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Introduction
Colorectal cancer (CRC) ranks third globally in terms 
of both incidence and death [1]. About 15%∼ 25% of 
patients had CRC liver metastasis (CRLM) at the time 
of diagnosis [2], and another 20%∼ 25% had unresect-
able liver metastasis after radical primary resection [3, 
4]. Despite the fact that CRLMs are treated aggressively 
with a combination of surgical resection, chemotherapy, 
biologic therapy such as antibodies targeting growth fac-
tors [5, 6], and immunotherapy for a subgroup patients 
with microsatellite instability (MSI-H) [7], liver metas-
tasis-targeted therapies are still lacking. To date, thera-
peutic strategies targeting a single drug target in tumor 
cells have demonstrated very limited efficacy, and several 
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Abstract
Background Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the 
primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM.

Methods This study developed two liver metastasis-associated prognostic signatures based on differentially 
expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug 
sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in 
vivo experiments were performed to verify the efficacy of these compounds.

Results These two prognostic models exhibited superior performance compared to previously reported ones. 
Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified 
by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver 
metastasis mouse model.

Conclusions This study highlights the significance of developing specialized prognostication approaches and 
investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response 
model provides a new drug discovery strategy for translational medicine in precision oncology.
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randomized trials investigating adjuvant chemotherapy 
have not shown any improvement in overall survival (OS) 
[8–10]. There is a critical need for prognostic biomarkers 
to improve risk stratification and facilitate personalized 
selection of systemic therapies [11].

The advance of high-throughput technology and the 
accessibility of multi-omics datasets have facilitated the 
identification of multiple molecular subtypes and bio-
markers associated for primary colorectal cancer (CRC). 
For example, consensus molecular subtypes (CMS), 
CRC intrinsic subtypes (CIRS) [12] and Immunoscore 
[13] emphasized distinct molecular features and tumor 
microenvironment characteristics to improve prognosis 
prediction and patients stratification [14–16]. Several 
recent studies have developed prognostic nomograms for 
CRLM using clinicopathologic data [17, 18]. However, 
most studies found no correlation between clinical cate-
gorization and treatment response. In light of the limited 
therapy choices for CRLM patients, it is essential to iden-
tify biomarkers for predicting cancer susceptibility and 
to develop new therapeutic targets for individuals with a 
high metastatic risk.

The utilization of extensive biomedical data as a tool 
in drug discovery and development has been adopted 
as an alternative to de novo drug discovery for the iden-
tification of novel therapeutic applications of existing 
drugs [19]. The emergence of extensive high-through-
put screening datasets has greatly advanced research 
in predictive personalized oncology. Various pharma-
cogenomic datasets, including Cancer Cell Line Ency-
clopedia (CCLE) [20], Cancer Therapeutics Response 
Portal (CTRP) [21], Genomics of Drug Sensitivity in 
Cancer (GDSC) [22] and the Profiling Relative Inhibition 
Simultaneously in Mixtures (PRISM) Repurposing data-
bases [23] have assessed nearly 5,000 anticancer and non-
oncology drugs that have been deemed safe for human 
use across nearly 1000 cell lines. These databases have 
facilitated the development of drug response models 
that utilize molecular profiles to precisely predict drug 
response in clinical samples [24, 25]. Additionally, vari-
ous machine learning approaches have been developed 
for predicting drug response in cancer. For example, the 
CMap approach constructed a transcriptional signature 
of disease by comparing the gene expression patterns of 
diseased and healthy tissue [26]. A negative correlation 
between the gene expression signature and the drug’s 
molecular profile suggests the potential for the drug to 
counteract the gene expression patterns associated with 
the malignant or high-risk phenotype, which may indi-
cate therapeutic efficacy. P-NET, a biologically informed 
deep learning network, assessed molecular drivers for 
therapeutic targeting and categorized prostate cancer 
patients according to their degree of treatment resistance 
[27]. Precily utilized a deep neural network framework 

to predict the response to cancer therapy with path-
way activities and drug descriptors [28]. Most current 
research on drug repurposing and drug response predic-
tion is still in the early stages of concept validation and 
experiments at the cellular level. However, there is a lack 
of in vivo experimental verification, which hinders their 
potential application and translation in clinical settings.

To tackle the aforementioned concerns, we developed 
prognostic signatures using differentially expressed 
genes (DEGs) of colorectal cancer (CRC) patients with 
liver metastases. These signatures aim to forecast the 
effectiveness of therapeutic interventions and predict 
prognosis. The prognostic accuracy of these two signa-
tures surpassed that of previously reported signatures in 
predicting survival outcomes in patients with colorectal 
cancer (CRC). In addition, we conducted an extensive 
computational study using drug sensitivity datasets and a 
deep learning model to predict drug response and screen 
potential drugs for high-risk colorectal liver metastases 
(CRLMs). The candidate drugs were assessed using both 
in vitro and in vivo assays to validate their effectiveness. 
Obatoclax, a BCL-2 inhibitor, demonstrated significant 
inhibition of colorectal liver metastases in a CT26 tumor 
model. Our study not only provides prognostic markers 
for colorectal liver metastasis (CRLM), but also suggests 
potential drug candidates that target the associated sig-
naling pathways.

Materials and methods
Data source and processing
The colorectal cancer datasets (GSE68468, GSE41568, 
GSE81558, GSE17536, and GSE39582) were acquired 
from the Gene Expression Omnibus (GEO) datasets 
available at https://www.ncbi.nlm.nih.gov/geo/. Table S1 
presents the gene expression profiles and clinical infor-
mation. We included peritumor normal colon (NC), 
primary tumor (PT), and liver metastasis (LM) samples 
from GSE68468, GSE41568, and GSE81558 in our analy-
sis as a discovery cohort to identify genes associated with 
liver metastasis.

The log2-transformed GEO datasets were annotated 
and quantile normalized. Using the corresponding plat-
form annotation file, the probes were translated into 
gene symbols. When multiple probes were associated 
with the same gene symbol, the probe with the high-
est signal intensity was selected. The R package sva was 
utilized to eliminate any potential batch effects across 
multiple experiments. RNA-sequencing (RNA-seq) data 
of colorectal cancer were obtained from The Cancer 
Genome Atlas (TCGA-COAD) database at the National 
Cancer Institute (NCI) Genomic Data Commons (GDC). 
Survival data for the TCGA-COAD cohort was obtained 
from the TCGA Pan-Cancer Clinical Data Resource 
[29]. The TCGA-COAD dataset was utilized as a 
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training cohort to screen for genes associated with prog-
nosis and to develop prognostic signatures. GSE17536 
and GSE39582 were retrieved to assess the clinical sig-
nificance of the prognostic signatures.

We conducted an examination of the gene expression in 
specific cell clusters within the tumor microenvironment 
and investigated the impact of the tumor microenviron-
ment on the sensitivity of drugs. This analysis was based 
on the single-cell RNA sequencing data obtained from 
GSE225857, which specifically studied liver metastatic 
colon cancer [30]. In order to validate the expression of 
signature genes, the original publication annotated a total 
of 95,445 immune cells, 41,892 tumor cells, and stromal 
cells from primary colorectal cancer and matched liver 
metastasis samples. We performed cell type clustering 
on the dataset GSE225857 using the Seurat package. We 
processed the aligned all 7 samples and clustered them 
into 12 groups: B cell, endothelial cell, macrophage, den-
dritic cell, CD4+ T cell, CD8+ T cell, fibroblast, mono-
cytes, NK, plasma, mast and tumor cell. The scRNA-seq 
analyses and visualization were conducted using R (ver-
sion 4.0.1).

To predict drug sensitivity, we collected expres-
sion profile data from human cancer cell lines from the 
Broad Institute CCLE project (https://portals.broadin-
stitute.org/ccle/). The half-maximal inhibitory concen-
tration (IC50) was employed to evaluate drug sensitivity. 
The Cancer Therapeutics Response Portal (CTRP), the 
Genomics of Drug Sensitivity in Cancer (GDSC2) data-
base, and the PRISM Repurposing database were que-
ried for information regarding drug response in human 
cancer cell lines. The CTRP database provides sensitiv-
ity data for 481 compounds across 835 cancer cell lines, 
while the PRISM database offers sensitivity data for 1448 
compounds across 500 cancer cell lines. The IC50 values 
were log-transformed to indicate treatment sensitiv-
ity, with lower values indicating greater sensitivity. The 
k-nearest neighbors (KNN) imputation procedure was 
used to fill in missing values for drugs marked as not 
available (NAs), but only for those drugs that had missing 
values in less than or equal to 20% of the samples.

Development and validation of the metastasis associated 
prognostic signatures
Using the R package limma, we identified genes asso-
ciated with liver metastasis that were differentially 
expressed in the discovery cohort containing colorectal 
liver metastases (GSE68468, GSE41568, and GSE81558 
after batch effect removal). This analysis compared gene 
expression profiles of 143 liver metastases, 64 normal 
colon samples, and 257 primary tumor samples. The 
differential expression was determined based on a sig-
nificance threshold of P < 0.001 and a fold change greater 
than 1 or less than − 1. The survival information was not 

available in the discovery cohort. In order to determine 
the prognostic significance of 455 DEGs linked to liver 
metastases in the TCGA-COAD cohort (n = 436), we 
utilized log rank test and univariable Cox proportional 
hazards regression (P < 0.05). Prognostic models were 
developed using overall survival (OS) and progression-
free interval (PFI) as survival endpoints, respectively. 
Utilizing the LASSO Cox regression model with 1000 
iterations and the glmnet function in R, the most infor-
mative prognostic markers among the candidate DEGs in 
the training cohort were identified. The optimal lambda 
value was determined by 10-fold cross-validation. The 
optimal prognosis signature was identified by examin-
ing the combination of DEGs with the highest concor-
dance index. Based on the selected genes, a multivariate 
Cox regression risk prediction model was constructed. 
The liver metastasis associated overall survival signature 
(MAOS) and metastasis associated progression signature 
(MAPS) were calculated for each patient by summing the 
products of all signature genes’ regression coefficients 
multiplied by their corresponding z-score standardized 
expression values. Supplementary Table S4 contains the 
coefficients of glmnet as well as detailed information 
on MAOS and MAPS signature genes. Supplementary 
Tables S2 and S3 present the results of univariate Cox 
models for MAOS and MAPS signature genes in the 
TCGA-COAD training set.

Then we conducted time-dependent Area Under the 
Curve (AUC) analyses of Receiver Operating Charac-
teristics (ROC) to assess the predictive performance of 
MAOS and MAPS in predicting survival outcomes in 
CRC patients. This analysis was pivotal in determining 
if MAOS and MAPS could outperform other established 
prognostic signatures in the context of CRC. The com-
parison involved external validation datasets GSE39582 
and GSE17536, using the MAOS and MAPS signatures 
against other published signatures: the TME-related gene 
signature by Zhang et al. [31], the four gene signature by 
Yuan et al. [32], and the five gene signature by Sun et al. 
[33]. The true positive rate (sensitivity) and false posi-
tive rate (specificity) were computed for each signature 
at different time intervals. This allowed us to evaluate 
the probability of predicting survival status at each time 
point. This procedure generated a sequence of ROC 
curves, which provided a quantitative assessment of the 
predictive efficacy of our signatures over time in compar-
ison to previously published signatures.

Estimating drug response in clinical cohort
The Precily model, a deep neural network (DNN) frame-
work [28], was trained to predict drug responses using 
high-throughput screening data from cancer cell lines. 
Precily employs a deep neural network (DNN) archi-
tecture with 2–6 hidden layers. DNNs are capable of 
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identifying intricate patterns in large datasets, essen-
tial for drug response prediction. The number of layers 
is adjustable as a hyper-parameter, allowing flexibility 
and optimization for different datasets and prediction 
requirements  . For each of the 550 cancer cell lines with 
available drug response data in GDSC, pathway enrich-
ment scores were calculated. These scores pertained to 
1329 canonical pathways from the Molecular Signatures 
Database (MSigDB). Numeric molecular descriptors for 
173 anti-cancer compounds, as reported in GDSC, were 
obtained using SMILESVec. This involved supplying the 
Simplified Molecular-Input Line-Entry System (SMILES) 
notation, which was retrieved using PubChemPy.

The pathway enrichment scores and drug features 
were treated as explanatory variables, while the natural 
log (LN) of half maximal inhibitory concentration (IC50) 
estimates were used as the dependent variable. The deep 
neural network (DNN) is composed of two layers: an 
input layer, which contains all 1,429 features, and a fixed 
hidden layer, which has an activation function of Recti-
fied Linear Unit (RELU) and has a dimension of 512. The 
first two layers are kept constant. The Keras Tuner library 
is used with Hyperband and 5-fold cross-validation to 
optimize hyperparameters. These include the number 
of layers (2 to 6), the number of neurons (128 to 256), 
dropout rates (0.1 to 0.5), ADAM optimizer with various 
learning rates, and Mean Squared Error (MSE) as the loss 
function.

The model is trained using data from the CCLE/
GDSC2 dataset, which includes 80,056 cell line-drug 
combinations. 173 compounds with SMILES descriptors 
in the GDSC2 dataset were used to derive these com-
binations, which involve 550 cell lines from the CCLE 
dataset. To ensure that there was no overlap in the cell 
lines, we divided the CCLE/GDSC2 training dataset into 
a 90% training set and a 10% test set. The DNN model 
was trained on the entire dataset with fold-specific 
tuned hyperparameters. Five models were trained for 50 
epochs with a batch size of 128 using fold-specific tai-
lored hyperparameters on the whole dataset. After model 
training, we computed compound descriptors of vector 
size 100 for 481 CTRP and 4514 PRISM drugs for model 
predictions.

Identification of potential therapeutic drugs for high risk 
cohort
Prior to utilizing the CCLE/GDSC trained Precily model 
for drug response prediction in the 143 LM samples, we 
integrated the pathway score matrix with the drug fea-
tures of vector size 100 for each molecular compound 
in the CTRP and PRISM databases. 143 samples from 
colorectal cancer (CRC) patients with liver metasta-
ses were divided into low- and high-risk groups based 
on the median values of MAOS and MAPS scores. We 

employed Spearman correlation analysis to examine the 
relationship between IC50 value and risk score (MAOS 
and MAPS). Drugs exhibiting a significant Pearson’s cor-
relation (P < 0.05) were chosen. We also considered drugs 
that showed statistically significant differences (P < 0.05, 
two-sided Wilcoxon rank-sum test) between the high-
est and lowest quartiles of MAOS and MAPS scores as 
potential candidates. We also estimated the IC50 values 
of nine approved drugs for CRLM in high and low-risk 
groups. These drugs include fruquintinib, capecitabine, 
trifluridine, raltitrexed, regorafenib, mitomycin, fluoro-
uracil, oxaliplatin, and irinotecan.

To explore how the tumor microenvironment influ-
ences drug sensitivity, the Precily model was employed 
to predict IC50 values for various approved and candidate 
drugs in each cell type of the seven CRLM patients from 
the scRNA-seq dataset GSE225857. We applied Precily to 
predict IC50 values of nine approved and candidate drugs 
in the seven CRLM patients and investigate the effect 
of the tumor microenvironment on the drug sensitivity. 
To evaluate the risk of CRLM patients in the scRNA-seq 
dataset, we summarized scRNA-seq data into pseudo-
bulk RNA-Seq data. CRLM patients were categorized 
into high and low risk groups based on the median values 
of MAOS and MAPS scores, respectively. Subsequently, 
we compared the pathway enrichment between patients 
with high and low MAOS/MAPS scores to determine 
these cell-type-specific pathways. Further, we utilized the 
Precily model to predict drug sensitivity for each cell type 
and conducted a screening process to identify therapeu-
tic options that are particularly effective for patients cat-
egorized as high-risk based on their MAOS and MAPS 
scores.

Cell culture
The murine colorectal cancer cell line CT26 (gifted from 
Professor Shengdian Wang, Chinese Academy of Sci-
ences) and human HEK-293T cells used for the lentivi-
rus package were cultured with the DMEM medium. The 
fetal bovine serum (10%), an antibiotic cocktail of peni-
cillin and streptomycin (Sangon Biotech, China), were 
added to the DMEM medium. All of the cells were cul-
tured in a humidified atmosphere at 37 °C with 5% CO2.

Lentiviral vector constructs and transfection
The pLVX-Luciferase2-P2A-mCherry vector was 
constructed with the backbone plasmid pLVX-puro 
(Clontech, 632164) by inserting the genes of firefly lucif-
erase 2 cloned from the commercial vector pGL4.51 
(Promega) and mCherry cloned from the vector pLVX-
IRES-mCherry (Clontech, 631237). The lentivirus 
was packaged by HEK-293T cells with pLVX-Lucifer-
ase2-P2A-mCherry and the helper plasmids psPAX2 
(Addgene) and pMD2.G (Addgene). The CT26-Luc2 cell 
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line was established by transfecting it with the lentivirus, 
and the efficiency was verified by detecting the fluores-
cence of mCherry.

MTT and transwell assays
Cell cytotoxicity of the compounds was tested by the 
MTT assay. The CRC cell line CT26 was seeded in 
96-well plates with a concentration of 4 × 103 cell/well, 
and exposed to compounds with a series of diluted con-
centrations from 30 µM to 0.3 µM. After being treated 
for 24, 48 and 72 h, 20 µL MTT (5 mg/mL) was added to 
label the live cells and incubated at 37  °C for 4 h. Next, 
150 µL DMSO was added to dissolve the formazan crys-
tals for 10  min. Absorbance values were measured at 
490  nm and 570  nm (for Obatoclax). The MTT assay 
for each compound was repeated at least three times. 
The Transwell migration assay was performed with cells 
seeded in chambers in 24-well plates. The 4 × 104 cells/
well CT26 cells were seeded into the upper chamber 
(pore size, 8  μm), with the well supplemented with 600 
µL of DMEM medieum and exposed to the indicated 
concentrations of compounds at a concentration of 10 
µM or 30 µM (TargetMol, USA). After a 24 h incubation, 
cells were fixed with 4% paraformaldehyde (Solarbio, 
#P1110, Beijing, China), stained with 0.2% crystal violet 
(Solarbio, #G1062), and then photographed.

The colorectal liver metastasis model and IVIS imaging
Female BALB/c mice of 18–20 g (age of 6–7 weeks) from 
Vital River Laboratories were used for determining the 
anti-tumor and metastasis effects. The experiments 
were performed in accordance with the protocol and the 
approval of the Ethics Committee of Zhengzhou Uni-
versity. The colorectal liver metastasis model was estab-
lished by the injection of 5 × 105 CT26-Luc2 cells into the 
spleen, followed by splenectomy as previously reported 
[34]. The spleens of BALB/c mice were surgically exposed 
and injected with CT26-Luc2 cells in 50 µL of sterile 
PBS (n = 6 per group). The tumor growth and metastasis 
were detected by tracking the luciferase signal with the 
IVIS Lumina (PerkinElmer, USA). Mice were divided into 
three groups according to the luciferase signal acquired 
on the 3rd day post tumor inoculation by random, which 
is regarded as day 0 for following treatment. The mice 
were given daily intravenous injections of normal saline, 
2 mg/kg or 5 mg/kg Obatoclax (TargetMol, USA) in 1% 
Tween-80 and 1.5% DMSO. The luciferase signals were 
tracked 7 or 13 days later. Upon the completion of the 
treatment, the mice were euthanized, and the livers were 
immediately removed, tracked with the luciferase signals, 
and weighted.

Statistical analysis
The R program (version 4.0.1) was utilized for statis-
tical analysis and visualization. We used the R pack-
ages survminer and survivor to perform univariate Cox 
regression analysis. Survival analysis was performed uti-
lizing Kaplan-Meier (KM) methods, and the log-rank test 
was used to assess statistical significance. The timeROC 
R package was used to calculate the time-dependent area 
under the receiver operating characteristic curve (AUC). 
A two-tailed P value of less than 0.05 was deemed statis-
tically significant for all statistical analyses. Pathway anal-
yses were conducted on the 50 hallmark pathways and 
1329 canonical pathways from the Molecular Signature 
Database. This was done using the GSEABase and GSVA 
packages to perform Gene Set Variation Analysis (GSVA) 
[35].

Results
Identification of liver metastasis related DEGs
A systematical flow chart was illustrated in Fig. 1A. Con-
sidering the limited number of surgical biopsies of liver 
metastasis, we combined a cohort of 462 samples from 
GSE68468, GSE41568 and GSE81558, including 63 peri-
tumor normal colon (NC) samples, 256 primary tumor 
(PT) samples and 143 liver metastasis (LM) samples after 
removing potential batch effects (Supplementary Figure 
S1). A total of 455 differentially expressed genes (DEGs) 
were identified as associated with liver metastasis in 
colorectal cancer. The Venn diagram illustrated 38 com-
mon DEGs between the LM vs. NC group and the PT 
vs. LM group (Fig. 1B). 424 DEGs were identified in liver 
metastasis samples compared with peritumor normal 
colon samples (LM vs. NC group), of which 164 were up-
regulated and 260 down-regulated. 69 DEGs were identi-
fied in liver metastasis samples compared with primary 
tumor samples (LM vs. PT group), of which 54 were 
up-regulated and 15 down-regulated. To investigate the 
molecular processes underlying the process of colorec-
tal liver metastasis, we performed GSVA and KEGG 
pathway enrichment analysis using cancer hallmark and 
KEGG pathway gene sets from the Molecular Signa-
tures Database v7.4. GSEA analysis of hallmark gene sets 
revealed that the up-regulated genes in liver metastasis 
were significantly enriched in multiple pathways asso-
ciated with carcinogenesis, including coagulation, P53, 
and hypoxia, as well as metabolic pathways related to 
xenobiotic and bile acid metabolism, in comparison to 
the primary tumor (Fig.  1C). In contrast, liver metasta-
sis showed a decrease in gene expression related to pro-
cesses such as proliferation (e.g., Myc targets v1 and Myc 
targets v2) and epithelial mesenchymal transition (EMT). 
Additionally, immune activation pathways, including the 
interferon-γ response and inflammatory response, were 
also down-regulated in liver metastasis. In comparison 
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to peritumor normal colon, certain pathways showed 
up-regulation, including DNA repair, MYC Targets v1 
and v2, MTORC1 signaling, and E2F targets. Conversely, 
metabolic pathways such as adipogenesis, oxidative phos-
phorylation, fatty acid metabolism, and bile acid metabo-
lism exhibited down-regulation (Fig. 1D).

Construction of liver metastasis related prognostic 
signatures
We conducted univariate Cox regression analysis and 
Kaplan-Meier (KM) analysis to further evaluate the 

prognostic value of DEGs associated with liver metas-
tasis. We developed two liver metastasis-associated 
signatures, liver metastasis associated overall survival 
signature (MAOS) and metastasis associated progres-
sion signature (MAPS), using the TCGA COAD cohort. 
These signatures were constructed based on overall sur-
vival (OS) and progression-free interval (PFI) as survival 
outcomes. The MAOS signature consisted of 10 genes: 
ATOH1, CXCL1, FABP4, INHBB, LGALS4, MEGF6, 
NAT1, SCGB2A1, and SERPINA1. The MAPS signa-
ture comprised 11 genes, namely CFHR4, CXCL11, F5, 

Fig. 1 Differentially expressed genes and enriched pathways associated with liver metastases. (A) Schematic diagram of the study design. (B) Venn dia-
gram depicting common liver metastasis-related genes shared by NC vs. LM group and PT vs. LM group. (C) Differences in pathway activities scored by 
GSVA between liver metastasis tumor and peritumor normal colon. (D) Differences in pathway activities scored by GSVA between liver metastasis tumor 
and primary colon tumor. NC: peritumor normal colon; LM, liver metastasis; PT, primary colorectal tumor
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INHBB, LGALS4, MEGF6, NAT1, S100A2, SERPINE1, 
SRPX, and VEGFA. The genes INHBB, LGALS4, MEGF6, 
and NAT1 were found to be common in both signatures. 
CXCL1 and CXCL11 are chemokine ligands that exhibit 
a positive correlation. Both SERPINA1 and SERPINE1 
are members of the Serpin Family. The KM survival curve 
for each gene was shown in Supplementary Figure S2 and 
S3.

We subsequently investigated the correlation between 
MAOS/MAPS scores and clinical characteristics. The 
findings indicated a significantly correlation between 
MAOS and MAPS with high TNM stages (P = 0.001), 
lymph node metastases (N) (P = 0.001), tumor size (T) 
(MAOS: P = 0.003 and MAPS: P = 0.009), occurrence of 
distant metastases (M) (MAOS: P = 0.018 and MAPS: 
P = 0.001) and microsatellite instability (MAOS: P = 0.018 
and MAP: P = 0.013) (Fig. 2A and B). Furthermore, there 
was a significant correlation between lymph vascular 

invasion (LVI) and metastasis-associated overall survival 
(MAOS), but no significant correlation was observed 
between LVI and metastasis-associated progression-free 
survival (MAPS).

Patients in the training and testing sets were classified 
as high or low risk in the Kaplan-Meier survival analysis, 
according to the median values of MAOS and MAPS, 
respectively. Figure 2C and D depict the survival status, 
MAOS/MAPS scores, and signature gene expression of 
colorectal cancer (CRC) patients in the training group. 
The median survival time of patients in the low-risk 
group for MAOS or MAPS in the TCGA COAD cohort 
was considerably longer than that of patients in the 
high-risk group (P < 0.001, Fig.  2E and F). The prognos-
tic model for overall survival (OS) achieved an area under 
the curve (AUC) of 0.693, while the model for progres-
sion-free interval (PFI) achieved an AUC of 0.722.

Fig. 2 Construction of MAOS and MAPS signatures in TCGA training set. (A and B) Clinical characteristics of MAOS and MAPS signatures in TCGA COAD 
cohorts, respectively. T, tumor size and local growth; N, extent of lymph node metastases; M, occurrence of distant metastases in tumor-node-metastasis 
(TNM) system. MSI, microsatellite instability; LVI, Lymphovascular invasion. (C and D) The distribution of risk score, survival status and gene expression 
panel in the TCGA training set for MAOS and MAPS, respectively. For each patient, a risk score was calculated based on the prognostic signature, and all 
patients are displayed (sorted from low to high score). The vertical dotted line indicates the median cutoff dividing patients into low-risk and high-risk 
groups. (E and F) Kaplan-Meier survival analysis and ROC curve analysis for patients in TCGA training set of MAOS and MAPS, respectively
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MAOS and MAPS are independent of conventional CRC 
clinical characteristics
Before validating the prognostic signatures MAOS and 
MAPS with independent datasets, we analyzed several 
typical clinical characteristics with the signatures in the 
TCGA training set. Table 1 demonstrates significant dif-
ferences in conventional clinical pathological factors, 
including microsatellite status, T, N, M stage, and lym-
phatic invasion status, between high and low risk groups 
based on MAPS and MAOS risk signatures. More than 
60% of patients in stage III and IV were classified as high-
risk based on either MAPS or MAOS. In the GSE39582 
dataset, patients classified as low-risk for MAOS exhib-
ited a notably extended overall survival (OS) in com-
parison to the high-risk group (P = 0.042, AUC = 0.588, 
Fig. 3A). In the GSE17536 dataset, individuals classified 
as low-risk for MAOS also exhibited a considerably lon-
ger overall survival (OS) compared to those classified as 
high-risk (P = 0.007, AUC = 0.643, Fig. 3B). Patients in the 
MAPS low-risk group of the GSE39582 dataset exhibited 

a significantly longer PFI (P < 0.001, AUC = 0.615, Fig. 3C). 
However, in the GSE17536 dataset, the difference in 
PFI was not significant (P = 0.065, AUC = 0.593, Fig. 3D), 
likely due to the smaller sample size of GSE17536.

We conducted multivariate Cox regression analy-
sis on two independent validation sets, GSE39582 and 
GSE17536, to assess the independence of MAOS and 
MAPS from common clinical characteristics in pre-
dicting CRC prognosis. The multivariate Cox regres-
sion analysis revealed that the MAOS and MAPS were 
independent risk factors for overall survival (OS) in 
addition to Stage III and IV in the TCGA COAD data-
set (HR = 2.47, 95% CI = 1.33–4.59; HR = 1.65, 95% 
CI = 1.06–2.55). The multivariate Cox analysis in both the 
GSE39582 and GSE17536 datasets consistently showed 
significant results for MAOS and MAPS (Fig. 3E and F).

Evaluation the prognostic value of MAOS and MAPS
The prognostic signatures of MAOS and MAPS were 
compared to formerly published gene signatures. The 

Table 1 Clinical characteristics of high- and low- risk groups according to median values of MAPS and MAOS in the TCGA COAD 
dataset

MAPS P* MAOS P
High-risk
n (%)

Low-risk
n (%)

High-risk
n (%)

Low-risk n (%)

n 220 216 219 217
Microsatellite (%) 0.01 0.008
 MSI-H 26 (11.8) 52 (24.1) 26 (11.9) 52 (24.0)
 MSI-L 39 (17.7) 34 (15.7) 36 (16.4) 37 (17.1)
 MSS 150 (68.2) 127 (58.8) 153 (69.9) 124 (57.1)
Gender = male (%) 118 (53.6) 112 (51.9) 0.782 116 (53.0) 114 (52.5) 1
T (%) 0.011 0.005
 T1 3 (1.4) 7 (3.2) 3 (1.4) 7 (3.2)
 T2 30 (13.6) 44 (20.4) 27 (12.3) 47 (21.7)
 T3 151 (68.6) 148 (68.5) 154 (70.3) 145 (66.8)
 T4 36 (16.4) 17 (7.9) 35 (16.0) 18 (8.3)
N (%) < 0.001 < 0.001
 N0 104 (47.3) 151 (69.9) 100 (45.7) 155 (71.4)
 N1 57 (25.9) 44 (20.4) 56 (25.6) 45 (20.7)
 N2 59 (26.8) 21 (9.7) 63 (28.8) 17 (7.8)
M (%) < 0.001 0.022
 M0 147 (66.8) 180 (83.3) 154 (70.3) 173 (79.7)
 M1 47 (21.4) 16 (7.4) 43 (19.6) 20 (9.2)
 MX 22 (10.0) 20 (9.3) 20 (9.1) 22 (10.1)
Stage (%) < 0.001 < 0.001
 Stage I 28 (12.7) 46 (21.3) 26 (11.9) 48 (22.1)
 Stage II 71 (32.3) 102 (47.2) 68 (31.1) 105 (48.4)
 Stage III 74 (33.6) 52 (24.1) 82 (37.4) 44 (20.3)
 Stage IV 47 (21.4) 16 (7.4) 43 (19.6) 20 (9.2)
LVI (%) 0.105 0.001
 No 108 (49.1) 127 (58.8) 98 (44.7) 137 (63.1)
 Yes 92 (41.8) 70 (32.4) 98 (44.7) 64 (29.5)
MSI, microsatellite instability; LVI, Lymphovascular invasion

*Chi-square test
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correlation between MAOS and MAPS with Zhang’s and 
Sun’s signatures in the TCGA COAD training set was sta-
tistically significant (Pearson’s Correlation test, P < 0.001). 
However, there was no significant correlation observed 
with Yuan’s signature (Fig.  4A and B). Both MAOS and 
MAPS showed significant correlations with the three 
signatures in the GSE39582 testing set, indicating a high 
level of consistency between the training and testing sets 
(Fig. 4C).

We conducted time-dependent receiver operating 
characteristic (ROC) analyses to assess the potential of 

our signatures to enhance the prognostic accuracy for 
predicting the survival of CRC patients, in comparison 
to other signatures. The findings indicate that MAPS and 
MAOS demonstrated superior performance compared 
to the remaining three signatures in the training set. The 
MAPS demonstrated superior performance in predicting 
overall survival (OS) and progression-free interval (PFI) 
in CRC patients, as shown in Fig. 4D and E. It achieved 
the highest average area under the curve (AUC) values of 
0.662 and 0.741 for OS and PFI, respectively. Zhang’s sig-
nature exhibited superior performance in the GSE39582 

Fig. 3 Validation of MAOS and MAPS signatures in training and validation datasets. (A and B) Kaplan-Meier plots and the receiver operating characteristic 
(ROC) curve of MAOS in GSE39582 and GSE17536 validation sets. (C and D) Kaplan-Meier plots and ROC curve of MAPS in the two validation datasets 
(GSE39582 and GSE17536). (E and F) The multivariate Cox analysis of the MAOS and MAPS signature with other clinicopathological factors in the training 
TYGA-COAD datasets and two validation datasets (GSE39582 and GSE17536), respectively
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Fig. 4 Evaluation of prognostic value and targeting cell types of MAOS and MAPS. (A) The association between MAOS, MAPS and other three prognostic 
signatures in TCGA COAD training dataset using overall survival (OS) information. (B) The association between MAOS, MAPS and other three prognostic 
signatures in TCGA COAD training dataset using progression free interval (PFI) information. (C) The association between MAOS, MAPS and other three 
prognostic signatures in validation dataset using OS information. (D) The time-dependent area under the receiver operating characteristic (ROC) curves of 
MAOS, MAPS and other three prognostic signatures in TCGA COAD training dataset using OS information. (E) The time-dependent ROC curves of MAOS, 
MAPS and other three prognostic signatures in TCGA COAD training dataset using PFI information. (F) The time-dependent ROC curves of MAOS, MAPS 
and other three prognostic signatures in validation dataset using OS information. Survival difference was compared using log-rank test. Red and Green 
dotted lines on the time-dependent area under the ROC curve plots represent 95% CI of MAOS and MAPS, respectively. (G) (left) UMAP plot visualization 
of all cell subtypes from six CRLM patients. Different cell subtypes were annotated by Seurat algorithm. (middle) UMAP plot visualization of the distribu-
tion of MAOS score. (right) UMAP plot visualization of the distribution of MAPS score. (H) Violin plot of MAOS (left) and MAPS (right) scores in different cell 
types. ****, P < 0.0001
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testing set due to its utilization of GSE39582 as a training 
set (Fig. 4F). Both MAOS and MAPS demonstrate similar 
performance when compared to the other two signatures 
in the testing set.

Additionally, we examined the specific distribution of 
MAOS and MAPS in CRLM patients using single-cell 
RNA transcriptome data (GSE225857). We annotated the 
major cell types and visualized the distribution of MAOS 
and MAPS scores (Fig.  4G). Violin plot illustrated the 
elevated expression of the majority of MAOS and MAPS 
signature genes in tumor cells and myeloid cells, in com-
parison to other cell types (Fig.  4H). The gene LGALS4 
exhibited the highest expression in tumor cells, while 
the gene VEGFA from the MAPS signature was highly 
expressed in various cell types, including myeloid cells 
and tumor cells (Supplementary Figure S4).

Discovery of candidate drugs for CRLM
We initially determined the IC50 values of nine approved 
drugs for CRLM to assess the efficacy of MAOS and 
MAPS in predicting drug sensitivity. Figure  5A and B 
illustrated the correlation and significance between drug 
sensitivities and signature genes of MAOS and MAPS. 
The IC50 values of fluorouracil, oxaliplatin, and irinotecan 
were found to be higher in the high-MAPS group. The 
findings indicated that CRLM patients exhibiting high 
MAPS scores demonstrated resistance to conventional 
chemotherapy treatments.

We further screened potential drugs in CTRP and 
PRISM databases to identify suitable candidates for high-
risk CRLM patients. We conducted a drug response 
prediction to identify drugs that exhibit significant dif-
ferential responses between high and low risk groups 
classified by MAOS and MAPS. The results revealed that 
low MAPS groups exhibited significant sensitivity to one 
CTRP drug (RITA), and two drugs derived from PRISM 
(BAY-87-2243 and lorlatinib) (Fig.  5C). Low MAOS 
groups were also sensitive to BAY-87-2243. There was a 
notable negative correlation between the MAOS scores 
and the predicted IC50 value of the CTRP drug Oba-
toclax. ABT-737, another apoptosis-related inhibitor, 
exhibited statistically significant differences between the 
highest and lowest quartiles of MAOS scores (Fig.  5D). 
Obatoclax and ABT-737 may have therapeutic potential 
for treating chemotherapy-resistant high MAOS CRLM 
patients, as lower IC50 values indicate increased drug 
sensitivity.

Considerable tumor heterogeneity was identified in 
the composition of the tumor microenvironment of the 
CRLM patients in the scRNA-seq dataset (Figure S5A). 
The drug sensitivity also differed among the CRLM 
patients, showing the sensitivity of Precily in personal-
ized drug prediction (Figure S5B). We observed con-
siderable variation in predicting drug sensitivity across 

different cell types within the tumor microenvironment, 
with macrophages exhibiting the highest degree of vari-
ability (Figure S5C). By comparing the pathway enrich-
ment scores between patients with high- and low-MAOS 
scores (Figure S6), we found significant pathways were 
enriched in tumor cell, endothelial cell, and fibroblasts. 
On the other hand, significant pathways were enriched 
in dendritic cell and CD8+ T cells between patients with 
high- and low-MAPS scores (Figure S7). Interestingly, 
the cell-type-specific drug screening process confirmed 
obatoclax and ABT-737 as candidate drugs but targeting 
different cell types in the MAOS and MAPS risk groups 
(Figure S8).

Further identification of the therapeutic drugs
To validate the identified candidate drugs, we conducted 
in vitro bioactivity measurements on the commercially 
available drugs. The MTT assay was employed to evalu-
ate the effect of candidate drugs on the proliferation of 
the murine colorectal cell line CT26. The findings indi-
cated that all drugs tested effectively reduced the viability 
of CT26 cells. Notably, Obatoclax exhibited significant 
inhibition of CT26 cells at lower concentrations, whereas 
BAY-87-2243 did not consistently inhibit cell growth. 
In addition, both ABT-737 and lorlatinib demonstrate 
inhibitory effects on CT26 cell proliferation at higher 
concentrations (Fig.  6A). Additionally, a concentration 
that exhibited no impact on cell proliferation after 48 h 
was chosen to evaluate its influence on the migration of 
CT26 cells. The findings demonstrated that Obatoclax 
and BAY-87-2243 exhibited significant inhibitory effects 
on the migration of CT26 cells at concentrations as low 
as 0.01 µM and 0.3 µM, respectively. ABT-737 at a con-
centration of 10 µM exhibited the most potent inhibitory 
effects, whereas the remaining drugs did not significantly 
affect the migration of CT26 cells (Fig. 6B).

The candidate drug Obatoclax significantly inhibits 
colorectal liver metastasis
We established a mouse model of colorectal liver metas-
tasis by using CT26-Luc2 cells that express luciferase, 
allowing for the tracking of tumor metastasis in vivo. 
Obatoclax, which has a well-defined pharmacodynamic 
analysis, was chosen for the in vivo experiment from the 
pool of candidates. Once the model was established, mice 
were divided into different groups based on their uniform 
fluorescence levels (Fig.  7A and B). Obatoclax demon-
strated significant inhibition of liver metastasis at doses 
of 2 mg/kg and 5 mg/kg. Following the completion of the 
treatment, the livers of the mice with tumors were dis-
sected and subjected to IVIS imaging. Obatoclax effec-
tively suppressed liver metastasis in tumor-bearing mice 
(Fig.  7C and D). The liver weight of Obatoclax-treated 
mice was significantly lower compared to the control 



Page 12 of 18Zhou et al. Journal of Translational Medicine          (2024) 22:321 

Fig. 5 Identification of candidate drugs for CRLM patients. (A) Bubble plot of the relationship between approved CRLM drugs and signature genes of 
MAOS and MAPS. (B) Box plots of the comparison of predicted IC50 of approved CRLM drugs Fluorouracil, Oxaliplatin and Irinotecan between high- and 
low-MAPS groups. (C) Correlation between the predicted IC50 of candidate drugs (RITA, BAY-87-2243 and lorlatinib) and MAPS scores in CRLM cohort. (D) 
Correlation between the predicted IC50 of candidate drugs (Obatoclax, BAY-87-2243 and ABT-737) and MAOS scores in CRLM cohort. Lower IC50 values 
imply greater drug sensitivity. P-values of boxplots and violin plots were obtained from the two-sided Wilcoxon rank-sum test
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group (Fig. 7E). Obatoclax, the predicted candidate, has 
demonstrated significant suppression of colorectal liver 
metastasis, suggesting its potential as a therapeutic drug. 
We measured the expression levels of MAOS and MAPS 
signature genes in the CT26 cell line treated with con-
trol or Obatoclax at concentrations of 0.01 µM and 0.3 
µM. The expression levels of ATOH, CFHR4, CXCL1, F5, 
LGALS4, SERPINA1, and VEGFA were found to be sig-
nificantly increased after Obatoclax treatment, as shown 
in Fig. 7F. This observation supports the hypothesis that 
the negative correlation between the signature and drug 
response indicates its potential to decrease the risk of 
CRLM.

Discussion
In recent years, researchers have identified novel drug 
targets and biomarkers through the utilization of next-
generation sequencing, leading to enhanced patient out-
comes. The availability of extensive transcriptome data, 
drug sensitivity databases, and computational methods 
presents a valuable opportunity to understand disease 
and drug mechanisms and generate novel therapeutic 
hypotheses [23, 36]. The liver possesses immune toler-
ance and metabolic activity. Metastasis to the liver neces-
sitates intricate biological mechanisms, as proposed 
by the “seed and soil” hypothesis [37]. Liver metastases 
showed decreased epithelial-mesenchymal transition 

and increased activity in the MYC target and DNA-
repair pathways, according to the analysis of differen-
tially expressed genes [8, 38]. In addition, we observed 
several metabolic pathways, such as xenobiotic, bile acid, 
heme metabolism, and cholesterol homeostasis, that 
were enriched in liver metastases (Fig. 1C and D). Recent 
studies indicate that metastatic cells may exploit altered 
metabolism to evade immune detection [39, 40]. Given 
the distinctive molecular properties of CRLM and the 
limited therapeutic alternatives, it is crucial to custom-
ize specialized treatment for these individuals. This study 
represents the initial endeavor to combine prognostic 
prediction for CRLM with computational drug reposi-
tioning, aiming to facilitate treatment development.

In order to predict the prognosis and categorize 
patients with colorectal liver metastasis (CRLM), we 
developed two liver metastasis-related signatures 
(MAOS and MAPS) using survival data on overall sur-
vival (OS) and progression-free interval (PFI). The occur-
rence of overall survival (OS) is frequently used as a 
primary outcome measure in clinical studies. However, 
the absence of specific information regarding the cause 
of death can potentially weaken the validity and reliabil-
ity of these studies. PFI is a survival endpoint that takes 
into account disease progression, locoregional recur-
rence, and distant metastasis, making it more relevant to 
metastasis-related outcomes [29]. Hence, we integrated 

Fig. 6 The effects of candidate drugs on the proliferation and migration of CT26 cells. (A) Cell proliferation of CT26 cells treated with the candidate 
drugs at the indicated concentration or the vehicle detected by MTT measuring the absorbance at 490–570 nm. *, P < 0.05, **, P < 0.01, ***, P < 0.001. (B) 
The migration of CT26 cells treated with the candidate drugs at the indicated concentration or the vehicle for 24 h detected by the Transwell assay. Bar 
= 250 μm. Representative results of at least three independent experiments were shown
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PFI into our prognostic model to enhance the screen-
ing of candidate genes linked to metastasis. Both MAOS 
and MAPS studies identified multiple genes that have 
been reported to have a strong association with colorec-
tal cancer. LGALS4, a lectin galactoside-binding soluble 
4, exhibits specific expression in the colon and plays a 
role in the invasion of cancer cells [41]. MEGF6, a pro-
tein with multiple epidermal growth factor-like domains, 
has been identified as an oncogene that facilitates cell 
proliferation, suppresses apoptosis, and enhances cell 
migration through the TGFβ/SMAD signaling pathway-
mediated EMT [42].

MAOS encompassed genes associated with metastasis-
promoting pathways, including epithelial mesenchymal 
transition and lipid metabolism. CXCL1 is upregulated 

in liver tissue, which attracts myeloid-derived suppressor 
cells that express CXCR2. This ultimately results in the 
creation of a premetastatic niche for liver metastases [43, 
44]. The overexpression of FABP4 facilitates the trans-
portation of fatty acids, resulting in enhanced energy 
and lipid metabolism. Additionally, it activated the AKT 
pathway and epithelial-mesenchymal transition, promot-
ing the movement and infiltration of colon cancer cells 
[45, 46]. The autophagy-related gene SERPINA1 has been 
demonstrated to affect the invasive and metastatic capa-
bilities in colorectal cancer [47, 48].

The remaining six genes within the MAPS (CFHR4, 
F5, S100A2, SRPX, SERPINE1, and VEGFA) have dem-
onstrated their independent value as prognostic bio-
markers in various solid tumors. The F5 expression has 

Fig. 7 The effects of Obatoclax on the liver metastasis of colorectal cancer in vivo. (A) Representative IVIS luciferase in vivo images of mice with CT26-
Luc2 cells injected in the spleen and treated with normal saline (NS), 2 mg/kg or 5 mg/kg Obatoclax (n = 6). The images obtained on indicated days were 
quantified with a unified fluorescence scale. (B) Summary data of the fluorescence intensity of the mice treated on day 0, 7 and 13. *P < 0.05. (C) Images of 
liver from the tumor bearing mice on day 13. The images obtained were quantified with a unified fluorescence scale. (D) Summary data of fluorescence 
intensity of the liver. **P < 0.01, *** P < 0.001. (E) Summary data of the liver weight. **P < 0.01, *** P < 0.001. (F) The fold change (FC) in mRNA expression of 
MAOS and MAPS signature genes in the CT26 cell line before and after treatment with Obatoclax. FC values were calculated by converting the normalized 
average log2 values of gene expression levels before and after treatment with Obatoclax at concentrations of 0.01 µM and 0.3 µM
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been associated with tumor aggressiveness and has been 
identified as an immunological marker for the cancer-
inflammation-thrombosis circuit in breast cancer [49]. 
S100A2 protein overexpression has been identified as a 
prognostic indicator for patients diagnosed with stage II 
and III colorectal cancer [50]. The study observed a sig-
nificant increase in the expression of the SRPX gene in 
cancer-associated fibroblasts of high-grade serous car-
cinoma, clear cell carcinoma, and ovarian carcinoma 
[51]. Vascular endothelial growth factor (VEGFA) was 
a major mediator of angiogenesis process in CRC [52]. 
Moreover, the secretion of VEGFA by colorectal cancer 
cells induces tumor-associated macrophages to produce 
CXCL1 and attract MDSCs, leading to the formation of 
a premetastatic niche that facilitates the development of 
liver metastases [43]. The significant correlation between 
high TNM stages and elevated MAOS/MAPS scores sug-
gests that our signature genes are associated with disease 
progression (Table 1). This correlation further extends to 
lymph node metastases, highlighting the MAOS/MAPS 
scores’ potential in distinguishing patients at elevated 
risk of lymph node involvement. Higher MAOS/MAPS 
scores may indicate a higher risk of distant spread, guid-
ing decisions on treatment strategies and surveillance. 
Additionally, the relationship between MAOS/MAPS 
scores and microsatellite instability (MSI) underscores 
the utility of these scores in pinpointing patients with 
specific molecular profiles, potentially influencing per-
sonalized treatment decisions based on MSI status. Both 
MAOS and MAPS exhibited superior performance com-
pared to other prognostic signatures in both the train-
ing and testing sets. Despite using overall survival (OS) 
as the survival endpoint in the training set, MAPS dem-
onstrated superior performance compared to MAOS, 
suggesting that the biomarker has good generalizability. 
MAOS outperformed MAPS slightly in the external test-
ing dataset. MAOS and MAPS can serve as biomarkers 
for targeted CRLM treatment, in addition to their prog-
nostic value.

We further screened candidate drugs for CRLM using 
drug response deep learning models trained with CCLE 
and GDSC drug sensitivity datasets. The candidate drugs 
were assessed using MTT and Transwell assays in vitro, 
and all demonstrated inhibitory effects on the prolifera-
tion of CT26 cells. Obatoclax, BAY-87-2243, and ABT-
737 were found to effectively inhibit the cell migration 
of CT26. Obatoclax demonstrated a significant inhibi-
tory effect on liver metastasis in tumor-bearing mice. 
Obatoclax is a pan-BCL-2 family inhibitor targeting 
mitochondrial apoptotic pathways. It was approved by 
the U.S. Food and Drug Administration (FDA) to treat 
chronic lymphocytic leukemia [53, 54]. Apoptosis has 
been a promising target for anticancer therapy in the 
past decades and BCL-2 proteins and their interactions 

can induce apoptosis through intrinsic pathways [55, 
56]. Recent discoveries in the study of apoptosis and 
the tumor microenvironment have revealed that BCL-2 
proteins are also important mediators of metabolic path-
ways [40, 57–59]. Previous studies have also shown that 
Obatoclax can inhibit the migration and proliferation of 
colorectal cancer cells [60, 61], and increase the chemo-
sensitivity of colon cancer cells to fluorouracil by reduc-
ing hypoxia-inducible factor (HIF)-1 transcriptional 
activity [62].

Recent research using scRNA-seq indicates that the 
tumor heterogeneity contributes to drug resistance and 
treatment failure in cancer therapy. However, the accu-
racy of drug response prediction is restricted by the lim-
ited size and considerable cost of available single cell drug 
perturbation data. Currently, most drug response models 
utilize the high-throughput drug screening database on 
cancer cell lines to make inferences on drug responses. 
Since the cancer cell line gene expression profiles and 
most tumor samples were analyzed by bulk RNA-seq, 
which captures an averaged estimation across tumor cell 
types, specialized methods are needed to utilize large-
scale drug screens of CCLs to predict drug response at 
the cellular level.

The inherent benefit of employing a deep learning-
based framework for drug response prediction is a 
subject of considerable interest within the field of bioin-
formatics. Deep learning models can effectively handle 
diverse scRNA-seq data and accurately predict cellular 
drug sensitivity labels due to their flexibility and ability to 
learn complex relationships [63]. For example, scDEAL is 
a deep transfer learning method based on neural network 
architecture, which combines bulk and scRNA-seq data 
to predict cancer drug response [64]. SCAD implemented 
an adversarial learning approach by training a domain 
discriminator to address cross-domain bias between bulk 
and scRNA-seq datasets [65]. However, a major limiting 
factor against predicting drug response in heterogeneous 
tumor samples is insufficient training power due to the 
lack of public benchmark data at the single-cell level.

In this study, we attempted to address the above-men-
tioned challenge by integrating deep learning methods 
and signature-based methods to explore their ability to 
predict drug response. Instead of relying on detection 
of shared expression patterns between bulk and scRNA-
seq data, the identification of biomarkers depends only 
on bulk RNA-seq and bulk sample labels. Drug response 
can be predicted based on the hypothesis that drug gene 
expression patterns, which have the potential to coun-
teract the gene expression signature associated with the 
malignant or high-risk phenotype, are more likely to 
have therapeutic effects [4]. Using similar approach, the 
Beyondcell method successfully identified distinct drug 
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response subpopulations before and after bortezomib 
treatment in a breast cancer single-cell dataset [5].

The deep learning drug response prediction model 
offers several advantages. The reason for its effective-
ness lies in its integration of pathway activity estima-
tion and drug descriptors as features [28]. One benefit 
is that drugs’ structural characteristics may be used as 
explanatory variables to predict pharmaceuticals that are 
absent from the training set. The interpretability of drug 
response predictions was enhanced by using pathway 
enrichment scores rather than gene expression levels. 
Our application of Precily model on the CRLM scRNA-
seq dataset illustrated that the Precily model, initially 
trained on bulk cancer cell line drug perturbation data, 
can be effectively extended for predicting drug responses 
at the single-cell level. However, a significant challenge 
in accurately predicting drug responses at the single-cell 
level is the insufficient training capacity, primarily due to 
the absence of publicly benchmarked data, which hin-
ders the ability to make precise predictions. This aspect 
of data availability and its impact on predictive accuracy 
is an important consideration for advancing the field of 
personalized medicine.

The analysis of signaling pathways associated with 
MAOS and MAPS scores reveals that the apoptotic path-
way is more prevalent in low-risk CRLM patients. This 
finding aligns with the targeting pathway of Obatoclax 
and ABT-737, providing evidence for the effectiveness 
and accuracy of Precily’s prediction. Phosphorylation and 
N-methyl-D-aspartate receptor-related signaling path-
ways were found to be enriched in drug-resistant, high-
risk patients with CRLM (Supplementary Figure S9A and 
B). The enriched pathways showed significant negative 
correlations with the drug response signatures of Oba-
toclax and ABT-737. Additionally, they exhibited signifi-
cant correlations with genes that are highly expressed in 
myeloid and stromal cells among the MAOS and MAPS 
signature genes (Supplementary Figure S9C and D). 
This finding indicates that the drugs we tested have the 
potential to modulate intercellular communication in the 
tumor microenvironment of CRLM by influencing spe-
cific signaling pathways, ultimately leading to the induc-
tion of tumor cell apoptosis. This approach allows for a 
broader understanding of how specific pathways are dys-
regulated in CRLM patients.

In summary, we have developed two signatures that 
can be used to stratify high-risk CRLM based on their 
gene expression characteristics. We employed deep 
learning-based drug response prediction models to 
screen candidate drugs for high-risk CRLMs. We sub-
sequently validated our findings through in vitro and in 
vivo experiments. Our findings may provide new insights 
into the targeted treatment of CRLM. Further validation 
is required to determine the prognostic value of MAOS 

and MAPS. To validate the accuracy of current prognos-
tic models, we utilize OS data as PFI information may not 
be available in all datasets. Despite its limitations, this 
study contributes to potential advancements in the pre-
cise treatment of colorectal liver metastases (CRLM).

Conclusions
In conclusion, our study has successfully established two 
gene signatures, namely MAOS and MAPS, which can 
be utilized to predict the prognosis of CRC patients with 
liver metastases. The MAOS and MAPS are highly thera-
peutically relevant in stratifying patients with CRLM into 
high- and low-risk groups. In contrast to traditional drug 
discovery strategies based on a specific drug target, the 
study applied an interpretable deep learning model and 
drug sensitivity databases to predict drug responses and 
screen potential therapeutic drugs by integrating path-
way activity estimation and drug descriptors. Finally, our 
study identified a BCL-2 inhibitor Obatoclax through 
wet-lab in vitro assays and a colorectal liver metastasis 
model. This study has provided biomarkers for colorec-
tal liver metastasis and has also contributed to the devel-
opment of novel drug discovery strategies for precision 
oncology.
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