 
the model. A key aspect of RSF is the application of the 
Nelson-Aalen estimator for calculating the cumulative 
hazard function. This method is utilized to estimate the 
overall cumulative risk within the RSF model. The sur-
vival time (T_i) and status (S_i) of individuals, where 0 
denotes censoring and 1 an event. The analysis at each 
terminal node of a decision tree involves assessing the 
number of events (deaths) D(i, h) and the total number of 
individuals Y(i, h) present. Utilizing the Nelson-Aalen esti-
mator [29], the cumulative risk function of a single termi-
nal node can be obtained, as shown in Eq. (3).

 
H∧

h (T ) =
∑

Tih�T

D(i,h)

Y(i,h)
 (3)

Define “C(i, b)” as a binary indicator for each sample, 
where “C(i, b) = 1” if the ith sample is part of the in-bag 
data for the bth bootstrap sample or tree, and “C(i, b) = 0” 
if it is an out-of-bag sample. “H∗

b (t|Xi)” represents the 

ith out-of-bag sample. The total cumulative risk for the 
model is then calculated as outlined in Eq. (4).

 
H

∗∗
E =

∑B
b=1 Ci,bH

∗
b (t|Xi)∑B

b=1 Ci,b

 (4)

The accuracy of the model can be evaluated using the 
C-index, as depicted in Eq. (5).

 
C-index =

N (sample pairs predicted correctly)
N (sample)  (5)

In the context of the SVM model [14], the primary objec-
tive is to find the optimal hyperplane that maximizes the 
margin between the nearest samples of different classes, 
known as support vectors, and the hyperplane itself. This 
margin is crucial as it determines the classifier’s general-
ization ability. The distance d, which refers to the margin 
between the support vectors and the classification hyper-
plane, is quantified by Eq. (6).

 
d (w, b) = minxi,yi=−1d (w, b; xi) + minxi,yi=1d (w, b; xi) =

2
||w||  (6)

Here, x denotes the input feature vectors, w is the vec-
tor of model weights, and b signifies the bias term. The 
term || w || is the L2 norm of the weight vector, which is 
central to calculating the margin. The expression above is 
equivalent to the minimized objective function presented 
in Eq. (7). The constraints are defined in Eq. (8).

 
min

1
2
wTw  (7)

 yi

(
wTxi + b

)
� 1  (8)

To allow the SVM model to address linearly inseparable 
tasks, a slack variable (ξ) and a penalty factor (C) are 
introduced, as depicted in Eq. (9). If the slack variable is 
non-zero, it indicates that the adjusted sample violates 
the inequality constraint. The penalty factor (C) is a man-
ually set parameter greater than 0, employed to penalize 
samples that breach the inequality constraints. Equa-
tion  (10) presents the modified constraint condition for 
the soft-margin SVM, accounting for the slack variables 
(ξi). This constraint ensures that each data point xi with 
label yi will be on the correct side of the margin, allow-
ing for some misclassifications as controlled by the slack 
variables. Additionally, the SVM models are constructed 
using the “survivalsvm” package.
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min

1
2
wTw + C

N∑

i=1

ξi  (9)

 yi

(
wTxi + b

)
� 1 − ξi  (10)

The GBM model [30] employs DTs as its fundamental 
learners. It is an ensemble method where the final model 
is constructed in a stepwise manner through the addi-
tive combination of individual trees and be expressed 
as Eq. (11): individual trees denoted as T(X, θm), and θm 
represents the set of parameters for the m-th tree out 
of a total of M trees. Equation  (12) detailing the update 
mechanism at each step.

 
fM(X) =

M∑

m=1

T (X, θm) (11)

 fM (X) = fm−1 (X) + T (X, θm)  (12)

where the fm−1(X) is the previous model, and the parame-
ters of the current model are determined through empiri-
cal risk minimization of θm, as shown in Eq. (13).

 
θ∧

m = arg min
N∑

i=1

L (yi, fm−1 (X) + T (X, θm)) (13)

In this context, “L” denotes the loss function, which 
quantifies the difference between the predictions and 
the true values. The expressions “fm−1(X)” represent the 
model’s predictions from the previous iteration, and “yi” 
are the observed target values. The current model, T (X, 
θm ), is designed to adjust the predictions by fitting to the 
residuals—differences between observed values and the 
previous model’s predictions—to minimize the overall 
loss within the GBM framework.

The CoxBoost model modifies the Cox proportional 
hazards model by incorporating a penalty term to the 
partial likelihood. The iterative process can be conceptu-
ally represented by the Eq. (14).

 
h(t|x) = h0(t)exp(

∑p

j=1
βjxj + Penalty(β, λ)) (14)

where h(t∣x) is the hazard function at time t given covari-
ates x, h0 (t) is the baseline hazard function, βj  are the 
coefficients, xj  are the covariates, and Penalty (β, λ) rep-
resents the penalization term that is applied to the coef-
ficients to prevent overfitting. The penalization term is 
typically a function of the coefficients β and a regular-
ization parameter λ, which is adjusted throughout the 
boosting process.

Stage 3: ensemble learning model construction via genetic 
algorithms
The 47 basic learners (m1-m47) were applied to develop 
the ensemble learning models in training set 1. The 
ensemble learning model’s methods and parameters align 
with those of m1 (RSF, nodesize = 30, ntree = 100). Spe-
cifically, we adopted a “stacking” approach to construct 
the ensemble learning model, where the input data com-
prises the predicted risk scores generated by these 47 
basic learners. It’s crucial to note that, in order to guar-
antee the predictive performance of the ensemble learn-
ing model, the selection of basic learners must consider 
both model accuracy as well as model diversity. GA [14, 
31] mimics the natural process of chromosomal recombi-
nation evolution and has been demonstrated to be well-
suited for optimization problems related to genomics. 
To streamline and automate this process, we utilize the 
“GA” package to optimize the selected basic learners. It 
should be noted that GA consists of the fitness function, 
selection operator, crossover probability, and mutation 
probability.

In our pipeline, ensemble learning models with diverse 
basic learners’ combinations can be treated as separate 
entities within the GA. In fact, each specific individual 
corresponds to a one-hot vector, where “1” signifies the 
inclusion of the respective sub-model in the ensemble, 
and “0” signifies its exclusion. Our objective is to identify 
the best basic learners’ combination by assessing these 
individuals. Furthermore, a fitness function was applied 
to evaluate individuals, as depicted in Eq.  (15), noting 
that a lower fitness value indicates a better combination 
of basic learners.

 
f (xi) =

{
1,Nsub-modelin individual xi<2
1−Cindex(Xi),Nsub-modelin individual xi�2

}
 (15)

Initially, we chose pairs of individuals that require cross-
ing over in the new generation during the evaluation 
process using the selection operator. In pursuit of this 
goal, we examined three different selection operators, 
comprising Roulette (Eq.  (16)), Liner rank (Eq.  (17)) as 
well as Tournament. Specifically, within the Roulette 
operator mechanism, the probability of selecting an indi-
vidual is determined by comparing its fitness value with 
the aggregate fitness of the whole population (Eq.  (16)). 
In the mentioned selection methods, default settings 
from the “genalg” and “GA” packages were employed. 
Regarding the Tournament operator, q individuals were 
randomly chosen from the population for comparison. 
Subsequently, the individual with the best fitness value 
was considered the parent of the next generation. We set 
q = 2, which is the default parameter in the “GA” package.
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Pselection =

f (xi)∑Nindividual
n=1 f (xn)

 (16)

 
Pselection = Pmin +

(
Pmax − Pmin

) i − 1
N − 1

 (17)

Subsequently, the selection of crossover locations 
involves generating a random integer I (where 1 < I < 47), 
aligning with a crossover likelihood of 0.8 with default 
parameter. After the evaluation of a generation is com-
pleted, each individual has a mutation probability 
denoted as M, which is calculated as shown in Eq. (18):

 
M =

1
Nindividual

 (18)

When an individual undergoes mutation, Nmg randomly 
chosen digits in it will alter. Concurrently, selection pres-
sure was assessed through takeover time, indicating how 
long it takes for the fittest individual to dominate the 
population, with longer times implying lower selection 
pressure. Ultimately, the individual with the smallest fit-
ness value was deemed the fittest. From this individual’s 
chosen basic learner combination, we constructed the 
ensemble model 3 S-MMR score using training set 1.

Assessment of the 3 S-MMR score
To rigorously assess the robustness as well as predictive 
accuracy of the 3 S-MMR score, we undertook a multi-
faceted analytical approach encompassing Kaplan-Meier 
(KM) analysis, ROC-AUC, as well as C-index calcula-
tions. In the KM analysis, patients were categorized into 
high 3  S-MMR score group and low 3  S-MMR score 
group according to the median values identified across 10 
distinct cohorts. Statistical substantiation of the differen-
tiation was done using the Log-Rank test. The ROC-AUC 
analysis was conducted to evaluate the performance of 
the model, where the AUC value was calculated to assess 
the diagnostic ability of the model. Further comparisons 
were made between the 3  S-MMR score and ensemble 
learning baseline models without GA stage, top 5 and top 
10 model in CV, subsequently, as well as with the C-index 
of commonly used clinical indicators. This comprehen-
sive analysis delineated the efficacy of the 3 S-MMR score 
in prognostic predictions, showcasing its reliability and 
accuracy.

Development of nomogram and web-tool
To facilitate the use of the 3 S-MMR score among clini-
cians as well as researchers, we devised a nomogram and 
a web-tool, integrating several clinical variables to sur-
pass the accuracy of the 3 S-MMR score. Initially, clini-
cal factors along with the 3  S-MMR score underwent 
univariate Cox regression analysis to identify elements 

predictive of survival outcomes. Subsequently, a mul-
tivariate Cox regression was performed, ensuring the 
selection of factors devoid of significant collinearity. 
Web-tool was developed using “shiny” and “shiny dash-
board” packages [32].

Cell-cell interaction, SCENIC, and trajectory analysis
Utilizing the “cellchat” package [33], the communication 
patterns among cells were discerned by inferring, scruti-
nizing, and graphically representing the receptor-ligand 
signaling interactions between malignant cells of both 
high and low 3 S-MMR score groups, and elucidating the 
contributions of diverse 3  S-MMR score groups within 
particular pathways. The analysis of gene regulatory 
networks was carried out utilizing the “SCENIC” pack-
age [34] to identify networks based on the co-expression 
of gene regulons and DNA motifs. Specifically, the co-
expression network was calculated by runGenie3 as well 
as the regulons were identified by RcisTarget. AUCell was 
performed to calculate the TF regulons’ activity. We also 
used Monocle2 [35] to infer the cell trajectory. Follow-
ing dimension reduction and cell sequencing, the trajec-
tory of differentiation was deduced using the standard 
parameters. We also performed CytoTRACE analysis 
with default parameter [36, 37], an algorithm that predict 
differentiation states from scRNA-seq data based on the 
simple yet robust observation that transcriptional diver-
sity decreases during differentiation, to complement the 
trajectory analysis form Monocle2.

Virtual simulation for the prediction of therapeutic targets 
and agents in silico
The expression profile data of human cancer cell lines 
(CCLs) were downloaded from the CCLE project [38] 
(https://portals.broadinstitute.org/ccle/). CERES scores, 
derived from genome-wide CRISPR knockout screenings 
encompassing 18,333 genes across 739 cell lines, were 
obtained from the DepMap portal (https://depmap.org/
portal/). It is pertinent to acknowledge that the CERES 
score assesses the dependence level of a targeted gene 
in a specific Cancer Cell Line (CCL), with a lower score 
signifying a greater probability of the gene’s essentiality 
in the proliferation and sustenance of that CCL. Consid-
ering that many proteins do not possess binding sites or 
sufficient affinity for small molecules or antibodies, we 
initially identified 2249 druggable targets from a previ-
ous publication [39]. For identifying potential therapeu-
tic agents, we initially harnessed the Connectivity Map 
(CMap, https://clue.io/query). This tool juxtaposes a 
differential gene signature against all perturbation sig-
natures in CMap, yielding a score that evaluates the 
congruence between these signatures [40, 41]. Hence, 
medications with scores below − 95 are deemed suitable 
candidates for counteracting the differential signatures 

https://portals.broadinstitute.org/ccle/
https://depmap.org/portal/
https://depmap.org/portal/
https://clue.io/query
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of the 3  S-MMR score. Utilizing the publicly accessible 
Genomics of Drug Sensitivity in Cancer (GDSC, https://
www.cancerrxgene.org/) database, the chemotherapy 
response for each sample was predicted. The prediction 
process was conducted using the “oncoPredict” package 
[42], which involves the calculation of drug sensitivity 
values akin to the half-maximal inhibitory concentra-
tion (IC50). The candidate agents for LUAD patients with 
high 3 S-MMR score was also generated from the Can-
cer Therapeutics Response Portal (CTRP; https://portals.
broadinstitute.org/ctrp) as well as Profiling Relative Inhi-
bition Simultaneously in Mixtures (PRISM; https://dep-
map.org/portal/prism) databases.

Pan-cancer analysis
To delve deeper into the potential of the 3 S-MMR score 
to forecast survival outcomes across various cancer types, 
we retrieved expression data as well as OS information 
from the TCGA database for a cohort of 10,110 patients 
spanning 33 different types of cancer. The detailed of 33 
cancer cohorts are provided in the Supplementary Table 
1.

Statistical analysis
Data processing, statistical analyses, and graph plotting 
were all performed using R software, version 4.2.1. Rela-
tionships between continuous variables were assessed 
with Spearman’s correlation coefficients, while chi-
squared tests were employed for categorical data com-
parisons. Depending on their distribution, continuous 
data were analyzed using either Wilcoxon rank-sum 
tests or student’s T tests. Parameters for R packages were 
described in the corresponding sections, with default set-
tings applied unless otherwise specified. All tests were 
conducted bidirectionally with a significance threshold 
set at P < 0.05.

Results
Cellular dynamics changing across early, advanced, and 
metastatic LUAD
After applying the harmony algorithm, the cellular dis-
tribution within each sample exhibited overall consis-
tency, suggesting the absence of significant batch effects 
among the samples, which could be utilized for down-
stream analysis (Fig. 1A). In the initial stage of unravel-
ing the organization of cellular hierarchies in LUAD, 
we re-analyzed the 178,739 scRNA-seq cells covering 
48 samples including Nln, nLung, tLung, PE, mLN, and 
tL/B tissues, as well as notably classified T, B, NK, epi-
thelial, macrophages, monocytes, fibroblasts, MDC, 
mast, plasma, endothelial, and PDC according classical 
marker genes (Fig.  1B). The marker genes pertaining to 
each cell population demonstrated conspicuous distinc-
tions, signifying annotation accuracy (Fig. 1C). The most 

pronounced shifts in in terms of the population of cell 
types were observed in epithelial, T, and macrophages 
among different types (Fig.  1D). We further quantified 
the tissue enrichment of all cell populations according to 
Ro/e analysis [43]. Within the entirety of cell populations, 
epithelial cells exhibited a notable preference for distri-
bution in the tL/B, with the subsequent highest pres-
ence observed in tLung and mLN tissue origins (Fig. 1E). 
LUAD is largely driven by changes in gene copy number; 
consequently, we then analyzed scRNA-seq data to infer 
copy number variations in cancer cell populations. The 
result of CNV profiles showed inter- and intra-lesion 
heterogeneity in primary and metastasis tissues (Fig. 1F). 
Unsupervised clustering based on K-means using 5 clus-
ters was applied to distinguished between cells with high 
and low CNV (Fig. 1G). The CNV scores of clusters 1 was 
at the bottom, as it contained more normal tissue original 
epithelial cells (Fig. 1H). Hence, cluster 1 was designated 
as normal epithelial cells, while the remaining cells were 
classified as malignant cells.

Heterogeneity among LUAD driven malignant metastasis 
mediated by cell metabolism reprogramming
Analysis of hallmark pathway underscored that more 
changes were between non-malignant cells and malig-
nant cells (Fig.  2A). A direct comparison of malig-
nant versus normal cells revealed glycolysis as the top 
enriched signature in malignant cells, many metabolism-
related pathways such as heme metabolism, xenobiotic 
metabolism, as well as fatty acid metabolism also acti-
vated in malignant cells (Fig. 2A). Afterwards, the scMe-
tabolism pipeline [44], focusing on metabolic changes, 
indicated a completely different activation of metabolic 
pathways between malignant and normal cells, which 
suggested that cell metabolism reprogramming was a 
significant explanation for LUAD metastasis (Supple-
mentary Fig.  1). We next sought to identify the overall 
features of metabolic pathway variation among the malig-
nant cells form primary and metastatic samples from 
LUAD patients. Following the protocol outlined in the 
study by Xiao et al. [45], we defined the pathway activ-
ity score as the average of the relative gene expression 
values of all genes within a single metabolic pathway and 
across all cells of a specific type. We found discernible 
variations in metabolic activities across malignant cells 
at varying tumor stages, underscoring the pivotal role of 
metabolic reprogramming in tumor evolution and sub-
stantiating its critical significance in the intricate process 
of tumor progression (Fig. 2B). We further identified the 
DEGs between the malignant and normal cells (Fig. 2C, 
Supplementary Table 2). Consequently, we intersected 
metabolism-related pathways genes form KEGG, GO, 
REACTOM, published literatures and above DEGs gen-
erated a set of genes named Malignant & Metabolism 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ctrp
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism
https://depmap.org/portal/prism
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Reprogramming (MMR) (Fig. 2D, Supplementary Table 
3). Disease ontology enrichment analysis confirmed that 
MMR genes were significantly enriched in cancer, espe-
cially in non-small cell lung cancer (Fig. 2E). To investi-
gated whether MMR activity was dynamic in metastasis 
population, we further quantified MMR scores in scRNA-
seq level using AUCell, UCell, AddModuleScore, sing-
sore, and ssGSEA algorithms. All algorithms indicated 
that MMR score was higher in the epithelial cells, macro-
phages, fibroblasts, while lower in the T, B, and NK cells 

(Fig. 2F and G). With the tumor progression and metas-
tasis, the MMR score exhibited a significant dynamic 
increase, indicating that MMR is involved in the progres-
sion and metastasis of LUAD (Fig. 2H).

3 S-MMR score pipeline construction
Stage 1: prognosis-related MMR feature engineering
The overall workflow of the 3 S-MMR score is displayed 
in Fig.  3A. For the establishment and validation of the 
3  S-MMR score, we gathered data from 9 cohorts of 

Fig. 1 Cellular dynamics changing across early, advanced, and metastatic LUAD. (A) The cell distribution of the samples showed no significant 
batch effect. (B) The t-SNE map of cells from all scRNA-seq samples, colored by cell-type annotation. (C) Dot plot showing representative marker genes 
for each cell type. (D) The proportion of each cell type from tissues of each origin, as indicated. (E) Line chart showing tissue prevalence for each cell type 
estimate by Ro/e score. (F) Graded heatmap showing CNVs of epithelial cells from tissues of each origin. Normal lung origin epithelial cells are used as 
a control reference. Red: gains; blue: losses. (G) K-means clustering of inferred CNVs to obtain cancer cells. (H) Violin plot showing the difference in CNV 
score of the five K-means clusters
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LUAD patients, comprising a total of 2066 individuals 
with comprehensive genome-wide transcriptomic pro-
files and OS data. Specifically, the TCGA cohort (n = 500) 
and GSE72094 cohort (n = 398) were applied as training 
set 1 and training set 2, respectively. In order to achieve 
precision in predicting the prognosis of LUAD patients, 
our initial step involved the application of univariate Cox 
regression (P < 0.05) to screen and retain 299 MMR gene 

sets as essential features (Supplementary Table 4), as 
well as paired these genes to obtained 3080 gene-pairs 
whose frequency was between 20 − 80% (Eq. 1). Further-
more, univariate Cox regression (P < 0.05) was performed 
to reduce theses gene pairs to 1592 gene-pairs (Supple-
mentary Table 5). Following that, LASSO was employed, 
and when the partial likelihood of deviance reached its 
minimum, 25 gene pairs were retained (Supplementary 

Fig. 2 Heterogeneity among LUAD driven malignant metastasis mediated by cell metabolism reprogramming. (A) Differences in hallmark gene 
set pathway activities scored by per cell by GSVA between normal and malignant cells. (B) Metabolic pathway activities in malignant cells from tissue of 
each origin. Statistically non-significant values (random permutation rest P > 0.05) are shown as blank. (C) Percentage difference (Delta means percent of 
cells) and log-fold change based on the Wilcoxon rank-sum test results for differential expressed genes between malignant and normal cells. (D) UpSet 
plot showing the intersection analysis of the 1290 MMR genes. (E) DO enrichment analysis of 1290 MMR genes. (F, G) Violin plot (F), and Bubble plot (G) 
showing enrichment scores of MMR gene sets for each cell type using AUCell, UCell, singscore, ssGSEA, AddModulescore, and Scoring (the sum of scores 
from other algorithms) score. (H) Violin plot showing the dynamic change of enrichment scores of MMR gene sets for tissues of each origin using AUCell, 
UCell, singscore, ssGSEA, AddModulescore, and Scoring score
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Table 6, Fig. 3B), as fundamental features for construct-
ing basic learners in Stage 2.

Stage 2: Basic learner construction
To prevent severe overfitting, we used the GSE72094 
cohort as training set 2 instead of the TCGA cohort, con-
ducting 10-fold CV, grid search, and establishing basic 
learners in Stage 2. We applied five machine learning 
algorithms for the creation of basic learners, and com-
prehensive descriptions of these methods can be found 
in the “methods” section. During this stage, 47 basic 
learners were yielded, and the RSF demonstrated a supe-
rior predictive effect (Fig. 3C, Supplementary Table 7). 

Ultimately, the scores predicted by these basic learn-
ers were utilized as input data for training the ensemble 
learning model in Stage 3.

Stage 3: ensemble learning model construction
Given the importance of both diversity and accuracy 
of basic learners for the performance of the ensem-
ble learning model, we assessed the accuracy of basic 
learners using the C-index in CV. GA is an optimiza-
tion approach rooted in natural genetic mechanisms, 
employs a randomized yet directed search mechanism 
for discovering the global optimal solution. To automate 
and enhance this process, we employed GA to optimize 

Fig. 3 3 S-MMR score pipeline construction. (A) Workflow of the 3 S-MMR score. (B) The gene-pair information and hazard ration of 25 LASSO driverd 
gene-pairs. (C) The C-index and Std of 47 basic learners
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the combination of basic learners in the training set 
1 (TCGA cohort). In this task, the global optimal solu-
tion involves discovering the best combination of basic 
learners, with the fitness value represented by Eq.  (15) 
serving as the optimized function. Subsequently, it was 
determined that the optimized basic learner combination 
comprised 26 basic learners (Supplementary Table 7). 
Ultimately, the 3  S-MMR ensemble learning model was 
constructed.

The evaluation of the 3 S-MMR score
To evaluate the prognostic performance of the 3 S-MMR 
score, we employed it to 10 LUAD patient cohorts. 
Noteworthy, the 3  S-MMR score demonstrated robust 
prognostic value in distinguishing the survival status 
of LUAD patients, not only in training set 1 (TCGA-
LUAD, Fig. 4A), training set 2 (GSE72094, Fig. 4B), meta 
cohort (Fig.  4C), as well as seven LUAD independent 
test cohorts, respectively (Fig.  4D and J). ROC curve 
analysis revealed high AUC values for the 3  S-MMR 

Fig. 4 Evaluation of 3 S-MMR score. (A-J) Kaplan-Meier survival curves of 3 S-MMR score in the training set 1 (TCGA-LUAD) (A), training set 2 (GSE72094) 
(B), meta (C), GSE31210 (D), GSE68465 (E), GSE50081 (F), GSE14814 (G), GSE37745 (H), GSE3141 (I), GSE30219 (J) cohorts. (K-T) ROC curves of 3 S-MMR 
score in the training set 1 (TCGA-LUAD) (K), training set 2 (GSE72094) (L), meta (M), GSE31210 (N), GSE68465 (O), GSE50081 (P), GSE14814 (Q), GSE37745 
(R), GSE3141 (S), GSE30219 (T) cohorts
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score in predicting prognosis among 10 independent 
LUAD patient cohorts, respectively (Fig.  4K and T). 
These findings indicated that the 3 S-MMR score, which 
incorporates fundamental metabolic reprogramming, 
gene-pairing, double training sets, as well as GA, serves 
as a wide prognostic indicator across diverse LUAD 
cohorts. This remains true despite variations in transcrip-
tomic platforms, clinical attributes, and genetic profiles 
within these LUAD cohorts, including for new patients.

Comparison of 3 S-MMR score to clinical variables and web-
tool development
Clinical variables such as TNM staging as well as Grade 
are commonly applied to guide LUAD management as 
well as predict prognosis, we then conducted univari-
ate and multivariate Cox regression analyses. The result 
suggested that 3  S-MMR score as a continues variable 
was significantly associated with a shorter OS time in all 
cohorts and was considered an independent risk factor 
for LUAD prognosis (Fig. 5A). In addition, we excluded 
the GA stage and considered the top 5/10 basic learners 
in CV average risk scores as two types of baseline ensem-
ble learning models. We then compared two ensemble 

Fig. 5 The evaluation of the 3 S-MMR score and web-tool development. (A) Forest plots demonstrate the hazard ratio (HR), 95% confidence interval 
(CI), and the corresponding P values of both univariate Cox regression analysis and multivariate Cox regression analysis in 8 LUAD cohorts. (B) Comparison 
of time-dependent area under the receiver operating characteristic curve (AUC) values at 1-, 2-, and 3-year among the 3 S-MMR score and ensemble 
baseline models. (C) Comparison of C-index between models and clinical features in the TCGA cohort. (D) Circos plot of different clinical features in high 
and low 3 S-MMR score groups. (E) The page of 3 S-MMR score web-tool
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learning baseline models and proposed 3 S-MMR score 
using the ROC-AUC analysis (Fig.  5B). The high AUC 
values of 3 S-MMR score showed better predictive accu-
racy than ensemble baseline models in different time-
point. We further compared clinical features, ensemble 
baseline models, and 3  S-MMR score using C-index 
(Fig. 5C). Overall, 3 S-MMR score displayed better pre-
dictive accuracy than clinical features and ensemble base-
line models. Additionally, the 3 S-MMR score exhibited 
significant associations with survival status, tumor stage, 
and the TNM staging system in the TCGA-LUAD cohort 
(Fig.  5D). Recognizing the 3  S-MMR score’s superior 

predictive capability for LUAD patient survival, our aim 
was to enhance its usability for the research community. 
To realize this, we designed a pertinent nomogram and 
a web tool, which are presented in Fig. 5E and accessible 
through the following link: (https://xintisunlab.shin-
yapps.io/appLUAD/).

Ablation experiments
To illustrate the robustness of the gene-pairing method, 
we conducted a comparison with unpaired gene features 
using principal component analysis (PCA) (Fig.  6A and 
D). It’s worth mentioning that the distributions of PC1 

Fig. 6 The ablation experiments of the 3 S-MMR score. (A) PCA analysis of gene-pair features in 9 LUAD cohorts. (B) The PCA analysis of unpaired gene 
features in 9 LUAD cohorts. (C) The PCA analysis of unpaired gene features in 7 LUAD cohorts. (D) The PCA analysis of unpaired gene features in 9 LUAD 
cohorts after using ComBat algorithm. (E) ROC curves of 3 S-MMR score in 10 cohorts without gene-pairing method. (F) ROC curves of 3 S-MMR score in 
10 cohorts without double training sets

 

https://xintisunlab.shinyapps.io/appLUAD/
https://xintisunlab.shinyapps.io/appLUAD/
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and PC2 for gene-pair features were similar across nine 
cohorts (Fig. 6A). However, the PC1 and PC2 of TCGA-
LUAD and GSEE72094 cohorts without gene-pairing 
significantly deviated from other cohorts (Fig. 6B). Even 
after removing these two cohorts and conducting PCA 
again with unpaired gene features, we still found obvi-
ous distributions in PC1 and PC2 among the remaining 
cohorts (Fig.  6C). Furthermore, we applied the widely-
used Combat algorithm [46] to reduce the batch effect 
on raw data, we found that the batch effect would be 
reduced (Fig. 6D), which showed a similar condition with 
that in Fig. 6A, but the raw expression data were changed. 
In summary, our results demonstrate that the gene-pair-
ing method effectively mitigates batch effects while pre-
serving the distribution of raw data. Afterward, in order 
to demonstrate the necessity of using the gene-pairing 
method and double training sets for the 3 S-MMR pipe-
line, we further performed ablation experiments [47]. 
When using gene features directly instead of gene-pair-
ing features, we employed the same feature selection 
methods. Building upon the foundation of 299 progno-
sis-related MMR genes, we applied LASSO regression to 
further refine the selection, ultimately obtaining 31 fea-
tures (Supplementary Table 8). Next, we constructed the 
new 3 S-MMR score again according these 31 features. It 
is noted that the ROC-AUCs of the new 3 S-MMR score 
were lower than the original 3 S-MMR score with gene-
pairing used (Fig.  6E, Supplementary Fig.  2). Besides, 
the Kaplan-Meier analysis indicated that only 5 cohorts 
showed a statistically significant difference in OS (Sup-
plementary Fig.  2). Furthermore, during the process of 
verifying the importance of double training sets, we only 
used TCGA-LUAD cohorts as the training set to see 
whether double training sets can effectively avoid serve 
over-fitting, finally re-constructing the 3  S-MMR score. 
When applied to a single training set, it implies that the 
entire training process would be conducted exclusively 
within the TCGA-LUAD dataset, encompassing whole 
three stages. Interestingly, we observed that the ROC-
AUC values of the training set were close to 1.0, while 
noting that the ROC-AUCs of other cohorts were obvi-
ously lower than that of the original 3  S-MMR score, 
indicating that the model is experiencing severe overfit-
ting (Fig.  6F, Supplementary Fig.  3). Subsequently, the 
Kaplan-Meier analysis indicated only 4 cohorts obtained 
statistically significant difference in OS (Supplementary 
Fig. 3). This result proved that the application of double 
training sets contributed to avoiding severe over-fitting. 
Taken collectively, our results proved that it is necessary 
to perform the gene-pairing method, double training 
sets, and GA to make sure the robustness and high accu-
racy of the 3 S-MMR score.

3 S-MMR score remolds the immune infiltration patterns in 
LUAD
The immune landscape of the TME in LUAD is char-
acterized by several factors: the presence of immuno-
modulatory molecules, the dynamic processes of the 
cancer immunity cycle, the degree of Tumor-Infiltrating 
Immune Cells (TIICs) penetration, and the levels of 
inhibitory immune checkpoint expression. Therefore, we 
further delved into these aspects to thoroughly analyze 
the relationship of 3 S-MMR score with immune regula-
tion. The dynamics of the cancer immunity cycle repre-
sent a direct and holistic manifestation of the roles played 
by the chemokine system and various other immuno-
modulators (IMs) [48, 49]. In the low 3  S-MMR score 
group, activities of the majority of the steps in the cycle 
were identified as being significantly elevated, includ-
ing the release of T cell recruiting (Step 4) and Infiltra-
tion of immune cells into tumors (Step 5), while release 
of cancer cell antigens (Step 1) was upregulated in high 
3  S-MMR score group (Fig.  7A). Furthermore, ESTI-
MATE algorithm confirmed that 3  S-MMR score was 
significantly negatively correlated with stromal, immune, 
and ESTIMATE score (Fig. 7B). Afterward, we analyzed 
the correlations between 3  S-MMR score, the steps of 
the cancer immunity cycle (Fig.  7C, left), as well as the 
enrichment scores of 28 published immune cell signa-
tures [50] (Fig. 7C, right). Subsequently, we determined 
the infiltration level of TIICs by using six independent 
immune predication algorithms (TIMER, CIBERSORT-
ABS, quanTIseq, xCell, MCP-counter, TIP) (Fig.  7D). 
In line with aforementioned results, the majority algo-
rithms demonstrated a negative correlation between the 
3  S-MMR score and the infiltration levels of CD8 + T 
cells, NK cells, Th1 cells, macrophages, and dendritic 
cells, suggesting low 3  S-MMR score patients might 
as “immune-hot” tumors while high 3  S-MMR score 
patients as “immune-cold” tumors. The histopathological 
section also verified that the low 3 S-MMR score group 
displayed upregulated infiltration of immune cells, once 
again indicating a strong negative correlation between 
3 S-MMR score as well as immune infiltration (Fig. 7E). 
Gene expression of IMs varied across immune subtypes, 
perhaps indicative of the 3 S-MMR score role in shaping 
the TME (Fig. 7F).

3 S-MMR score’s ability to predict immunotherapy efficacy
The above results suggest that LUAD patients exhibit-
ing a lower 3  S-MMR score might derive greater ben-
efit from immunotherapy, given their tendency to have 
“immune-hot” tumors. Afterward, using the TIDE web 
tool, we found the TIDE (Fig.  8A), Exclusion (Fig.  8B), 
MDSC (Fig.  8E) scores was significantly elevated in the 
high 3 S-MMR score group, while Dysfunction (Fig. 8B), 
CD8 (Fig.  8D), and Merck18 (Fig.  8F) scores was 
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significantly elevated in the low 3  S-MMR score group, 
which confirmed that patients with lower 3  S benefit 
more from immunotherapy. Submap algorithms further 
confirmed this conclusion (Fig. 8G). Acknowledging the 
profound effects of atypical expression and functionality 

of immune checkpoint molecules in tumor immunother-
apy, we conducted an evaluation of immune checkpoints 
(ICs) expression within distinct 3 S-MMR score groups. 
Interestingly, almost all ICs exhibited increased expres-
sion in the group with low 3  S-MMR scores (Fig.  8H). 

Fig. 7 3 S-MMR score remolds the immune infiltration patterns in LUAD. (A) Differences in the various steps of the cancer immunity cycle between 
high- and low-3 S-MMR score groups. (B) Correlations between 3 S-MMR score (riskScore) and stromal, immune, and ESTIMATE score. (C) Correlations 
between 3 S-MMR score and the steps of the cancer immunity cycle (left). Correlations between 3 S-MMR score and the enrichment scores of published 
immune cell signatures (right). (D) Correlation between 3 S-MMR score and the infiltration levels of six types of TIICs (CD8 + T cells, CD4 + T cells, NK cells, 
macrophages, Th1 cells, and dendritic cells), which were calculated using six independent algorithms. (E) Image representing the pathological HE stain-
ing variation between the high- and low-3 S-MMR score groups (TCGA database). (F) From left to right: mRNA expression (median normalized expression 
levels); expression versus methylation (gene expression correlation with DNA-methylation beta-value); amplification frequency (the difference between 
the fraction of samples in which an IM is amplified in a particular subtype and the amplification fraction in all samples); and the deletion frequency (as 
amplifications) for 75 IM genes by the high- and low-3 S-MMR score groups. Abbreviation: *P < 0.05; **P < 0.01; *** P < 0.001
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Subsequently, we confirmed the effectiveness across vari-
ous immunotherapy treatment cohorts. The 3  S-MMR 
score was lower in the CR/PR group than in the SD/PD 
group in the GSE78220 (Fig.  8I, P = 0.106), GSE35640 
(Fig.  8K, P = 0.042), and GSE126044 cohorts (Fig.  8M, 

P = 0.167). We observed that 64% of patients in the CR/
PR group had a low 3  S-MMR score in the GSE78220 
(Fig. 8J), 48% of patients in the CR/PR group had a low 
3  S-MMR score in the GSE35640 (Fig.  8L), and 38% of 
patients in the CR/PR group had a low 3 S-MMR score in 

Fig. 8 3 S-MMR score’s ability to predict immunotherapy efficacy. (A-F) Violin plot of TIDE (A), Dysfunction (B), Exclusion (C), CD8 (D) MDSC (E), and 
Merck18 (F) score. (G) The submap algorithm predict the response of high and low 3 S-MMR score groups to CTLA4 and PD-1 inhibitors. (H) Boxplot of 
relative expression levels at immune checkpoints profiles between the high and low 3 S-MMR score groups patients. (I-N) Differences in 3 S-MMR score 
between immunotherapy responders and non-responders in the GSE126044 (I-J), GSE35640 (K-L), and GSE78220 (M-N) cohorts. (O-P) T-SNE reduction 
maps the distribution of cells from SD and PR patients (O), and the distribution of 3 S-MMR score (P) in the GSE207422 dataset. (Q) Violin plot of 3 S-MMR 
score between SD and PR patients in the GSE207422 dataset. (R) Tissue preference of high and low 3 S-MMR groups estimate by Ro/e in the GSE207422 
dataset. (S-T) T-SNE reduction maps the distribution of cells from SD and PR patients (S), and the distribution of 3 S-MMR score (T) in the GSE145281 
dataset. (U) Violin plot of 3 S-MMR score between SD and PR patients in the GSE145281 dataset. (V) Tissue preference of high and low 3 S-MMR groups 
estimate by Ro/e in the GSE145281 dataset. Abbreviation: *P < 0.05; **P < 0.01; *** P < 0.001
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the GSE126044 (Fig. 8N). These results were additionally 
validated through two scRNA-seq datasets that included 
data on immunotherapy. For patients responding to 
immunotherapy therapy, their cells had a significantly 
lower 3  S-MMR score than non-responders’ cells both 
in GSE207422 (Fig. 8O and R), and GSE145281 cohorts 
(Fig. 8S and V). Considering the aforementioned analysis, 
it can be hypothesized that immunotherapy might yield 
better outcomes in cancer patients who have a lower 
3 S-MMR score.

In silico identification of targets and drugs for high 
3 S-MMR score patients.

In order to screen potential targets for high 3 S-MMR 
score patients, we collected the target information of 
6152 compounds and 2249 druggable targets (Supple-
mentary Table 9) from previous study [39, 51] and 
applied two-step analysis to find candidate targets. To 
begin, we executed a Spearman’s correlation analysis 
to explore the association between the 3  S-MMR score 
and the expression levels of potential drug targets in the 
TCGA-LUAD cohort. From this, we identified a shared 
group of genes positively correlated with the score, 
designating these as related targets for the 3  S-MMR 
score (Fig. 9A and D, Supplementary Table 10, n = 269, 
r > 0.2, p < 0.05). Subsequently, by performing a Spear-
man’s correlation analysis between the CERES score 
and the 3  S-MMR score using lung cancer cell lines, 
we proceeded to identify 54 targets dependent on poor 
prognosis (Fig.  9E and H, Supplementary Table 11, 
n = 54, r< -0.2, p < 0.05). In total of ten genes, includ-
ing CDK6, RELA, CTPS1, PLOD3, KIF18A, ACTR2, 
ACTR3, ARPC3, ACTB, and RAC1 were identified by 
both analyses above, suggesting that targeting these 
genes for inhibition in patients with high 3  S-MMR 
scores might result in enhanced treatment effectiveness. 
Besides, the IC50 values of target therapy drugs includ-
ing paclitaxel (Fig.  9I), gemcitabine (Fig.  9J), gefitinib 
(Fig.  9K), and cisplatin (Fig.  9L) were lower in the high 
3  S-MMR score groups, suggested that high 3  S-MMR 
score patients might more likely benefit from targeted 
therapy. Subsequently, we undertook CMap analysis to 
deduce potentially efficacious chemical compounds. For 
this purpose, we executed a differential gene expression 
analysis contrasting the high and low 3  S-MMR score 
groups. We then utilized the top 150 most upregulated 
as well as 150 most downregulated genes as the signature 
for the 3 S-MMR score to determine the CMap score for 
chemical compounds. By employing this method, we pin-
pointed a total of 65 compounds, each with a CMap score 
below − 95 and the capability to reverse the 3  S-MMR 
score signature (Supplementary Table 12). Of 65 com-
pounds, 18.5% and 16.9% belong to HDAC inhibitors and 
topoisomerase inhibitors, respectively (Fig.  9M). After-
ward, we applied Yang.et al’s protocol [39] to identify 

potentially sensitive drugs for the high 3  S-MMR score 
group, and finally generated three CTRP-derived drugs 
(KX2 − 391, paclitaxel, SB − 743,921) and four PRISM-
derived drugs (cabazitaxel, epothilone − b, gemcitabine, 
ispinesib). The estimate AUC values of these drugs were 
not only statistically negatively correlated with 3 S-MMR 
scores, but also significantly lower in the high 3 S-MMR 
score groups (Fig. 9N and Q).

Dissecting the malignant cells with 3 S-MMR score
Considering the presence of cells at various develop-
mental stages within tumor tissue, we investigated 
the association between the 3  S-MMR score as well as 
the developmental trajectory of malignant cells using 
pseudo-time analysis. The trace plot for malignant 
cells, depicting fluctuations in the 3  S-MMR score over 
pseudo-time, exhibited three distinct branches (Fig. 10A, 
upper panel). We further applied CytoTRACE analysis 
by integrating Monocle2 to predict the origins of malig-
nant cells (Fig.  10A, lower panel). Malignant cells with 
high 3 S-MMR scores were mainly located near the root 
node of the branch tree, indicated that malignant cells 
with high 3 S-MMR scores may be more characteristics 
of cancer stem cells. When we delineated the distribu-
tion of the 3 S-MMR score-related gene list (detach gene-
pair), we noticed that they are expressed differently in 
various stages of malignant cells, which further confirms 
that 3 S-MMR score has the potential to regulate the dif-
ferentiation and progression of malignant cells (Fig. 10B). 
In light of the fact that different cell types are distin-
guished by the outcomes of intricate and coordinated 
interactions involving transcription factors (TFs) and 
their associated target genes, we delved into the intercon-
nectedness among transcription factors within malignant 
cells using SCENIC analysis. We found that malignant 
cells with high as well as low 3 S-MMR scores have com-
pletely different activation phenomena of transcription 
factors (Fig. 10C). Top 5 TFs in malignant cells with high 
3  S-MMR scores included SOX4, IRF1, JUNB, JUND, 
and STAT1 (Fig. 10D), while ATF4, ATF3, and JUN was 
extended in malignant cells with low 3  S-MMR score 
(Fig.  10E). Subsequently, to investigate the differences 
in intercellular communication between high and low 
3 S-MMR score malignant cells, we analyzed the expres-
sion of receptor and ligand. Figure 10F and G illustrates 
the communication between all cells, and we found that 
malignant cells with high 3  S-MMR scores was able to 
send signals more effectively than low 3  S-MMR scores 
malignant cells. Secreted phosphoprotein 1 (SPP1), an 
extracellular glycoprotein with phosphorylated resi-
dues, exhibits a close association with various aspects 
of tumor biology, notably proliferation, migration, and 
invasion, particularly in the context of LUAD [52]. Anal-
ysis of the network centrality showed that malignant 
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cells with high 3 S-MMR scores plan an important role 
in SPP1 signaling pathway (Fig.  10H and I). We further 
applied 3 S-MMR framework to the spatial architecture 
of LUAD. Afterward, based on HE staining, we labeled 
the cancerous area (Fig.  10J). It’s worth highlighting 
that malignant cells characterized by higher 3  S-MMR 

scores are primarily situated at the central core of the 
LUAD tumor (Fig.  10K). Furthermore, we utilized the 
robust cell type decomposition (RCTD) algorithm [53] to 
extrapolate the identified cell types from single-cell data 
to the spatial dataset, allowing us to infer the predomi-
nant cell types present at each spatial location (Fig. 10L). 

Fig. 9 In silico identification of targets and drugs for high 3 S-MMR score patients. (A-D) Volcano plot (A) and scatter plots (B-D) of the correlation 
coefficients derived from Spearman’s rank correlation analysis between 3 S-MMR score and druggable mRNA expression in the TCGA-LUAD cohort. Red 
dots indicate the significant positive correlations (P < 0.05, and Spearman’s r > 0.2). (E-H) Volcano plot (E) and scatter plots (F-H) of the correlations and 
significance between 3 S-MMR score and CERES score of drug targets. Green dots indicate the significant negative correlations (P < 0.05, and Spearman’s 
r < -0.2). (I-L) The comparison of IC50 values between high and low 3 S-MMR score groups of Paclitaxel (I), Gemcitabine (J), Gefitinib (K), and Cisplatin 
(L). (M) The composition of chemical compounds selected by CMap analysis. Only the top 10 drug categories are displayed. (N, P) The result of Spear-
man’s correlation analysis of CTRP-derived compounds (N) and PRISM-derived compounds (P). (O, Q) The results of differential drug response analysis of 
CTRP-derived compounds (O) and PRISM-derived compounds (Q), the lower values on the y-axis of boxplots imply greater drug sensitivity. Abbreviation: 
*P < 0.05; **P < 0.01; *** P < 0.001
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This outcome further strength the conclusion that cells 
exhibiting higher 3 S-MMR scores are primarily situated 
within the tumor epithelial cell region.

Pan-cancer analysis
Drawing from previous studies indicating that pan-
cancer-related pathways also exhibited similar, and 
common activity profiles to the LUAD pathway among 

the prognostic groups [54] as well as considering meta-
bolic reprogramming as a necessity for tumor progres-
sion and metastasis [55], we subsequently delved into 
the broader potential utility of the 3  S-MMR score in 
various other cancer types. We conducted a pan-can-
cer analysis using expression and survival data from 33 
cancer types (n = 10,110) in the TCGA dataset, which 
encompassed two hematological cancers and 31 solid 

Fig. 10 Dissecting the malignant cells with high 3 S-MMR score. (A) The development trajectory of malignant cells inferred by Monocle2. Malignant 
cells with high 3 S-MMR scores most located in the roots of differentiation, and the malignant cells with low 3 S-MMR scores mainly located in the middle 
and end-point state. (B) Heatmap of the 3 S-MMR score-related genes in malignant cells along the pseudo-time. (C) Heatmap showing the different TFs 
activation between high and low 3 S-MMR score malignant cells. (D, E) Top activities of TFs between high (D) and low 3 S-MMR (E) score of malignant 
cells. RSS indicates Regulon Specificity Score. (F, G) Cellchat analysis of all cell types. Both interaction numbers and interaction strengths were showed. (H, 
I) Hierarchical plot showing the inferred intercellular communication network for SPP1 signaling pathway. (J) HE staining showing histologically distinct 
regions of stRNA samples. yellow: cancer region. (K) The spatial plot of 3 S-MMR score intensity. (L) The distribution of different cell types in the spatial 
map was identified by the algorithm of RCTD.
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tumors. Univariate Cox regression outcomes showed 
that the 3  S-MMR score was a unfavorable prognostic 
factor across all cancer types (all HR > 1), significantly in 
LUAD, HNSC, KIRC, CESC, PAAD, BLCA, SARC, ACC, 
LGG, MESO, KIRP, and THCA (Fig.  11A). Tissue-spe-
cific senescence levels across cancer types were further 
revealed (Fig. 11B). Additionally, the 3 S-MMR score can 
distinguish survival states in most cancers (Fig. 11C and 
N), among which the low 3 S-MMR score group exhib-
ited longer survival time. These findings validate the via-
bility of employing the 3 S-MMR score in these types of 
cancers.

Discussion
Cancer cells must respond swiftly to both internal and 
external triggers in order to sustain their rapid prolif-
eration and survival in adverse conditions characterized 
by low oxygen levels, nutritional scarcity, and poten-
tial exposure to chemotherapy drugs [56]. An essential 
strategy involves the reprogramming of cellular metabo-
lism, thereby influencing both intra- and extra-cellular 
metabolites, with the potential to significantly impact 
gene expression, cellular differentiation, and the TME 
[57, 58]. Metabolic reprogramming, notably in the realm 
of energy metabolism, has been universally recognized as 
a hallmark and prevalent characteristic of tumors for a 

Fig. 11 Pan-cancer analysis. (A) Cox regression analysis of 3 S-MMR score across 33 cancer types. Red color indicates P < 0.05 significant results. (B) Aver-
age 3 S-MMR score in individual cancer types. Tissue types, cancer types and average 3 S-MMR score are shown from the inner circle to the outer circle. 
(C-N) Kaplan–Meier survival curves of 3 S-MMR score in 12 types of cancers are significant (Log-rank test)
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significant duration [2]. Recent investigations into meta-
bolic reprogramming have unveiled promising potential 
targets for cancer treatment [59, 60], underscoring the 
substantial need for comprehensive research on meta-
bolic heterogeneity and the associated metabolic mech-
anisms. Predominantly reliant on bulk RNA-seq data, 
prior transcriptomics investigations in LUAD predomi-
nantly concentrated on the identification of prognostic 
genes and the prediction of clinical outcomes. However, 
they often overlooked the intricate landscape of inter-
cellular heterogeneity. Simultaneously, scRNA-seq stud-
ies on LUAD mainly focused on functions of various cell 
component [61], discovery of new cell subsets [62], and 
investigation of intercellular heterogeneity [15], but were 
lack of the analyses between specific tumor cell subsets 
and patient’s prognosis for the limitation of small sample 
size. Furthermore, the majority of prior models were con-
strained by biases arising from the reliance on absolute 
gene expression values. These models predominantly 
focused on singular cancer-related pathways and often 
employed inappropriate modeling methodologies. Such 
limitations substantially impeded the robustness and 
accuracy of their predictions, thereby hindering their 
practical applicability.

In this study, we first leverage scRNA-seq profiles to 
study the metabolic heterogeneity in primary as well as 
metastatic samples form LUAD patients. Based on the 
cell level and complexity ecosystem, we defined a new 
gene set which related to LUAD progression and meta-
static, named “MMR”. Through the integration of GA 
and ensemble learning methodologies, leveraging the 
relative expression order of gene pairs within samples, we 
eliminated the necessity for data normalization, enhanc-
ing reliability and generalizability, and further proposing 
3  S-MMR score, with it exhibiting a powerful ability in 
survival prediction of LUAD patients. To the best of our 
knowledge, this is the first prognostic model in LUAD 
based on ensemble learning that simultaneously con-
siders four key points involving malignant and metabo-
lism reprogramming, gene-pair, double training sets as 
well as GA algorithm. Utilizing nine independent LUAD 
cohorts, we illustrated that the 3 S-MMR score exhibits 
superior robustness and accuracy compared to existing 
clinical indicators. Additionally, we provided a web tool 
for the 3  S-MMR score-based nomogram, facilitating 
the user-friendly application of the risk score for LUAD 
patients.

It’s important to highlight that the 3  S-MMR scor-
ing framework we formulated tackles batch discrepan-
cies among diverse datasets, maintaining the integrity 
of the initial data distribution. This is advantageous for 
the enhancement of subsequent ensemble learning mod-
els. Regardless of the transcriptome platform employed 
and the data formats utilized, such as FPKM, TPM, and 

RPKM, the gene-pairing approach simplifies both the 
comparative analysis and the amalgamation of data. 
Moreover, it’s important to mention that by employing 
double training sets, we effectively minimized overfit-
ting, thereby enhancing the precision of the 3  S-MMR 
score in the test sets. Genetic algorithms automated the 
selection of fundamental learners in the ensemble learn-
ing model, further contributing to enhanced accuracy. 
Certainly, it is pertinent to recognize that, as previously 
discussed, our framework, grounded in the fundamen-
tal schema of cancer cell metabolic reprogramming, also 
extensively addresses the issue of heterogeneity in tran-
scriptomic platforms, clinical attributes, and genetic 
profiles of these LUAD cohorts. This was further cor-
roborated in subsequent pan-cancer analyses, indicating 
that the 3  S-MMRscore, built on the universal survival 
foundation of cancer cells and derived from metabolic 
reprogramming, acts as a risk factor across various other 
cancers (Fig. 11A, HR > 1).

Prior research indicates that alterations in cancer cell 
metabolism are partly attributable to the recruitment of 
numerous inflammatory and immune cells [63]. Follow-
ing this, an increasing number of scientists have discov-
ered that aberrant metabolites or intermediates of cancer 
metabolism play a crucial role in controlling the prolif-
eration, differentiation, activation, and functionality of 
immune cells. Recent research has shed light on a previ-
ously unappreciated intricate link between the immune 
system and various metabolic processes, leading to the 
emergence of a new field termed immunometabolism 
[58, 64]. In our study, we found that the 3 S-MMR scor-
ing system can significantly distinguish different immune 
infiltration patterns, indicating its potential to participate 
in immune remodeling, which is likely to be regulated 
through metabolic reprogramming.

In this study, we found that 3 S-MMR score was nega-
tively correlated with the activities of several steps of 
the cancer immunity cycle. For instance, the activity of 
T cell recruitment was significantly upregulated in the 
low 3  S-MMR score group. Consequently, the infiltra-
tion levels of several effector TIICs, such as CD8 + T cells, 
CD4 + T cells, NK cells, macrophages, TH1 cells, as well 
as dendritic cells, were also significantly upregulated. 
These findings are verifiable across various algorithms. 
An essential feature of an inflamed TME includes the 
escalated activation of inhibitory immune checkpoints, 
influenced by the initial influx of TIICs [65]. These 
immune checkpoints dampen pre-established cancer 
immunity to prevent an overactive immune response, 
yet they also contribute to immune escape. ICB therapies 
targeting these checkpoints have yielded significant sur-
vival advantages in advanced LUAD cases [66]. Here, the 
high 3 S-MMR score group exhibited a notable decrease 
in the expression of inhibitory immune checkpoints, 
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possibly due to the reduced activity of pre-existing TIICs. 
This implies that LUAD cases with a high 3  S-MMR 
score may exhibit reduced sensitivity to ICB treatment. 
Besides, TIDE, submap, and independent bulk immu-
notherapy cohorts confirmed this conclusion. It’s note-
worthy that, in our analysis of several single-cell cohorts 
undergoing immunotherapy, we observed a marked trend 
where cells exhibiting high 3  S-MMR scores predomi-
nantly originated from patients who did not respond to 
the treatment. On the contrary, the significant negative 
correlation between 3 S-MMR score and targeted therapy 
drugs indicated that patients with high 3 S-MMR scores 
might more likely benefit from targeted therapy. The use 
of in silico identification for drug and target screening 
has been shown in many literatures to be a very prom-
ising strategy for targeting specific patient populations 
[67–70]. For instance, Faheem Ahmed et al. introduced 
an integrative drug repurposing framework that relies on 
a systems biology-enabled network medicine platform to 
efficiently identify suitable repurposable drugs and drug 
combinations for targeting HPV-associated cervical can-
cer [71]. In our study, we identified 10 potential thera-
peutic targets (e.g., PLOD3, ACTR3, and RAC1), along 
with three CTRP-derived and four PRISM-derived thera-
peutic agents, for patients with high 3 S-MMR scores. In 
the future, more clinical trials are required to confirmed 
broad prospects of these target genes and therapeutic 
agents.

We also attach great importance to the biological sig-
nificance behind this prognosis and the huge differences 
in immune infiltration patterns. When we applied the 
3  S-MMR score framework to the scRNA-seq level, we 
found that there were large differences in malignant cells 
with high as well as low 3 S-MMR scores. Regarding the 
analysis of cellular communication, it was noted that, 
generally, malignant cells with elevated 3 S-MMR scores 
exhibited pronounced interactions with immune cells, 
which play a crucial role in tumor progression and metas-
tasis. Considering the presence of cells at varying devel-
opmental stages within tumor tissue, we investigated the 
association between the 3  S-MMR score and the devel-
opmental trajectory of malignant cells using pseudo-time 
analysis. It appeared that malignant cells with a high 
3 S-MMR score were more indicative of cancer stem cell 
characteristics, whereas cells with a low 3 S-MMR score 
tended to be closer to the differentiated end-stage. Simi-
larly, we found that 3 S score-related genes differ greatly 
at different stages of malignant cell progression. We have 
reason to believe that the 3  S-MMR score framework 
has a higher ability to regulate malignant cell differentia-
tion. Additionally, by incorporating the 3  S-MMR score 
framework into the LUAD spatial transcriptome through 
deconvolution, we observed that the central regions 

of LUAD tumors typically exhibit relatively higher 
3 S-MMR scores.

Although we confirmed the accuracy of the 3 S-MMR 
process results, it’s important to acknowledge certain 
limitations of this method, including the possible adverse 
impact on model efficacy due to the data partitioning 
approach. Moreover, while LUAD patients provide ample 
data for implementing the 3 S-MMR score, other cancers 
might lack enough scRNA-seq and bulkRNA-seq samples 
for constructing a 3 S-MMR pipeline, potentially restrict-
ing the applicability of the 3 S-MMR score.
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