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Abstract 

The shortage of organs for transplantation emphasizes the urgent need for alternative solutions. Xenotransplanta-
tion has emerged as a promising option due to the greater availability of donor organs. However, significant hurdles 
such as hyperacute rejection and organ ischemia–reperfusion injury pose major challenges, largely orchestrated 
by the complement system, and activated immune responses. The complement system, a pivotal component 
of innate immunity, acts as a natural barrier for xenotransplantation. To address the challenges of immune rejec-
tion, gene-edited pigs have become a focal point, aiming to shield donor organs from human immune responses 
and enhance the overall success of xenotransplantation. This comprehensive review aims to illuminate strategies 
for regulating complement networks to optimize the efficacy of gene-edited pig xenotransplantation. We begin 
by exploring the impact of the complement system on the effectiveness of xenotransplantation. Subsequently, we 
delve into the evaluation of key complement regulators specific to gene-edited pigs. To further understand the status 
of xenotransplantation, we discuss preclinical studies that utilize gene-edited pigs as a viable source of organs. These 
investigations provide valuable insights into the feasibility and potential success of xenotransplantation, offering 
a bridge between scientific advancements and clinical application.

Keywords Xenotransplantation, Complement systems, Genetically modified pigs, Clinical trials, α-1,3-
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Introduction
Transplantation is a crucial strategy for addressing end-
stage organ failure. However, the persistently low sup-
ply of donated human organs has resulted in a growing 
demand that far exceeds the available supply. In the U.S. 
alone, with 103,327 individuals awaiting organ trans-
plants, only 42,000 transplants were conducted in 2022, 
leading to a tragic daily toll of 17 lives lost while await-
ing organs [1]. Recognizing the striking similarities in 
size and various biological aspects between porcine 
and human organs, pigs have emerged as prime candi-
dates for xenotransplantation. Their potential is further 
amplified through genetic engineering, enabling pigs to 
serve as optimized sources for cells, tissues, and organs 
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in transplantation [2]. Recent strides in genome editing 
have significantly propelled advancements in this field, 
but graft rejection remains a pressing problem.

A critical factor contributing to xenograft failure is the 
activation of the complement system, resulting in hyper-
acute rejection, ischemia–reperfusion injury, coagulation 
disorders, and related inflammatory responses. Conse-
quently, comprehending and mitigating immune rejec-
tion triggered by the complement system is paramount. 
In this article, we summarize the evolving landscape 
of complement in the context of xenotransplantation, 
explore preclinical applications involving gene-edited 
pigs related to complement, and outline strategies for 
regulating complement networks to enhance the effi-
cacy of xenotransplantation. By navigating the intricate 
interplay between genetic engineering and complement 
biology, this review aims to contribute to the ongoing 
dialogue regarding xenotransplantation’s potential to 
address the growing disparity between organ supply and 
demand.

Three paths of complement activation
The complement system, comprising over 50 diverse pro-
teins and cleavage molecules such as proenzymes, pro-
teases, anaphylatoxins, receptors, regulators, opsonins, 
multimolecular complexes, and pattern recognition mol-
ecules that provide host defense against foreign microbes 
or allografts, mediate inflammatory responses and main-
tain normal tissue homeostasis [3, 4]. The activation of 
complement relies on three precisely regulated activation 
systems: classical pathway (CL), alternative pathway (AP), 
and mannose-binding lectin (MBL) pathway (Fig. 1).

Classical complement activation pathway
The classical pathway of complement activation begins 
with the C1 complex comprising C1q, C1r, and C1s 
subcomponent proteins. Initially, the spherical head 
of C1q recognizes IgG/IgM antigen–antibody com-
plexes, causing the rearrangement and activation of 
C1r, followed by the activation of C1s within the C1r-
C1s tetramer. Active C1s cleaves C4 into C4a and C4b, 
and subsequently, C4b binds to C2, which is cleaved 
by C1s into C2a and C2b. This forms the C4b2b com-
plex, known as the classical pathway C3 convertase [5]. 
This convertase catalyzes the conversion of C3 to C3b 
and C3a. C3b molecules are deposited together, and 
the substrate specificity is switched to form the clas-
sical pathway C5 convertase (C3bBb3b and C3b4b2b). 
C5 convertase (C3bBb3b and C3b4b2b) has a high level 
of complement C5 affinity, which allows C5 to be dis-
solved and activated quickly [6, 7]. C5, the first comple-
ment factor formed by the membrane attack complex 

(MAC). After being lysed, C5 initiates the complex 
assembly that can be inserted into the target cell mem-
brane. The assembly is formed around C5b and includes 
four complements—C6, C7, C8 and C9 [8].

The classical complement activation pathway is a 
crucial arm of the immune response, providing a rapid 
and potent means of neutralizing pathogens marked by 
antibodies.

Alternative complement pathway
The alternative complement pathway operates indepen-
dently of antibodies and involves only two main com-
ponents: factors B and D [9]. Factor D, an active serine 
protease, binds to and activates Factor B [10]. The acti-
vated Factor B then joins with C3b(H2O) to create the 
C3 convertase C3(H2O)Bb [11]. This convertase trig-
gers a positive feedback loop by cleaving natural C3 
molecules into C3a and C3b. Additionally, C3b bind-
ing to C3 convertase forms the C5 convertase, which 
cleaves C5 into biologically active fragments, C5a and 
C5b [12]. C5b then recruits complement components 
C6, C7, C8, and C9 to form the membrane attack com-
plex (MAC). The MAC inserts into the pathogen mem-
brane, leading to cell lysis and destruction [13].

The alternative complement pathway offers rapid 
and innate protection against pathogens by identify-
ing and flagging foreign surfaces for removal. Its ongo-
ing, low-level activity plays a crucial role in immune 
surveillance, greatly enhancing the effectiveness of the 
complement system.

Lectin pathway
The lectin pathway of the innate immune system is acti-
vated by recognizing specific carbohydrate patterns 
on pathogens. This activation involves pattern recog-
nition molecules such as MBL, ficolins, or collectins 
binding to the pathogen’s surface, initiating a cascade 
that includes serine protease zymogens like MASP-
1, MASP-2, MASP-3, and the nonenzymatic protein 
MAp19, where MASP-1 and MASP-2 serving as key 
enzymes [14]. Upon binding to the carbohydrate ligand, 
the MBL-MASP complex converts MASP from a zymo-
gen to its activated form [15]. Subsequently, MASP 
generates C3 convertase (C4b2a), resulting in a reac-
tion akin to the classical pathway.

The lectin pathway aids in opsonizing pathogens for 
recognition and phagocytosis by immune cells. Moreo-
ver, it initiates the complement cascade, resulting in the 
formation of the MAC for the destruction of targeted 
pathogens. It serves as a vital frontline defense in the 
immune response against infections.
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Complement regulatory proteins
The complement regulatory system, comprising solu-
ble and membrane-bound factors, plays a crucial role 
in all three complement activation pathways. These 
regulators engage with specific complement compo-
nents to intricately balance activation and inhibition, 
ensuring precise homeostasis. This balance safeguards 
our tissues, effectively preventing damage from foreign 
microorganisms.

C1 inhibitor (C1‑INH)
C1-INH is a key inhibitor that regulates both the com-
plement system and coagulation cascade. It plays a 
key role in controlling the classical complement path-
way by inhibiting activated C1s and C1r, as well as 
targeting factors XIIa, kallikrein, and factor XIa in the 
coagulation contact system [16]. By forming a cova-
lent complex with C1s, it prevents its activation [17]. 
Additionally, it hinders the activation of MASP-1 and 

Fig. 1 Simplified overview of the active complement cascade. Foreign surface-bound antigen–antibody (Ag/Ab) complexes initiate the classic 
pathway, while polysaccharides, lipopolysaccharides, and/or IgA activate the alternative complement pathway. Damage-associated molecular 
patterns (DAMPs) like mannose-binding lectin (MBL), ficolins (Fcns), and certain collections (CLs) can directly trigger the classic pathway 
or initiate the lectin pathway. The three complement activation pathways collectively cleave C3 into C3b and C3a, triggering terminal pathway 
activation, mainly involving C5-C9, which assembles to form the membrane attack complex (MAC). Key complement regulatory factors include 
C1 inhibitor (C1-INH), factor H (FH), factor I (FI), CD46, C4BP, and CD59. C1-INH inhibits C1r activation of C1s, preventing C4 and C2 cleavage. 
Simultaneously, C1-INH can inhibit the binding of MBL to MASP-1 or MASP-2. Factor I and factor H, aided by C4BP and CD46, can phagocytize C3 
from the alternative pathway, inhibiting its activation. CD59 prevents C9 from binding to C5b678 to form MAC
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MASP-2, inhibiting the lectin pathway [18], and inter-
feres with the interaction between C3b and factor B, 
preventing alternative pathway activation. This multi-
faceted activity underscores the critical role of C1-INH 
in maintaining immune balance and preventing harm-
ful responses [19].

FI
Factor I (FI) is a crucial serine protease in the comple-
ment system, crucial for regulating complement activa-
tion. Through enzymatic cleavage, FI indirectly inhibits 
the complement system by hindering the activation of 
complement factors C4b and C3b [20]. Working in coor-
dination with other complement regulatory proteins, FI 
cleaves C3b and C4b into their inactive forms, preventing 
excessive complement cascade amplification and main-
taining a balance in immune responses [21]. This regu-
latory function is essential for protecting host cells and 
tissues from damage caused by excessive or inappropriate 
complement activation.

FH
Factor H (FH) is a vital complement regulatory protein 
that inhibits the alternative pathway of the complement 
system. FH accelerates the decay of C3 convertases (C3b, 
Bb) of the alternative pathway and acts as a cofactor for 
factor I-mediated C3b cleavage and inactivation [22]. 
Additionally, FH directly inhibits the formation of the 
C3bBC3bC3b complex by interacting with C3b, proper-
din (factor P), and FB in the presence of FI [23]. The regu-
latory actions of FH are crucial for preventing excessive 
and inappropriate complement activation, safeguarding 
host cells and tissues.

C4BP
C4b-binding protein (C4BP) is a crucial regulator of the 
complement system, controlling the activation cascade 
by interacting with C4b. It serves as a cofactor for FI-
mediated cleavage of C4b, leading to the formation of 
inactive C4b fragments [24]. By facilitating C4b degra-
dation, C4BP inhibits the classical and lectin pathways, 
preventing excessive complement activation. Moreover, it 
disrupts the assembly of the C3 convertase (C4b2a) in the 
classical pathway, further regulating the complement cas-
cade [25]. This pivotal regulatory role maintains immune 
balance and protects host cells and tissues from damage.

CD46
CD46, also known as membrane cofactor protein (MCP), 
is pivotal in regulating complement activation by pro-
moting the proteolysis and activation of FI. This activity 
results in the degradation of C3b and C4b, preventing the 
formation and amplification of C3 and C5 convertases, 

and ultimately inhibiting the downstream steps of the 
complement cascade [26]. The regulatory function of 
CD46 is crucial for maintaining immune homeostasis 
and preventing autologous cell lysis. By controlling com-
plement activation on host cell surfaces, CD46 helps pre-
vent inappropriate immune responses and protects cells 
from damage caused by uncontrolled complement acti-
vation [27, 28].

CD59
CD59, also known as protection, plays a pivotal role in 
immune regulation by inhibiting the terminal comple-
ment pathway. It prevents MAC assembly by prevent-
ing C8 and C9 from joining the MAC complex [29]. This 
protective action ensures the preservation of host cells, 
preventing cell lysis and maintaining cellular integrity 
[30]. CD59’s function as a terminal pathway inhibitor is 
indispensable for averting unintended cell damage and 
upholding immune homeostasis.

Complement and transplantation
In transplantation, the complement system serves a dual 
role—acting as a protective mechanism against foreign 
tissues while also posing a potential risk for transplant-
related complications [31]. Its importance is seen in 
graft rejection and incompatibility. When foreign tissues 
are transplanted, the complement system can activate 
through foreign tissue pathways. Studies indicate that 
xenotransplant rejection is primarily mediated by the 
classical and alternative pathways of complement, with 
no significant role played by the lectin (MBL) pathway 
[32]. Complement proteins C3a and C5a, along with the 
MAC activated by these pathways, play a crucial role in 
lysing xenografts.

Complement activation, especially when the recipi-
ent’s blood reacts against the transplanted organ, plays 
a key role in rejection [33]. Poor outcomes in clinical 
islet transplantation may be attributed to the occur-
rence of a destructive instant blood-mediated inflamma-
tory response (IBMIR) [34]. Complement activation is a 
vital component of IBMIR, triggered after a thrombotic 
reaction. During this phase, pancreatic islets exposed to 
blood in the portal vein undergo a direct assault by the 
complement system [35, 36], primarily due to the exten-
sive binding of antibodies against C4 and C3 on the sur-
face of transplanted pancreatic islet cells [37].

Hyperacute allograft rejection (HAR) and ischemia–
reperfusion injury (IRI) in xenografts are central fac-
tors contributing to heterogeneous transplant failures, 
and the complement system plays a pivotal role in both 
HAR and IRI. HAR, characterized by rapid rejection 
within 48  h post-transplantation, results from preex-
isting cytotoxic antibodies in the recipient binding to 
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graft antigens, leading to severe complement-depend-
ent rejection [38, 39]. IRI is frequently encountered in 
kidney transplantation, often attributed to blood flow 
disorders. The complement component C3 plays a 
pivotal role in inflammatory processes, with its eleva-
tion worsening IRI-induced acute kidney injury and 
stimulating the production of secondary epithelial cell 
chemokines, thereby contributing to local inflamma-
tion [40, 41].

Understanding and managing complement activa-
tion in transplantation is vital for enhancing success 
rates and the long-term functionality of transplanted 
organs. Therapeutic complement inhibitors effectively 
protect organs from inflammatory damages [42], and 
ongoing research is exploring genetic engineering 
strategies in donor pigs with human complement regu-
latory proteins (hCRP) to minimize the impact of com-
plement system activation on xenograft survival [43]. 
These studies aim to develop new complement inhi-
bition and immunomodulation strategies, enhancing 
transplantation outcomes.

Gene‑edited pigs
Pigs are considered excellent candidates for xenotrans-
plantation due to their genetic, physiological, metabolic, 
and anatomical similarities to humans. They can be eas-
ily bred and raised in controlled environments, providing 
organs of suitable size for human transplantation [44, 45]. 
However, molecular incompatibility between pig donors 
and human recipients often leads to immune complica-
tions and xenotransplant rejection [46]. Technologies 
such as zinc finger nucleases [47], transcription activa-
tor-like effector (TALE) nucleases [48], and CRISPR/Cas 
[49–51] have enabled the efficient editing of pig genomes.

Deleting xenoreactivity antigens
In pig-to-primate xenotransplantation, a major challenge 
is hyperacute rejection (HAR) occurring shortly after 
transplantation [52]. HAR is primarily due to preexisting 
antibodies in human plasma targeting the Gala (1,3)-Gal 
antigen on porcine endothelial cells (Fig. 2). This antigen 
is absent in humans and higher primates. Over 80% of 
complement-fixing xenoreactivity antibodies in human 
serum recognize Gala epitopes [53]. When xenoreactivity 

Fig. 2 Xenograft activates the complement system. The binding of IgG/IgM to the protein α-Gal on the graft surface activates the classical pathway 
of complement, while the interaction of IgA with α-Gal activates the alternative pathway. The combined activation of classical and alternative 
pathways leads to the generation of C5 convertase, ultimately resulting in the formation of the membrane attack complex (MAC) composed of C5b, 
C6, C7, C8, and C9. This MAC complex functions to attack the xenograft
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antibodies recognize and bind to Gala (1,3)-Gal antigen, 
the classical complement pathway is activated, leading 
to HAR induction. Therefore, preventing HAR requires 
strategies to neutralize the impact of anti-Gal antibodies 
or complement.

To make pig organs suitable for xenotransplanta-
tion, it is essential to eliminate the Gala (1,3) Gal 
antigen from xenograft cell surfaces. One approach 
involves deactivating the GGTA1 gene, responsible 
for forming the Gala (1,3) Gal epitope. In a study by 
Lai et  al. [54], nuclear transfer successfully knocked 
out α-1,3-galactosyltransferase, producing pigs with 
heterozygous GGTA1 inactivation. Co-expressing 
human α1,2-fucosyltransferase and α-galactosidase sig-
nificantly reduced Gal antigen levels on cell surfaces, 
thereby decreasing xenotransplant immunogenicity 
[55] (Fig.  2). Heterotopic heart transplantation from 
α-1,3-galactosyltransferase knockout pigs into baboons 
eliminated the galactose-α-1,3-galactose epitope, pre-
venting HAR and extending porcine heart survival in 
baboons for 2–6  months. Additionally, homozygous 
α-1,3-galactosyltransferase knockout pigs were pro-
duced through breeding and somatic cell nuclear transfer 
(SCNT) [56].

Expression of human complement regulatory proteins
To mitigate complement-mediated graft injury in 
xenotransplantation, genetically modifying pigs to 
express human complement regulatory proteins (hCRPs) 
like CD46 (membrane cofactor protein, MCP), CD55 
(decay accelerating factor, DAF), and CD59 (membrane 
inhibitor of reactive lysis, MIRL) is an effective strategy 
[57, 58]. These hCRPs play a crucial role in maintaining 
the balance between complement activation and inhibi-
tion, acting as inhibitors at all stages of complement acti-
vation. The creation of multitransgenic pigs expressing 
CD46, CD55, and/or CD59 indicates that simultaneous 
expression of multiple hCRPs enhances protection [59]. 
Successful kidney transplantation from pigs expressing 
both hCD55 and hCD59 into nonimmunosuppressed 
baboons demonstrated their protective effect against 
hyperacute rejection (HAR) without immunosuppression 
[60].

Transplantation GTKO porcine hearts and kidneys 
significantly extend transplant survival [61, 62]. Com-
pared to GTKO or CRP alone, incorporating hCRPs into 
GTKO pigs further reduces antibody-mediated rejec-
tions [63, 64]. Human CD55 expression effectively blocks 
HAR and limits local complement activation in GTKO 
heart transplantation [64]. Additionally, GTKO com-
bined with human CD46 transgenic (GKO/CD46) islets 
enhances xenograft survival by mitigating early platelet 
deposition and neutrophil infiltration [65]. These findings 

collectively suggest that GGTA1 knockout pigs with 
one or two hCRPs are more suitable donors for organ 
xenotransplantation.

Gene‑edited pig organ transplantation model
Ongoing advancements in gene editing technology, 
paired with continual enhancements in immunosuppres-
sive regimens, have significantly propelled the evolution 
of pig-to-non-human primate (NHP) organ transplant 
models. Pigs now serve as vital organ donors in the field 
of xenotransplantation (Fig. 3).

Heart transplant
Most porcine heart transplant studies involve heterotopic 
transplantation [66, 67]. Until 2005, the longest median 
survival time for porcine hearts transplanted hetero-
topically into baboons was 96 days [68]. With an immu-
nosuppressive regimen comprising αTG, anti-CD154, 
and MMF, effective B cell depletion with the anti-CD20 
antibody extended the survival time of heterotopic car-
diac transplants to 236  days. However, delayed rejec-
tion eventually led to graft failure [69]. In 2016, the same 
researchers utilized GTKO/hCD46/hTBM donor porcine 
hearts for transplantation into baboons. Implementing 
an αCD40 antibody-based immunomodulatory regimen 
(2C10R4), the longest survival time for heterotopic heart 
transplantation was extended to an impressive 945 days, 
with a median survival time of 298 days [70]. Non-human 
primate studies show that both ectopic and orthotopic 
heart transplants maintain function and prolong survival. 
This is attributed to sustained cardioplegic solutions dur-
ing hypothermic ischemia and an effective immunosup-
pressive regimen [71]. These preclinical findings pave 
the way for successful xenotransplantation of genetically 
modified porcine hearts into patients with end-stage 
heart failure.

In recent years, several international teams have ini-
tiated preclinical studies on gene-edited pig heart 
transplantation. On January 7, 2022, surgeons at the Uni-
versity of Maryland successfully performed the world’s 
first transgenic pig heart transplant on a 57-year-old 
man. Despite the patient’s death 60  days after surgery, 
this procedure marked a groundbreaking moment in 
xenotransplantation history [72]. Notably, it overcame 
potential postoperative obstacles such as hyperacute 
immune rejection, achieved favorable short-term out-
comes, and emphasized the necessity for further clinical 
research. However, viral safety was overlooked during 
this xenotransplantation process, leading to the trans-
mission of pig viruses (PCMV/PRV) to human recipi-
ents, resulting in patient fatalities [73]. In July 2023, 
Nader Moazami et al. transplanted hearts from 10 gene-
edited pigs into two brain-dead human recipients and 
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meticulously monitored transplant function, pre-existing 
xenoreactivity antibody injury, hemodynamics, and sys-
temic reactions within 66  h. They found no safety risks 
in the deceased recipients [74]. While progress has 
been made, it’s clear we’re not fully prepared for human 
xenotransplantation.

Kidney transplant
The utilization of kidneys in pig-to-NHP models has 
progressed more slowly compared to heart transplants. 
Wild-type pig kidneys typically fail in NHPs within a 
few minutes [75]. In 2004, the transplantation of CD55 
pig kidneys into a cynomolgus monkey model revealed 
that the average survival of pig renal xenotransplants was 
limited to several weeks, with 90 days being the longest 
reported survival in a pig-to-NHP model [76].

Until Higginbotham et al.’s breakthrough in 2015, pro-
gress in pig xenotransplantation had been limited. In their 
study, GGTA1 KO/hCD55 pig kidneys were transplanted 
into rhesus monkeys. After T cell exhaustion, the treat-
ment was sustained by stimuli blocking in addition to 
the maintenance of mycophenolate mofetil and steroids. 
Remarkably, the graft survived for an impressive 310 days 
[77]. Subsequent experiments with gene-edited pigs have 

shown promising results. Iwase et  al. conducted kidney 
transplants from GTKO/CD46/CD55/TBM/EPCR/CD39 
pigs to baboons treated with an anti-CD40mAb-based 
regimen, with kidney function enduring for 136  days 
[78]. Kim et al. achieved the longest reported life-sustain-
ing xenotransplantation, lasting 499 days, by transplant-
ing GGTA1KO/hCD55 pig kidneys into rhesus monkeys 
with low anti-pig antibody titers and selective depletion 
of CD4 + or CD8 + T cells, emphasizing the significance 
of CD4 + T cell depletion [79].

Before the first global porcine heart transplantation to 
humans, three instances of genetically modified pig kid-
ney transplants into humans occurred. Two recipients 
received genetically modified GTKO porcine kidneys, 
maintaining normal renal functions for 54  h without 
signs of HAR or antibody-mediated rejection [80]. In 
the third case, the donor kidneys (bilateral transplanta-
tion) had ten genetic modifications, and three pig carbo-
hydrate antigens and the pig growth hormone receptor 
gene were deleted. These gene-modified kidneys func-
tioned for 74 h without rejection or antibody or comple-
ment protein deposition [81].

In summary, the added expression of several hCRPs 
in GTKO transgenic pigs can further prevent rejection 

Fig. 3 Gene-edited pig & xenotransplantation. Organs cultivated from genetically modified cloned pigs, such as heart, liver, lung, kidney, etc., can 
be transplanted into patients
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development [82]. With continuous scientific efforts, life-
sustaining kidney xenotransplantation is much closer to 
clinical reality than previously thought.

Liver transplant
Liver xenotransplantation from pigs to humans faces con-
siderable hurdles compared to heart and kidney trans-
plants, including immunological complexities, clotting 
abnormalities, and rejection risks. Ekser et al. pioneered 
the transplantation of GTKO or GTKO/hCD46 pig livers 
into baboons, resulting in severe thrombocytopenia with 
a survival of 7  days [83, 84]. In 2012, Kim transplanted 
GTKO livers into baboons and achieved up to 9 days of 
porcine liver xenotransplantation under the same immu-
nosuppression regimen as xenotransplantation of heart 
and kidney [85]. The Shah team explored the effects of 
exogenous administration of human coagulation fac-
tors after pig-to-baboon liver xenotransplantation (LXT) 
using GTKO pig donors. The addition of costimulatory 
blockade to this regimen increased individual recipients’ 
LXT survival from 9 to 25 days [86, 87]. In their modified 
experimental protocol, costimulation blockade (belata-
cept or anti-CD40mAb) extended the 25  day survival 
period to 29 days [88]. The outlook for pig-to-NHP liver 
transplantation depends on ongoing advancements in 
genetic engineering, immunosuppressive protocols, and 
a deeper understanding of the immunological and physi-
ological factors involved in xenotransplantation.

Lung transplant
Xenotransplantation faces heightened challenges in lung 
transplantation due to the lung’s sensitivity to injury and 
multiple immune rejection mechanisms. During trans-
plantation, the pig lung is the organ most severely dam-
aged due to rapid coagulation dysfunction [89]. While 
progress has been made in heart and kidney transplan-
tation with GTKO and hCD46, lung xenografts still face 
challenges. In 2007, Nguyen et  al. transplanted GTKO 
left lungs into baboons, but these lungs could only sus-
tain life for 3.5  h due to severe coagulation disorders 
[90]. Laird et al. discovered that transgenic expression of 
human leukocyte antigen-E attenuated GTKO/hCD46 
pig lung xenograft injury, prolonging survival ex vivo 
[91]. Watanabe et  al. proposed that transgene expres-
sion of hCD47 on porcine blood vessels could allevi-
ate acute vascular rejection in baboons, particularly in 
GTKO pig lungs that are highly susceptible [92]. Utilizing 
multigene donor pigs, combined with targeted comple-
ment activation (hCD46, hCD55), coagulation (hEPCR, 
hVWF, hTBM, hTFPI, hCD39), and anti-inflammatory 
pathway regulatory genes (HO-1, HLA-E), significantly 
improved the survival of xenogeneic swine lungs in both 
ex  vivo human blood perfusion and in life-supporting 

in  vivo models [93]. However, the survival rate of lung 
xenotransplantation remains measured in days rather 
than weeks or months [94].

Islet transplantation
The primary challenges in the early stages of porcine 
islet transplantation are HAR and IBMIR [95]. When the 
NHP immune system detects Galα (1,3) in porcine tissue, 
it triggers the classical complement pathway, resulting 
in the formation of membrane attack complexes and cell 
lysis. Thus, knockdown of the islet surface α-Gal epitope 
is therefore a logical choice [96]. In addition to remov-
ing the α-Gal antigen, reducing IBMIR also requires the 
expression of human complement regulatory factors 
(hCD46, hCD55, hCD59) [97]. When porcine pancreatic 
islets are transplanted into non-human primates (NHPs) 
with diabetes, a significant portion of the graft is typically 
lost early due to IBMIR and intense immunosuppressive 
therapy [98]. Windt et al. addressed complement activa-
tion by expressing hCD46 on pig islets, effectively lim-
iting antibody-mediated rejection and preserving islet 
quality. While this approach didn’t prevent the immediate 
loss of most transplanted islets, it significantly improved 
the outcomes of islet xenotransplantation in diabetic 
cynomolgus monkeys, maintaining normoglycemia for 
over 12 months [99, 100]. Hawthorne et al. achieved min-
imal IBMIR when transplanting α-Gal-deficient pigs with 
hCD55 and hCD59 transgenes onto neonatal islet cell 
clusters, combined with a clinically relevant immuno-
suppressive protocol [101]. Achieving clinical long-term 
survival of pancreatic islets may require more effective 
immunosuppression or further modification of donor 
genes.

Corneal transplantation
Porcine corneal xenotransplantation is considered feasi-
ble due to the cornea’s immune privilege and avascular 
nature [102]. Recent nonhuman primate studies have 
shown promising results, indicating that porcine xeno-
grafts can endure for an extended period during corneal 
transplantation [103]. Dong et al. discovered that corneas 
from GTKO/CD46 pigs did not significantly improve 
graft survival compared to those from wild-type pigs. 
Prolonging the survival of corneal xenografts in pig-to-
monkey corneal xenotransplantation encounters chal-
lenges in preventing anterior synechiae and retrocorneal 
membrane formation [104]. The use of decellularized 
corneas from wild-type pigs for anterior lamellar kera-
toplasty has shown graft transparency for over a year 
[105]. In treating corneal fungal ulcers and other clini-
cal diseases, Zhang et  al. reported that implantation of 
acellular porcine corneal stromata (APCS) resulted in 
no recurrence of infection during a 6  month follow-up 
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period, and all corneal ulcers healed with neovasculari-
zation. APCS grafts proved safe and efficacious in lamel-
lar keratoplasty for various clinical conditions [106]. As 
genetically engineered pigs become more available, pig 
corneas have the potential to address the global shortage 
of corneas soon.

Research and application of complement‑related 
drugs
Advances in comprehending the complement system’s 
composition, structure, and interactions have paved 
the way for developing drugs with both stimulating and 
inhibitory effects on complement activity. These medica-
tions show potential as therapies for a wide range of con-
ditions, including infectious, inflammatory, traumatic, 

Fig. 4 Preclinical and clinical trials of complement therapy. Complement therapy progresses through different stages, spanning from preclinical 
work to market authorization. These stages include laboratory research, animal models, clinical phases I, II, and III, and final clinical implementation. 
The therapeutic goals are categorized into four quadrants, representing major complement categories: anaphylatoxins, active pathways, 
amplification and terminal pathways, and effectors. Each arrow denotes a specific agent and its development stage. Drugs targeting C1r/s 
and MASP include Cinryze (Shire), Berinert (CSL Behring), Cetor (Sanquin), and Ruconest (Pharming), which are already being used in clinics; 
drugs targeting C1q include ANX005 (Annexon); drugs targeting C1s include TNT003 (True North), TNT009 (True North), and BIVV020 (Sanofi); 
TP10 (CDX-1135; Celldex Therapeutics) targets the soluble form of complement receptor type 1 (CR1); OMS721 (Narsoplimab, Omeros) targets 
the MASP-2 target; Drugs targeting MASP-3 include OMS906 (Omeros); drugs targeting Properdin include CLG561 (Novartis) and NM9401 
(Novelmed); drugs targeting C3 include AMY-101 (Amyndas), APL-1 (Apellis), APL-2 (Apellis), CB2782 (Catalyst), Cp40 (Amyndas); drugs targeting 
C3b and convertases include AMY-201 (Amyndas), and Mirococept (MRC); drugs targeting FB include Bikaciomab (Novelmed); drugs targeting FD 
include Lampalizumab (Genentech), ACH-4471 (Achillion), and “Compound 6”(Novartis); drugs targeting C5 include Eculizumab (Soliris, Alexion), 
ALXN1210 (Alexion), ALXN5500 (Alexion), LFG316 (Novartis), Coversin (Akari), RA101495 (Ra Pharma), ALN-CC5 (Alnylam), RA101348 (RaPharma), 
ARC 1905 (Zimura; Ophthotech), and the affibody SOBI002 (Swedish, Orphan Biovitrum) targets C5 (programme recently terminated); drugs 
targeting C5a include IFX-1 (InflaRx), ALXN-1007 (Alexion), NOX-D21 (Noxxon Pharma); drugs targeting C5aR include CCX168 (Chemocentryx); C6 
target drug includes Regenemab (Regenesance); CR2–FH target drug includes TT30 (ALXN 1102; Alexion)
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cancerous, autoimmune, or age-related diseases, as well 
as for preventing transplant rejection.

Four C1-INH drugs have been approved [107]: Cin-
ryze, Berinert, Ruconest, and Cetor. C1-INH inhibits 
the kinin B1 receptor, reduces the release of chemotac-
tic microvesicles from damaged donor tissues, and effec-
tively prevents late antibody-mediated rejection. C1-INH 
has a longstanding history of treating hereditary angi-
oedema (HAE) with high safety and effectiveness [108]. 
While data on its use in organ transplantation are lim-
ited, experimental evidence suggests potential benefits 
in alleviating acute antibody-mediated rejection (ABMR) 
observed in baboons during transplantation [109]. A case 
report on Cinryze’s use in treating acute ABMR post-
kidney transplantation indicates promising outcomes 
[110]. Berinert, according to data from a phase 1/2 study 
involving 20 patients, may enhance allograft function in 
kidney recipients with unresponsive acute ABMR [111]. 
However, there is still limited research on Ruconest and 
Cetor in organ transplantation.

Inhibiting the complement system at the C3 level effec-
tively prevents unregulated activation, safeguarding host 
cells from damage. Cobra venom factor (CVF), an analog 
of complement component C3, exhibits specific anti-
complement C3 biological activity. CVF induces lysis of 
C3 and C5, depleting complement C3 (and C5), inhibit-
ing humoral immunity, and has found widespread use in 
xenotransplantation due to its long-term complement 
removal effects [112, 113]. Cp40, an analog of compsta-
tin, is a potent inhibitor of complement C3. It effectively 
prevents C3 activation and mitigates complement-medi-
ated injury triggered by endothelial antibody binding and 
extracorporeal circulation [114]. Cp40 demonstrates the 
ability to inhibit complement activation, promote anti-
inflammatory and anticoagulant effects in septic animals 
[115]. Notably, Cp40 can prevent the adhesion of leuko-
cytes, specifically neutrophils, to porcine endothelium 
[116]. Considering these findings, Cp40 stands out as a 
promising adjunct for preclinical and future clinical car-
diac xenotransplantation [117].

Several interventions are currently being explored to 
prevent xenograft injury and improve its survival rate. 
Eculizumab, a recombinant antibody targeting comple-
ment C5, holds the potential for reducing antibody-
mediated rejection [118]. As the first anti-complement 
drug, eculizumab offers a novel therapeutic approach for 
various human diseases, reshaping treatment strategies 
for conditions like PNH and significantly impacting their 
clinical outcomes [119, 120].

Identifying suitable complement inhibitors and defin-
ing therapeutic strategies is crucial for future studies. 
Genetically engineering pigs with appropriate human 
complement modulators emerges as a promising strategy 

in xenotransplantation [121]. Figure  4 outlines develop-
ment programs focusing on inhibitors against various 
complement targets, with some undergoing clinical stud-
ies in both healthy individuals and patients [122–125].

Conclusions and perspective
The global shortage of organs for transplantation has led 
to the investigation of xenotransplantation as a poten-
tial solution. This method, which involves transplanting 
organs from genetically modified pigs into humans, offers 
hope in alleviating the scarcity of human organ donors. 
Research indicates that graft failure often stems from the 
activation of the complement system, affecting critical 
aspects of xenografts, including galactosidase binding, 
antibody interactions, and complex responses involving 
coagulation, inflammation, and adaptive immune reac-
tions during transplantation.

The recent breakthroughs in gene-edited porcine 
heart transplantation represent significant progress and 
offer valuable insights for refining this approach [73]. 
However, the presence of pig viruses in gene-edited pig 
xenotransplantation cannot be overlooked [126]. Despite 
this, these successes not only shed light on the long-term 
viability of cardiac xenotransplants but also lay a foun-
dation for transplanting other organs into humans. The 
lessons learned from porcine heart transplantation serve 
as a crucial reference for optimizing xenotransplanta-
tion, which involves strategically using genetically modi-
fied organs to evade the human immune response. The 
implementation of advanced gene-editing techniques, 
including CRISPR/Cas9, TALEN, and SCNT, in modify-
ing potential pig donors has led to substantial advance-
ments in xenotransplantation. Genetically engineered 
pig organs, combined with novel immunosuppres-
sive therapies, have extended the survival rates in NHP 
xenotransplants.

The ongoing development of complement-related clini-
cal drug candidates provides a diverse array of options 
for selective inhibition, targeting, and drug delivery, con-
tributing to the progress of xenotransplantation. Despite 
facing immunobiological challenges, the increasing vari-
ety of genetically modified pigs and the expansion of 
immunosuppressant and anti-inflammatory drugs offer 
optimism. Clinical trials for pig kidney, heart, liver, lung, 
pancreatic islet, and corneal transplantation are antici-
pated, bringing animal organ transplantation into reality 
for human recipients shortly.
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