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Abstract
Background Retinal detachment (RD) is a vision-threatening disorder of significant severity. Individuals with high 
myopia (HM) face a 2 to 6 times higher risk of developing RD compared to non-myopes. The timely identification of 
high myopia-related retinal detachment (HMRD) is crucial for effective treatment and prevention of additional vision 
impairment. Consequently, our objective was to streamline and validate a machine-learning model based on clinical 
laboratory omics (clinlabomics) for the early detection of RD in HM patients.

Methods We extracted clinlabomics data from the electronic health records for 24,440 HM and 5607 HMRD between 
2015 and 2022. Lasso regression analysis assessed fifty-nine variables, excluding collinear variables (variance inflation 
factor > 10). Four models based on random forest, gradient boosting machine (GBM), generalized linear model, and 
Deep Learning Model were trained for HMRD diagnosis and employed for internal validation. An external test of the 
models was done. Three random data sets were further processed to validate the performance of the diagnostic 
model. The primary outcomes were the area under the receiver operating characteristic curve (AUC) and the area 
under the precision-recall curve (AUCPR) to diagnose HMRD.

Results Nine variables were selected by all models. Given the AUC and AUCPR values across the different sets, the 
GBM model was chosen as the final diagnostic model. The GBM model had an AUC of 0.8550 (95%CI = 0.8322–0.8967) 
and an AUCPR of 0.5584 (95%CI = 0.5250–0.5879) in the training set. The AUC and AUCPR in the internal validation 
were 0.8405 (95%CI = 0.8060–0.8966) and 0.5355 (95%CI = 0.4988–0.5732). During the external test evaluation, it 
reached an AUC of 0.7579 (95%CI = 0.7340–0.7840) and an AUCPR of 0.5587 (95%CI = 0.5345–0.5880). A similar 
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Introduction
Retinal detachment (RD) is a severe vision-threatening 
disorder that separates the neurosensory retina from the 
underlying retinal pigment epithelium [1]. The annual 
incidence of RD ranged from 6.9 [2] to 22.0 [3] cases per 
100 000 persons, with an increasing average yearly inci-
dence rate [4]. Numerous risk factors have been linked to 
RD, encompassing the process of aging, myopia, severe 
ocular trauma, prior ocular surgeries such as cataract 
extraction, and ocular conditions such as lattice degen-
eration [1]. By 2050, it is projected that 50% of people 
worldwide will have myopia, and vital epidemiologic data 
link myopia with RD [5]. Each additional diopter (D) of 
myopia is associated with a 30% increase in the risk of 
RD [6, 7], high myopia (HM) individuals are 2 to 6 times 
more likely to get RD than non-myopes people [8]. Early 
RD identification is crucial to slow down or stop the 
growth of this chronic, blind-threatening condition.

Up to now, RD predicting diagnosis in HM eyes relies 
on professional ophthalmologists and ophthalmic equip-
ment. Risk prediction or diagnostic prediction is crucial 
to assess eligibility for surgery. In addition, this informa-
tion can assist patients and ophthalmologists in collab-
orative decision-making processes that direct therapy. 
Mixing medicine with machine learning algorithms has 
developed into a potent instrument for changing health 
care, including the nature of illness screening in clini-
cal diagnosis, which was also proved in ophthalmology. 
Several fundus image-based models for RD detection 
have been developed [9–12], all based on a deep learning 
algorithm and using the fundus image. Even though these 
fundus image-based models performed better, their reli-
ance on specialized eye examination tools. Notably, indi-
viduals do not often see an ophthalmologist until their 
symptoms worsen or their vision suddenly deteriorates 
in China. Consequently, using only fundus image-based 
models makes detecting and diagnosing high myopia 
with retinal detachment (HMRD) early on difficult. Thus, 
there is still a clinical need to create a quick, accurate, 
and practical screening method to find HMRD.

Clinical laboratory medicine and machine learning 
algorithms have been combined to create a new con-
cept of clinical laboratory omics (Clinlabomics), which 
uses high-throughput methods to extract significant 
amounts of feature data from blood, bodily fluids, secre-
tions, excreta, and cast clinical laboratory test data [13]. 

Clinlabomics-based deep-learning algorithms have been 
successfully applied to various diseases in recent years 
[14–16]. For example, Schneider et al. [15] validated a 
prediction model produced by a machine-learning algo-
rithm that used complete blood cell count to identify 
those who were more likely to develop colorectal cancer. 
However, few studies have developed predicting diag-
nosis algorithms based on Clinlabomics to identify eye 
diseases.

The pathophysiology of RD is thought to involve sev-
eral pathogenic processes, including inflammation [17], 
blood circulation disorders [18], and metabolic distur-
bances [19]. Routine blood indices, biochemical indi-
ces, and coagulation indices can reflect a wide range of 
physiological and pathological states in the body [20], 
providing information on aspects such as inflammation, 
blood circulation, metabolic status, and tissue injury. 
Research indicates that blood markers of inflammation 
[21], glucose levels [22], and lipid levels [23] are associ-
ated with an increased risk of ocular diseases, including 
HM, and RD. Our previous study developed a routine 
blood parameters-based model for serial monitoring 
and predicting the occurrence of RD in HM [24]. While 
innovative at the time, this model was constrained by its 
dependence on a relatively narrow set of blood indices 
(n = 22), exhibiting moderate performance with an area 
under the curve (AUC) of approximately 0.77–0.81. Crit-
ically, it lacked validation through external testing.

Thus, the current study utilized Clinlabomics data 
(routine blood indices, biochemical indices, and coagula-
tion indices) from two centers, combined with machine 
learning methods, to develop a clinically useful screening 
model for RD in HM individuals. This was followed by 
both internal and external validation of the model.

Materials and methods
Study design and population
In this retrospective two-center study, we developed 
and validated four models (Random Forest (RF), Gradi-
ent Boosting Machine [GBM], Generalized Linear Model 
[GLM], and Deep Learning Model) for screening RD in 
patients with HM using demographic data and clinical 
laboratory omics (Clinlabomics) data from two hospi-
tals. This study was conducted following the principles 
of “Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 

discriminative capacity was observed in the three random data sets. The GBM model was well-calibrated across all the 
sets. The GBM-RD model was implemented into a web application that provides risk prediction for HM individuals.

Conclusion GBM algorithms based on nine features successfully predicted the diagnosis of RD in patients with HM, 
which will help ophthalmologists to establish a preliminary diagnosis and to improve diagnostic accuracy in the clinic.
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[25] ”. This study was approved by the Ethics Committee 
of Eye and ENT Hospital of Fudan University (EENT-
2,015,011) and was conducted under the Declaration of 
Helsinki. All participants provided written informed con-
sent prior to their participation. All patients underwent a 
comprehensive ophthalmologic examination as described 
previously [26–28] and detailed in the supplemen-
tary material. The inclusion and exclusion criteria were 
described previously [24] and detailed in the supplemen-
tary material.

A total of 23,778 patients with HM and 5432 patients 
with HMRD were recruited from the Eye and ENT Hos-
pital of Fudan University, Shanghai, China, from June 
2015 to December 2022. Following the inclusion and 
exclusion criteria as described, 360 patients (HM = 205, 
HMRD = 155) and 805 patients (HM = 620, HMRD = 185) 
were excluded, respectively. Finally, a total of 22,953 
patients with HM and 5092 patients with HMRD were 
included.

For the external test cohort (n = 2179, from January 
2017 to December 2022), patients diagnosed with HM 
and HMRD were recruited from Shanghai Xuhui Cen-
tral Hospital, Shanghai, China. After applying the inclu-
sion and exclusion criteria as previously described, 1487 
patients with HM and 515 patients with HMRD were 
included, while 56 patients (HM = 41, HMRD = 15) and 
121 patients (HM = 96, HMRD = 25) were excluded.

In total, 24,440 HM and 5607 HMRD visits in the Eye 
and ENT Hospital of Fudan University and Xuhui Cen-
tral hospital between 2015 and 2022 were included.

Data sources
For this multi-institutional cohort study, data were 
retrieved from the electronic medical record. The elec-
tronic medical record included demographic data and 
Clinlabomics data. The principal investigator at each 
institution collects fifty-nine variables from each patient. 
The Clinlabomics dataset consists of blood cell analy-
sis [twenty-four variables: neutrophil, neutrophil%, 
red blood count (RBC), thrombocytocrit (PCT), plate-
let count (PLT), platelet distribution width (PDW), 
hemoglobin (HG), eosinophil, eosinophil%, basophil, 
basophil%, mean platelet volume (MPV), lymphocyte, 
lymphocyte%, hematokrit (HCT), monocyte, mono-
cyte%, platelet large cell ratio (PLCR), white blood cell 
count (WBC), red blood cell distribution width-standard 
deviation (RBCSD), red blood cell distribution width- 
coefficient of variation (RBCCV), mean corpuscular 
volume (MCV), mean corpuscular hemoglobin concen-
tration (MCHC), and mean corpuscular hemoglobin 
(MCH)], biochemistry analysis [twenty-six variables: 
total protein (TP), prealbumin (PAB), total bile acid 
(TBA), total bilirubin (TBIL), total cholesterol (TC), 
albumin (ALB), AG, glucose (GLU), lactic dehydrogenase 

(LDH), globulin (GLB), uric acid (UA), blood urea nitro-
gen (BUN), direct bilirubin (DBIL), alkaline phosphatase 
(ALP), creatine kinase (CK), creatinine (CREA), glutamic 
oxalacetic transaminase (AST), glutamic-pyruvic trans-
aminase (ALT), gamma-glutamyl transpeptidase (GGT), 
triglyceride (TG), potassium (K), SODIUM, chloridion 
(CL), phosphorus (P), calcium (Ca), glycosylated hemo-
globin (HbA1c)], and blood coagulation analysis [Seven 
variables: fibrinogen (FIB), prothrombin time (PT), 
thrombin time (TT), activated partial thromboplastin 
time (APTT), international normalized ratio (INR), PT%, 
and d-dimer (DD)]. Laboratory tests were performed at 
the time of the RD occurrence.

Blood cell analysis
In the morning, after 8 h of fasting, 2 mL of blood sam-
ples were drawn from the participants’ antecubital fossae 
(anterior elbow veins) through standard venipuncture. 
The samples were collected in ethylenediaminetetraace-
tic acid tubes and tested within 0.5 h in the Department 
of Clinical Laboratory of Eye and ENT Hospital of Fudan 
University (Sysmex series automated blood counting 
system, Kobe, Japan) and the Department of Clinical 
Laboratory of Shanghai Xuhui Central Hospital (Min-
dray series automated blood counting system, Shenzhen, 
China).

Biochemistry analysis
After an 8-hour fast, blood samples were collected via 
standard venipuncture from the antecubital fossae (ante-
rior elbow veins). All sample tubes were centrifuged 
at 3,000  rpm for 10  min, and all serum samples were 
tested within 3 h. Laboratory tests were conducted at the 
Department of Clinical Laboratory of Eye and ENT Hos-
pital of Fudan University (Cobs 702, Roche Diagnostics 
GmbH, Mannheim, Germany) and the Department of 
Clinical Laboratory of Shanghai Xuhui Central Hospital 
(BS-2000M2, Mindray automatic biochemical analyzer, 
Shenzhen, China).

Blood coagulation analysis
In the morning, after 8 h of fasting, 3 ml of blood sam-
ples were drawn from the participants’ antecubital fossae 
(anterior elbow veins) through standard venipuncture. 
The samples were collected in sodium citrate anticoagu-
lation tubes and tested within 3 h in the Department of 
Clinical Laboratory of Eye and ENT Hospital of Fudan 
University (STAGO STA-R Evolution, France) and the 
Department of Clinical Laboratory of Shanghai Xuhui 
Central Hospital (EXC810, Mindray automatic coagula-
tion analyzer, Shenzhen, China).
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Model development and validate
The development of the model consisted of four main 
stages (Fig. 1): (1) variables acquisition; (2) feature selec-
tion; (3) model selection; and (4) model validation.

Variables acquisition
We selected laboratory tests measured in more than 
90% of the patients as diagnostic variables. All demo-
graphic and Clinlabomics variables available have been 
used in the model and any variable selection method 
was used during the training process. Age, neutrophil, 
neutrophil%, RBC, PCT, PLT, PDW, HG, eosinophil, 
eosinophil%, basophil, basophil%, MPV, lymphocyte, 
lymphocyte%, HCT, monocyte, monocyte%, PLCR, 
WBC, RBCSD, RBCCV, MCV, MCHC, MCH, TP, 
PAB, TBA, TBIL, TC, ALB, AG, GLU, LDH, GLB, UA, 
BUN, DBIL, ALP, CK, CREA, AST, ALT, GGT, TG, K, 
SODIUM, CL, P, Ca, HbA1c, FIB, PT, TT, APTT, INR, 
PT%, and DD were considered as continuous variables. 
Gender was categorized as dichotomous variables. Miss-
ing values were imputed using mean-value.

Feature selection
The candidate variable selection for the machine learning 
model was guided by our aim to simplify the model and 
was based on the training cohort.

First, the collinearity test was checked by running a 
collinearity diagnostic, which was built using the glm-
net package in R software (https://www.r-project.org). 
Variance inflation factor (VIF) analysis was used to ana-
lyze the collinearity of fifty-nine variables, and the most 
colinear factor was deleted until no collinearity existed. 
Fifteen variables (AG, eosinophil, basophil HCT, HG, 
lymphocyte%, MCH, monocyte, neutrophil%, PLCR, 
PLT, PT, RBCCV, TP, WBC) were excluded owing to col-
linearity existed (VIF > 10). Forty-five variables were ini-
tially included to perform further analysis.

Second, five different models (LASSO regression, 
RF, GBM, GLM, and Deep learning) were established 
to select the variables. The top 20 essential variables 
selected by the five models are shown in Fig.  2A-E. 
Finally, we chose the intersection set of these variables. 
Nine variables (Fig. 2F) were finally selected (age, APTT, 
BASP, gender, GLB, GLU, MPV, PCT, and UA).

Model selection
The EENT dataset was established based on 23,778 
patients with HM and 5432 patients with HMRD, ran-
domly split into a training set (75%) and an internal vali-
dation set (25%). The diagnostic model of HMRD was 
established with the training dataset.

Fig. 1 Study flow-chart: This figure displays the participant flow-chart. GLU: glucose; PCT: thrombocytocrit; MPV: mean platelet volume; UA: uric acid; 
APTT: activated partial thromboplastin time; GLB: globulin; BASP: percentage of basophil. GBM: gradient boosting machine; GLM: generalized linear 
model

 

https://www.r-project.org
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We conducted two sets of experiments. In the first 
experiment, all fifty-nine variables were pooled into four 
models (RF, GBM, GLM, and Deep learning) to develop a 
preliminary diagnostic model. In the second experiment, 
the selected nine variables were pooled into four mod-
els (RF classification, GBM, GLM, and deep learning) to 
develop a diagnostic model. Discrimination of the mod-
els was assessed using the AUC and the area under the 
receiver operating characteristic precision-recall curve 

(AUCPR). The most valuable model was obtained based 
on sensitivity, specificity, accuracy, AUC, AUCPR, posi-
tive predict value (PPV), negative predict value (NPV), 
and balanced accuracy of diagnostic indices.

Model validation
We conducted three sets (internal validation set, external 
test set, and random data set) of experiments. First, an 
internal validation dataset was established and applied to 

Fig. 2 The top 20 significant variables chosen by five machine learning models (A-E) and the intersection set of these variables (F). TBA: total bile acid; 
TBIL: total bilirubin; TC: total cholesterol; N: neutrophil number; ALB: albumin; RBC: red blood count; HBA1C: glycosylated hemoglobin; PCT: thrombo-
cytocrit; PDW: platelet distribution width; GLU: glucose; FIB: fibrinogen; EOSP: percentage of eosinophils; GLB: globulin; PAB: prealbumin; MPV: mean 
platelet volume; TT: thrombin time; UA: uric acid; BUN: blood urea nitrogen; P: phosphorus; LY: lymphocyte count; ALP: alkaline phosphatase; K: kalium; 
CK: creatine kinase; CREA: creatinine; AST: glutamic oxalacetic transaminase; ALT: glutamic-pyruvic transaminase; GGT: gamma-glutamyl transpeptidase; 
TG: triglyceride; CA: calcium; MONP: percentage of monocyte; APTT: activated partial thromboplastin time; INR: international normalized ratio; RBCSD: 
red blood cell distribution width-standard deviation; PTP: percentage of prothrombin time; MCV: mean corpuscular volume; MCHC: mean corpuscular 
hemoglobin concentration; DD: d-dimer; BASP: percentage of basophil; CL: chloridion; DBIL: direct bilirubin
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validate the diagnostic efficacy of four models (RF, GBM, 
GLM, and deep learning) to diagnose HMRD. To evalu-
ate the diagnostic potency, the sensitivity, specificity, 
accuracy, AUC, AUCPR, PPV, NPV, and balanced accu-
racy were computed with the h2o package in R software 
(https://www.r-project.org).

In total, 1487 patients with HM and 515 patients with 
HMRD admitted to the Shanghai Xuhui Central Hospi-
tal, Shanghai, were included as the external validation 
set. We used the selected diagnostic model to diagnose 
the probability of RD in HM patients. To evaluate the 
diagnostic potency, the sensitivity, specificity, accuracy, 
AUC, AUCPR, PPV, NPV, and balanced accuracy were 
computed with the h2o package in R software (https://
www.r-project.org).

The random dataset was applied for model testing to 
address the class-imbalance problem, which could lead to 
a severely imbalanced degree of performance. In the ran-
dom data set, two groups (RD, HMRD) of roughly equal 
size were randomly selected from RD and HM patients, 
respectively, and this procedure was repeated three 
times. We used the selected diagnostic model to diagnose 
the probability of RD in HM patients. To evaluate the 
diagnostic potency, the sensitivity, specificity, accuracy, 
AUC, AUCPR, PPV, NPV, and balanced accuracy were 
computed with the h2o package in R software (https://
www.r-project.org). The calibration curve was also used 
to evaluate the performance of the final model.

Sample size
To determine the minimum total sample size, an open-
source calculator utilizing the methods described by 
Obuchowski et al. [29] and Li, et al. [30] was employed. 
The input parameters were specificity = 0.8 (allowable 
error = 0.05), sensitivity = 0.8 (allowable error = 0.05), and 
α = 0.025 (2-tailed). According to this calculation, the 
minimum sample size required for the new model devel-
opment was 247 per group, while the total sample size 
in all our cohorts was at least two times higher than this 
minimum.

Statistical analysis
We conducted descriptive statistical analyses for all 
variables, and normality was examined by the Shapiro–
Wilk test. The difference between cases and controls 
was analyzed using multiple tests, such as an indepen-
dent Student’s t-test for normally distributed continu-
ous variables, the Kruskal-Wallis test for non-normally 
distributed continuous variables, and the Chi-squared 
test for categorical variables when necessary. Continu-
ous variables were expressed as mean ± SD, and categori-
cal variables were summarized as count and percentage. 
Pearson analysis was performed to analysis the relation-
ship among age and other factors.

The Area Under the Precision-Recall Curve (AUCPR) 
and the Area Under the Receiver Operating Charac-
teristics (AUC) curves were used to evaluate the dis-
criminatory performances. The low prevalence of RD in 
individuals with HM indicates that the AUCPR is more 
resistant to class imbalances [31]. Calibration plots were 
used to visually evaluate the model calibration. A P-value 
of less than 0.05 was considered significant for all results.

All statistical analyses were performed using R software 
(http://www.R-project.org) and Empower Stats software 
(www.empowerstats.com), with parameters set to their 
default values.

Results
Cohort description
This two-center development and validation study used 
retrospective data from two hospitals where patients 
with RD or HMRD. Detailed information about the 
diagnostic variables of training, internal validation, and 
external testing datasets is presented in Table S1-S3. In 
this study, the average age of HM diagnosis is 24 years 
(range, 17–40). Most characteristics significantly differed 
among the training, internal validation, and external test-
ing datasets. Table S4-S7 shows the diagnostic variables 
difference between HMRD and HM groups in training, 
internal validation, and external testing datasets. Most 
characteristics were significantly different between the 
HMRD and HM patients. The HMRD patients were more 
likely to be older (P < 0.05) than the HM patients. The 
Clinlabomics indexes were significantly different between 
the HMRD patients and HM patients. For example, the 
GLU, GLB, MPV, and UA level was higher in the HMRD 
patients than the HM patients.

Development of the diagnostic model based on all features
Before creating the model, collinear variables were elimi-
nated using the deviance residuals and the Lasso regres-
sion analysis. To begin with, 45 factors were added 
for additional study. Then, four models were estab-
lished based on RF, GBM, GLM, and deep learning 
classification.

Based on the AUC and AUCPR, the RF and GBM mod-
els outperformed the GLM and deep learning models. 
A detailed description of the four models’ performance 
can be found in Table 1; Fig. 3. The RF model reached an 
AUC of 0.9986 and an AUCPR of 0.9943 during the train-
ing phase, visualized in Fig. 3A and E. The GBM model 
reached an AUC of 0.9633 and an AUCPR of 0.8769 dur-
ing the training phase, visualized in Fig. 3B and F.

Internal-external validation based on all features
We validated the performance on the internal valida-
tion set and external test datasets from Shanghai Xuhui 
Central Hospital (Detailed in Table 1). Based on the AUC 

https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
http://www.R-project.org
http://www.empowerstats.com
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and AUCPR, the RF and GBM models outperformed 
the GLM and Deep learning models. Figure  3A shows 
that the RF model achieves an AUC of 0.8448 within 
the internal validation set and 0.7511 in the external 
test set. Figure 3E shows that the RF model achieves an 
AUCPR of 0.5198 within the internal validation set and 
an AUCPR of 0.5493 in the external test set. Figure  3B 
shows that the GBM model achieves an AUC of 0.8694 
within the internal validation set and retains an AUC of 
0.7843 in the external test set. Figure 3F shows that the 
GBM model achieves an AUCPR of 0.6457 within the 
internal validation set and retains an AUCPR of 0.5907 in 
the external test set. Overall, the GBM model showed the 

best discrimination capacity in the internal validation set 
and external test set.

Features and feature importance
Based on the training database, LASSO regression, RF, 
GBM, GLM, and deep learning were established to select 
the variables. Figure  2 shows the twenty most essen-
tial features in the RF (Fig.  2A), GBM (Fig.  2B), GLM 
(Fig. 2C), deep learning (Fig. 2D), and LASSO regression 
(Fig. 2E) model in descending order. Next, we chose the 
intersection set of these variables. Nine variables (Fig. 2F) 
were finally selected (age, APTT, BASP, gender, GLB, 
GLU, MPV, PCT, and UA). There was no relationship 

Table 1 Comparison of model performance, including all the variables on the train, internal validation, and external test set
Model Sensitivity Specificity Accuracy AUC (95% CI) AUCPR (95% CI) PPV NPV Balanced accuracy
Train
 RF 0.9823 0.9837 0.9835 0.9986 (0.9464-1.0) 0.9943 (0.9655-1.0) 0.9296 0.9961 0.9830
 GBM 0.8562 0.9217 0.9099 0.9633 (0.9321-1.0) 0.8769 (0.8433–0.9125) 0.7051 0.9670 0.8889
 GLM 0.6956 0.8026 0.7834 0.8302 (0.7825–0.9021) 0.5095 (0.4523–0.5667) 0.4353 0.9234 0.7491
 DL 0.7007 0.8429 0.8174 0.8607 (0.8220–0.9005) 0.5706 (0.5245–0.6211) 0.4938 0.9279 0.7718
Validate
 RF 0.6409 0.8667 0.8243 0.8448 (0.7882–0.8990) 0.5198 (0.4878–0.5469) 0.5265 0.9125 0.7538
 GBM 0.6469 0.8855 0.8407 0.8694 (0.8210–0.9106) 0.6457 (0.6122–0.6890) 0.5665 0.9156 0.7662
 GLM 0.6925 0.8084 0.7866 0.8287 (0.7235–0.9207) 0.5227 (0.4655–0.5821) 0.4553 0.9191 0.7504
 DL 0.6750 0.8432 0.8116 0.8432 (0.7109–0.8907) 0.5658 (0.5245–0.5929) 0.4989 0.9181 0.7591
Test
 RF 0.6291 0.7512 0.7198 0.7511 (0.7122–0.7957) 0.5493 (0.5126–0.5778) 0.4669 0.8540 0.6902
 GBM 0.4291 0.9159 0.7907 0.7843 (0.7459–0.8202) 0.5907 (0.5691–0.6233) 0.6387 0.8225 0.6725
 GLM 0.5612 0.8191 0.7527 0.7645 (0.7108–0.8056) 0.5351 (0.4789–0.5887) 0.5179 0.8435 0.6901
 DL 0.8117 0.5958 0.6513 0.7696 (0.7245–0.7988) 0.5397 (0.4988–0.5887) 0.4102 0.9013 0.7037

Fig. 3 The area under the receiver operating characteristic curve (AUC) of the random forest (A), GBM (B), GLM (C), and deep learning (D) models based 
on all the variables in the training set, internal validation set and the external test set. The area under the precision-recall curve (AUCPR) of the random 
forest (E), GBM (F), GLM (G), and deep learning (H) models based on all the variables in the training set, internal validation set and the external test set

 



Page 8 of 14Li et al. Journal of Translational Medicine          (2024) 22:405 

among age, APTT, BASP, gender, GLB, GLU, MPV, PCT, 
and UA (P > 0.05), except UA and gender (Figure S1).

Development of the diagnostic model based on nine 
features
Based on the AUC and AUCPR, the RF and GBM mod-
els outperformed the GLM and deep learning models. 
A detailed description of the four models’ performance 
can be found in Table  2; Fig.  4. The RF model reached 
an AUC of 0.9985 and an AUCPR of 0.9936 during the 
training set, visualized in Fig. 4A and E. The GBM model 

achieved an AUC of 0.8550 and an AUCPR of 0.5584 dur-
ing the training set, visualized in Fig. 4B and F.

Internal-external validation based on nine features
In the internal validation set (Table  2), the AUC for 
RF (Fig.  4A), GBM (Fig.  4B), GLM (Fig.  4C), and deep 
learning (Fig.  4D) models was 0.8295, 0.8405, 0.8021, 
and 0.8105, respectively. The AUCPR for RF (Fig.  4E), 
GBM (Fig.  4F), GLM (Fig.  4G), and deep learning 
(Fig. 4H) models was 0.5077, 0.5355, 0.4161, and 0.4636, 
respectively.

Table 2 Comparison of model performance, including the selected variables on the train, internal validation, and external test set
Model Sensitivity Specificity Accuracy AUC (95% CI) AUCPR (95% CI) PPV NPV Balanced accuracy
Train
 RF 0.9902 0.9715 0.9749 0.9985 (0.9755-1.0) 0.9936 (0.9631-1.0) 0.8837 0.9978 0.9808
 GBM 0.7425 0.8045 0.7934 0.8550 (0.8322–0.8967) 0.5584 (0.5250–0.5879) 0.4538 0.9346 0.7735
 GLM 0.7706 0.7281 0.7358 0.8091 (0.7821–0.8394) 0.4148 (0.3567–0.4688) 0.3827 0.9355 0.7494
 DL 0.7298 0.7603 0.7548 0.8155 (0.7655–0.8730) 0.4518 (0.4109–0.4890) 0.3997 0.9279 0.7451
Validate
 RF 0.6515 0.8435 0.8074 0.8295 (0.7682–0.8867) 0.5077 (0.4221–0.5781) 0.4906 0.9128 0.7475
 GBM 0.7206 0.8030 0.7875 0.8405 (0.8060–0.8966) 0.5355 (0.4988–0.5732) 0.4582 0.9255 0.7618
 GLM 0.7737 0.7359 0.7430 0.8021 (0.7544–0.8583) 0.4161 (0.3659–0.4765) 0.4039 0.9336 0.7548
 DL 0.7221 0.7645 0.7565 0.8105 (0.7689–0.9763) 0.4636 (0.4356–0.4988) 0.4149 0.9224 0.7433
Test
 RF 0.5340 0.7989 0.7308 0.7346 (0.6875–0.7860) 0.5046 (0.4765–0.5467) 0.4791 0.8319 0.6665
 GBM 0.2699 0.9496 0.7747 0.7579 (0.7340–0.7840) 0.5587 (0.5345–0.5880) 0.6495 0.7897 0.6097
 GLM 0.6699 0.6987 0.6913 0.7316 (0.6937–0.7762) 0.4530 (0.4125–0.4990) 0.4351 0.8594 0.6843
 DL 0.5379 0.7821 0.7193 0.7202 (0.6872–0.7688) 0.4844 (0.4221–0.5432) 0.4609 0.8301 0.6600

Fig. 4 The area under the receiver operating characteristic curve (AUC) of the random forest (A), GBM (B), GLM (C), and deep learning (D) models based 
on the nine selected variables in the training set, internal validation set and the external test set. The area under the precision-recall curve (AUCPR) of the 
random forest (E), GBM (F), GLM (G), and deep learning (H) models based on the nine selected variables in the training set, internal validation set and the 
external test set
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In the external test set (Table  2), the AUC for RF 
(Fig.  4A), GBM (Fig.  4B), GLM (Fig.  4C), and deep 
learning (Fig.  4D) models was 0.7346, 0.7579, 0.7316, 
and 0.7202, respectively. The AUCPR for RF (Fig.  4E), 
GBM (Fig.  4F), GLM (Fig.  4G), and Deep Learning 
(Fig. 4H) models was 0.5046, 0.5587, 0.4530, and 0.4844, 
respectively.

Overall, the GBM model showed the best discrimina-
tion capacity in the internal validation set and external 
test set. In addition, similar discriminative capacity was 
observed in the all-features-based GBM and nine-fea-
tures-based GBM models.

Random set evaluation
To avoid an over-fitting to imbalanced data, three ran-
dom data sets were further processed to validate the per-
formance of the diagnostic model. Similar results were 
also observed. Based on the AUC and AUCPR, in the 
train set, the RF model and GBM model outperformed 

the GLM and deep learning model in the random sam-
pling 1 set (table S8, Figure S2), random sampling 2 set 
(table S9, Figure S3), and random sampling 3 set (table 
S9, Figure S4).

Meanwhile, the GBM model showed the best discrimi-
nation capacity in the internal validation set and external 
test set across the random sampling 1 set (table S8, Figure 
S2), random sampling 2 set (table S8, Figure S3), and ran-
dom sampling 3 set (table S10, Figure S4).

Calibration plot analysis
Calibration plot analysis shows that the GBM diagnos-
tic model had good calibration in the train set (Fig. 5A), 
internal validation set (Fig. 5B), external test set (Fig. 5C), 
and random sampling set (Set 1: Fig. 5D; Set 2: Fig. 5E; 
Set 3: Fig. 5F).

Fig. 5 Calibration curve of GBM model. A: GBM model calibration based on all the variables in the training set, internal validation set and the external 
test set. B: GBM model calibration based on the nine selected variables in the training set, internal validation set and the external test set. C: GBM model 
calibration in random sample set 1 based on the nine selected variables in the training set, internal validation set and the external test set. D: GBM model 
calibration in random sample set 2 based on the nine selected variables in the training set, internal validation set and the external test set. E: GBM model 
calibration in random sample set 3 based on the nine selected variables in the training set, internal validation set and the external test set
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The relationship between these nine features and RD
We further conducted Spearman analysis and Logistic 
regression analysis to explore the relationship between 
these nine features and RD. As shown in Table S11, older 
age, GLB, GLU, MPV, and UA were positively signifi-
cantly associated with RD (P < 0.001). Conversely, male, 
PCT, BASP, and APTT were negatively significantly 
associated with RD (P < 0.001). Furthermore, Logistic 
regression analysis also showed that older age, increased 
levels of GLB, GLU, MPV, and UA were risk factors for 
RD; male gender and decreased levels of PCT, BASP, and 
APTT were also risk factors for RD (Table S12).

Web server of the model
To facilitate the application of the model, we imple-
mented the GBM-RD model into a web application 
(Fig. 6A) that provides risk prediction for HM individu-
als. Visitors might predict HMRD by entering the order 
of nine features into the text fields on the web page. The 
estimated risks of RD will be displayed at the bottom of 
the panel.

An example of a 44-year-old male participant with PCT 
of 0.18, GLU of 8.01, BASP of 0.21, GLB of 46, MPV of 
10.02, UA of 0.26, and APTT of 33.50, who was enrolled 
in the Xuhui Central hospital in 2022 is demonstrated on 
this webpage (Fig. 6B). The calculated risk probability of 
HMRD was 0.727. An example of a 36-year-old female 
participant with PCT of 0.24, GLU of 5.35, BASP of 0.41, 
GLB of 26.96, MPV of 10.15, UA of 0.31, and APTT of 
33.37, who was enrolled in the EENT hospital in 2023 is 
demonstrated on this webpage (Fig. 6C). The calculated 
risk probability of HMRD was 0.045. The web application 
was made accessible online athttp://www.empowerstats.
net/pmodel/?m=31141_GBM9

Discussion
HM patients seldom visit an ophthalmologist unless their 
symptoms increase or their eyesight abruptly deteriorates 
in China. As a result, it is challenging to identify and 
diagnose HMRD early when utilizing models based on 
ocular exams. So, there is still a clinical need to develop 
a rapid, easy, precise, and valuable screening technique 
to identify HMRD. To the best of our knowledge, this 
study is the first one that uses Clinlabomics to predict the 
diagnosis of RD in the HM population and has external 
validation.

We created a machine learning diagnostic model for RD 
in the HM individuals that performed well during inter-
nal and external validations. The GBM model reached an 
AUC of 0.8550 and an AUCPR of 0.5584 in the training 
set and up to 0.8405 (AUC) and 0.5355 (AUCPR) in inter-
nal validations. Interestingly, the GBM model reached an 
AUC of 0.7579 and an AUCPR of 0.5587 in the external 
test evaluation. Furthermore, the three random data sets 

showed that the GBM model could retain a robust per-
formance (table s8-s10). Finally, calibration plots analysis 
showed that using the model in practice could provide a 
good agreement between predicted and observed out-
comes. This study expanded our previous work using 
machine learning approaches to improve the diagnostic 
accuracy of HMRD and broaden the applicability of this 
model [24].

Previously, researchers have created several diagnos-
tic models for RD and other eye diseases. Ohsugi and 
colleagues [10] applied a convolutional neural network 
algorithm to detect RD using ultra-wide-field fundus 
images. They achieved a high AUC of 0.988 (95% CI, 
0.981–0.995) but did not include external validation. 
Meanwhile, their reliance on specialized eye examina-
tion tools could not be appropriate for patient screening. 
Recently, Nezu et al. [32] based on 28 immune mediators 
in aqueous humor, successfully predicted the diagnosis of 
RD with an AUC of 0.87 and AUCPR of 0.59. Although it 
showed high discrimination for RD identification, it had 
a minimal sample size (n = 52) and lack a validation set. 
Furthermore, there are limited opportunities to obtain 
aqueous humor from the health screening population. 
Irfahan Kassam et al. [33] reported that polygenic risk 
scores had an AUC of 0.66 (95% CI = 0.63–0.70) for myo-
pic macular degeneration versus no myopia. Compared 
with the models established based on variables obtained 
from elaborate ophthalmic tests, expensive whole 
genome/exome sequencing, or invasive paracentesis of 
the anterior chamber, our model is solely based on the 
easily accessible diagnosis factors which can be collected 
from simple blood tests. Therefore, this diagnostic model 
can be widely applied to medical institutions at different 
levels.

In our diagnostic model, the nine more important 
variables contributing to HMRD diagnose were age, 
gender, APTT, BASP, GLB, GLU, MPV, PCT, and UA. 
In almost all models, age was consistently identified as 
the essential factor associated with RD diagnosis. Previ-
ous observational studies have shown that older age was 
an independent risk factor for the presentation of RD 
[34, 35]. Gender was another contributing variable to 
the model. Previous studies have shown that male gen-
der should be considered an individual risk factor for 
RD [4, 35]. Other contributing factors included modifi-
able factors, such as APTT, BASP, GLB, GLU, MPV, PCT, 
and UA. Arndt C and colleague [22] found that intravit-
real glucose concentration was higher in the RD group. 
Moreover, APTT, BASP, GLB, MPV, PCT, and UA indi-
cate the whole body’s general homeostasis and inflamma-
tory state.

The pathophysiology of RD is thought to involve sev-
eral pathogenic processes, although mounting research 
indicates that inflammation is a crucial factor [21, 36, 37]. 

http://www.empowerstats.net/pmodel/?m=31141_GBM9
http://www.empowerstats.net/pmodel/?m=31141_GBM9
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For example, Lin et al. [38] provide clinical and experi-
mental evidence that inflammation plays a crucial role 
in the development of myopia. Transforming growth 
factor-β and matrix metalloproteinase 2 expression is 
upregulated in myopic eyes, but collagen I expression is 
downregulated [39].

Qin et al. [21] hypothesis that immunological/inflam-
matory markers, namely hs-CRP, C3, and CH50 may play 
an important role in the development of Pathological 
Myopia, and that C3 level may be a predictive risk fac-
tor for myopic choroidal neovascularization formation. 

A 26-year follow-up of patients with juvenile chronic 
arthritis found a higher percentage of these patients had 
myopic refractive errors than age-matched control indi-
viduals, pointing to a link between myopia and juvenile 
chronic arthritis [40]. The study also hypothesized that 
the increased prevalence of myopia was brought on by 
chronic inflammation, which weakened the scleral con-
nective tissue [41]. Thus, we hypothesized that chronic 
systemic inflammation plays a crucial role in the devel-
opment of HM and RD. Consequently, Clinlabomics data 

Fig. 6 The public internet calculator for RD discrimination by nine features. The application web server of GBM model with nine features available at 
http://www.empowerstats.net/pmodel/?m=31141_GBM9 for the RD prediction in patients with HM (A). Users could predict RD by submitting nine 
features into the text boxes. An example of a 44-year-old male participant with PCT of 0.18, GLU of 8.01, BASP of 0.21, GLB of 46, MPV of 10.02, UA of 0.26, 
and APTT of 33.50, who was enrolled in the Xuhui Central hospital in 2022 is demonstrated on this webpage (Fig. 6B). An example of a 36-year-old female 
participant with PCT of 0.24, GLU of 5.35, BASP of 0.41, GLB of 26.96, MPV of 10.15, UA of 0.31, and APTT of 33.37, who was enrolled in the EENT hospital in 
2023 is demonstrated on this webpage (Fig. 6C).

 

http://www.empowerstats.net/pmodel/?m=31141_GBM9
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could be a novel strategy for the early identification of a 
high risk of RD in patients with HM.

Our study has several strengths. First, our top-perform-
ing GBM provides many benefits, including automated 
handling of missing data, more flexibility in hyperpa-
rameter adjustment to account for intricate interac-
tions between predictors and outcomes, and frequently 
improved performance compared to other methods [42]. 
Second, we examined China’s most significant patient 
cohorts, with a total sample size of 30,047 patients. This 
ensures the accuracy of the statistics and reflects actual 
usage in our nation. Third, we applied random resam-
pling techniques to confirm the internal validity of the 
results. Fourth, the Clinlabomics -based GBM model is 
advantageous due to its nine well-performed indexes, 
low cost, and clinical applicability in primary care, mak-
ing it suitable for deciding who should receive detailed 
ophthalmic examinations for RD in patients with HM. 
Ultimately, integrating machine learning technology with 
other innovations, like the Internet of Things (IoT), offers 
a promising avenue to substantially improve the effi-
ciency and reduce the costs associated with diagnosing 
RD. An illustrative example is the early stages of RD, dur-
ing which specific blood markers may exhibit changes. 
This scenario allows for the detection and quantifica-
tion of these markers in the bloodstream. Subsequently, 
the data can be transmitted to medical centers equipped 
with machine learning technology via IoT devices. This 
method enables patients to undergo diagnostic tests for 
RD promptly, affordably, and with minimal effort during 
its early stages. Consequently, individuals with concern-
ing results can seek medical consultation swiftly.

Our study has limitations. First, during the external 
test, we observed a reduction in model performance by 
training our model on the largest (EENT) cohort and 
separately assessing its performance in the Xuhui Cen-
tral hospital cohorts. This reduction might be due to the 
smaller sample size in the external test cohort [43], or it 
might be due to differences in the distribution of input 
variables and differences in the detecting instrument of 
input variables. Second, a class-imbalance data set with a 
limited number of observed occurrences (5607 of 30,047 
patients) may be another study drawback, although the 
random sampling approach was utilized to balance medi-
cal data. Third, our GBM model only takes age, gender, 
and routine blood parameters as input data without 
incorporating ophthalmic or other clinical parameters. 
This is because routine blood parameters are highly fea-
sible and widely accessible, thus allowing for integrated 
analysis of multiple modalities for clinical RD evalua-
tion and diagnosis. In our study, it was observed that the 
HMRD patients exhibited a higher likelihood of being 
older (P < 0.05) compared to the HM patients, suggest-
ing the potential influence of age on other factors. To 

investigate this further, we conducted a LASSO analysis, 
which revealed no significant collinearity between age 
and other variables (variance inflation factor < 10). Addi-
tionally, no significant associations were found between 
age and gender, activated partial thromboplastin time, 
basophil%, globulin, glucose, mean platelet volume, 
thrombocytosis, and uric acid (P > 0.05). These findings 
indicate that age does not impact other factors under 
consideration.

Conclusion
We demonstrated that GBM algorithms based on nine 
features successfully predicted the diagnosis of RD in 
patients with HM, which retained its performance dur-
ing external validation. However, further external valida-
tion is warranted to assess model performance in other 
populations.
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