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Abstract 

Background Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated 
bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans 
DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic 
responses.

Methods To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK 
and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells’ survival 
in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary 
tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance 
of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). 
We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans 
DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU.

Results Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin 
and 5FU. However, the use of ARV-1502 effectively restored the drugs’ anti-cancer efficacy.

Conclusions Our findings offer a practical framework for designing and implementing novel personalized anti-
cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring 
the potential for microbiome-based personalized cancer therapies.
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Background
The cancer-associated microbiota is one of the most sig-
nificant components of the tumor microenvironment 
[1–3] with profound effects on anti-cancer drug response 
and toxicity [4], and a number of studies clearly show 
that the microbiota composition affects the effectiveness 
of chemotherapeutic drugs [5, 6]. In particular, cancer-
associated bacteria (CAB) such as Mycoplasma hyorhinis 
[7–9] and Fusobacterium nucleatum [10–14] reduce the 
efficacy of certain anti-cancer drugs including gemcit-
abine, cisplatin and 5FU both in vivo and in vitro, though 
the molecular mechanism(s) involved are still largely 
unknown. Indeed, a complete map of the microbiota–
host–drug interactome in cancer is lacking, mainly due 
to the difficulty in identifying the contribution of specific 
bacterial factors to both tumor development, progression 
and response to therapy. Understanding how the many 
players involved in this extremely complex biological sys-
tem interrelate to prevent optimal drug response would 
pave the way for the development of effective anti-cancer 
strategies.

Colorectal and gastric cancers are among the lead-
ing cause of tumor-related mortality, both in the United 
States and worldwide [15]. For the treatment of both 
cancers is widely used a combination therapy regimen 
comprising platinum-based molecules like cisplatin and/
or the anti-metabolite 5-Fluorouracil (5FU) [16–18]. 
Administration of either molecule results in DNA dam-
age and RNA synthesis inhibition, leading to cell death 
through a series of cellular events not completely fully 
understood, but which mainly involves p53 activation 
[19–29]. Indeed, most anti-cancer drugs rely on the 
induction or blockage of DNA repair, with consequent 
activation of p53 followed by apoptosis to exert their 
function.

We previously showed that Mycoplasma DnaK, a chap-
erone protein belonging to the Hsp70 family, binds to 
USP10 (ubiquitin carboxyl-terminal hydrolase 10), a reg-
ulator of p53 stability [30]. This binding in turn reduces 
the activities of p53 [30, 31], an essential transcription 
factor that promotes cell cycle blockage and apoptosis 
in the presence of extensive DNA damage [32]. Of note, 
DnaK/HSP70 [33] may be released by the bacteria [34, 
35] and then taken up by uninfected cells [30, 31, 36] 
or directly translocated into the eukaryotic cells upon 
attachment or invasion [37–39]. All these data would 
clearly establish DnaK as a constituent of the tumor 
microenvironment, with the likely ability to affect the 
effectiveness of some anti-cancer drugs.

Here we investigated the effect of M. fermentans DnaK 
on the anti-cancer activity of cisplatin and 5FU. We 
showed that DnaK exogenously added to human cancer 
cell lines greatly reduces the efficacy of both anti-cancer 

drugs, while a DnaK-binding peptide completely restored 
their activity. Next, we confirmed these data in primary 
tumor cells from a knock-in mouse model constitutively 
expressing DnaK generated in our laboratory. By min-
ing human primary cancer sequencing datasets from The 
Cancer Genome Atlas (TCGA) we then detected other 
CAB carrying DnaKs with highly similar amino acid 
composition. Among them, we identified F. nucleatum 
and demonstrated that also its DnaK can inhibit the anti-
cancer efficacy of cisplatin and 5FU when exogenously 
added to cancer cell lines. In conclusion, we highlight a 
new mechanism whereby bacteria hamper anti-cancer 
effects of widely used chemotherapeutic agents. Current 
anti-cancer drugs regimens should consider these data to 
design better personalized treatments in cancer patients 
when planning treatment protocols or when considering 
causes of failing regimens.

Materials and methods
Cell lines
A human colorectal carcinoma cell line (HCT116, CCL-
247) and a gastric adenocarcinoma cell line (AGS, CRL-
1739) used in the experiments were all from American 
Type Culture Collection (ATCC). The cells were cultured 
in a humidified incubator at 37 °C in 5%  CO2 in McCoy 
medium (HCT116) or F-12K medium (Kaighn’s Modifi-
cation of Ham’s F-12 medium) (AGS), all containing 10% 
fetal bovine serum (FBS), 100 U/mL penicillin, 100 U/ml 
streptomycin and 290 µg/mL l-glutamine (all from Ther-
moFisher Scientific, Waltham, MA, USA). The identity 
of cell lines was confirmed by short tandem repeat (STR) 
profiling. The analysis has been conducted at Labcorp 
(Burlington, NC), followed by the comparison with STR 
profiles of known references. We used CLASTR 1.4.4, 
a Cellosaurus STR similarity search tool (http:// web. 
expasy. org/ cello saurus/), to authenticate the cells used 
in our experiments [40, 41]. Our parameters have been 
the following: “Tanabe” as scoring algorithm and 70% as 
score filter.

Expression and purification of Mycoplasma fermentans 
(eM‑DnaK) and Fusobacterium nucleatum (eF‑DnaKs) 
exogenous proteins
Recombinant exogenous DnaKs-V5 used in this study 
were obtained as previously described [30, 42]. Briefly, 
both eM-DnaK and eF-DnaK sequences were inserted 
into a cloning vector for the expression of the protein 
fused to a V5-tag peptide. They were then subcultured 
into TB/LB with Kanamycin, followed by fractionation 
and purification (Biomatik USA, Wilmington, DE). After 
this step, the proteins were extensively dialyzed against 
PBS 1× (pH 7.4), and Coomassie blue-stained SDS-PAGE 
(> 85%) was used to determine their purity. The proteins 

http://web.expasy.org/cellosaurus/
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were then aliquoted to avoid frequent freeze-thaws and 
kept at − 80 °C after reconstitution.

DnaK knock‑in mice and isolation of primary cells
Transgenic animals were generated in collaboration 
with Taconic Biosciences (Rensselaer, NY). Briefly, the 
“CAG-Kozak-DnaK-V5 tag-TAG TAG -polyA” cassette 
was cloned into intron 1 of ROSA26 in reverse orienta-
tion. The V5 tag was added to conveniently detect DnaK, 
which was inserted in the ROSA26 locus by using the 
CRISPR/Cas9-mediated genome editing technology. All 
animal experiments were performed in accordance with 
relevant guidelines and regulations and were approved 
by the University of Maryland School of Medicine Insti-
tutional Animal Care and Use Committee (IACUC). 
Mice were monitored daily and when a spontaneous 
solid tumor mass was detected, the mouse was eutha-
nized, and the mass carefully removed. A portion of the 
tumor mass was placed in formalin and then sent to the 
American Histolabs (Gaithersburg, MD) for the paraf-
fin embedding and the Hematoxylin and Eosin staining 
of the slides. Pictures of the slides has been taken using 
an Olympus BX43 microscope (DP72 camera) and the 
CellSens Standard software (Olympus). The rest of the 
cancer cells were separated in a single-cell suspension 
from the intact tissue by mechanical force and then cul-
tured under normal culturing conditions in RPMI + 10% 
FBS (37℃, 5%  CO2) and partially frozen at − 80 °C.

Treatments with anti‑cancer drugs (Cisplatin and 5FU) 
and ARV‑1502 peptide
To determine the effects of eM-DnaK and eF-DnaKs 
on HCT116 and AGS cells lines treated with different 
anti-cancer drugs, cells were plated 200,000 cells/well in 
6-wells plates. After 24  h, both eM-DnaK and eF-DnaK 
were added to the cultures at a concentration of 10 µg/
mL. After 24 h, anti-cancer drugs (cisplatin 25 µM, 5FU 
75  µM) were added to the cells (both treated and not 
treated with DnaKs). We selected these concentrations of 
platinum-based drugs or 5FU to decrease the number of 
viable cells by at least 50%. Cisplatin was from Selleck-
chem (Houston, TX), while 5FU was from Sigma-Aldrich 
(St. Louis, MO). Parallel cultures of untreated cells were 
the negative controls. Also, parallel treatments of DMF 
(control for cisplatin treatment, dissolved in DMF fol-
lowing manufacturer’s instructions) and DMSO (control 
for 5FU treatment, dissolved in DMSO based on manu-
facturer’s instructions) have been used as negative con-
trols. Cells treated with DMF or DMSO did not show 
increased cell death and their proliferation rate remain 
normal. Thus, we used untreated cells as negative con-
trol. After 48 h of treatment with the anti-cancer drugs, 
cell monolayers were washed in PBS, trypsinized and cell 

viability was measured using the trypan blue assay. The 
trypan blue exclusion assay allows for a direct identifica-
tion and enumeration of live (unstained) and dead (blue) 
cells in the given population.

To verify that bacterial DnaK was responsible for 
reduction in platinum-based drugs and 5FU anti-cancer-
activities, we used a peptide (ARV-1502, optimized from 
pyrrhocoricin and drosocin) which binds to Escherichia 
coli DnaK substrate-binding domain and to decreases its 
ATPase activity [43–46]. More in detail, we pre-treated 
both exogenous DnaKs with ARV-1502 (25  µg/mL) 
before adding them to the culture of HCT116 or AGS 
cells. After 3  h of incubation the complex was added 
to the culture. After 24  h the cells were treated with 
the anti-cancer drugs and then subjected to count with 
trypan blue as previously described. Parallel cultures of 
cells treated with the drugs and DnaKs not complexed 
with ARV-1502 were used as control.

We followed the same experimental procedures 
described above for the treatment of the primary murine 
cancer cells (ex vivo experiments). In particular, primary 
cancer cells from DnaK knock-in mice were treated with 
the same concentrations of anti-cancer drugs (cisplatin 
and 5FU) and with the same concentration of DnaK 
inhibitor (ARV-1502), for the duration of the experi-
ments. As before with the exogenous DnaKs, the primary 
cancer cells have been pretreated with ARV-1502 for 24 h 
before adding the anti-cancer drugs.

Statistical differences in the means were tested using 
Student’s t test. All statistical tests were two-sided.

Western blotting
Western blot was performed to verify the expression of 
DnaK in the mouse primary cancer cells, in the inter-
nalization of the exogenous DnaKs and to validate DnaK 
binding with ARV-1502. HCT116 cells were treated with 
eM-DnaK, with or without ARV-1502, with or without 
Cisplatin, as described in the previous section of Meth-
ods. eM-DnaK was added to the cells at a concentra-
tion of 10 µg/mL. After 72 h since eM-DnaK treatment, 
cell monolayers were washed in cold PBS, trypsinized 
and resuspended in RIPA lysis buffer (Sigma-Aldrich, 
St. Louis, MO) in the presence of protease inhibitors 
(Sigma-Aldrich, St. Louis, MO). The protein concen-
tration was measured by the Bradford assay (Bio-Rad 
Laboratories, Hercules, CA). Thirty micrograms of pro-
tein were resolved by SDS/PAGE, transferred to a poly-
vinylidene difluoride (PVDF) membrane using trans-blot 
turbo transfer system (Bio-Rad Laboratories, Hercules, 
CA), blocked in 5% nonfat dried milk in Tris-Buffered 
Saline (TBS) and probed overnight with either a mouse 
mAb against the V5 tag (#R960-25, Thermo Fisher Scien-
tific, Walthman, MA) to detect the presence of eM-DnaK 
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or a mouse mAb against β-actin (8H10D10) (#3700, Cell 
Signaling Technology, Danvers, MA). Blots were then 
incubated with a secondary HRP-conjugated antibody 
(Cell Signaling Technology, Danvers, MA) and developed 
using an ECL chemiluminescent substrate kit (Genesee 
Scientific, San Diego, CA). They were then exposed and 
acquired using the ChemiDoc MP digital image system 
(Bio-Rad Laboratories, Hercules, CA).

The untreated primary cancer cells underwent the same 
procedures. Briefly, the total proteins were extracted and 
quantified, and after running and blotting, the mem-
branes were probed overnight with either a primary rab-
bit mAb antibody against the V5 tag (#ab182008, Abcam, 
Cambridge, UK) to detect the presence of DnaK-V5, or 
a rabbit mAb against GAPDH (14c10) (#2118, Cell Sign-
aling Technology, Danvers) used as housekeeping. We 
resolved in the same gel eM-DnaK protein as positive 
control and proteins obtained from a spleen of a  DnaK−/− 
animal as negative control.

Surface plasmon resonance (SPR) binding analysis 
of DnaK‑ARV‑1502
Surface plasmon resonance (SPR) binding studies of 
DnaK and ARV-1502 were performed at 25 °C on a BIAc-
ore T100 System (BIAcore, Inc., Piscataway, NY). We 
used as assay buffer HBS-EP, containing 10 mM HEPES, 
150  mM NaCl, 0.05% surfactant P20, pH 7.4, 3  mM 
EDTA. DnaK (2274.9 RUs) was immobilized on CM5 
sensor chips using the amine-coupling chemistry recom-
mended by the manufacturer. Analytes were introduced 
into the flow cells at 35  μL/min in the running buffer. 
Association and dissociation were assessed for 250 s and 
600  s. Resonance signals were corrected for nonspecific 
binding by subtracting the background of the control 
flow-cell. After each analysis, the sensor chip surfaces 
were regenerated with 10 mM glycine solution (pH 2.0) 
with MgCl 1  M and equilibrated with the buffer before 
the next injection.
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Fig. 1 Effect of eM-DnaK and ARV-1502 on viability of HCT116 and AGS cell lines treated with cisplatin and 5FU. Cisplatin 25 µM (A–C) and 5FU 
75 µM (B–D) were added to each well with the indicated cell line alone or in combination with eM-DnaK. Parallel wells of untreated cells were 
used as negative control. Cell viability was assessed by using the trypan blue assay. Percentage of alive cells for each treatment are calculated 
as percentage using the untreated cell as reference. Results are representative of 3 independent experiments for each treatment. Statistical 
differences were tested using Student’s t test. All statistical tests were two sided. ***p < 0.001, **p < 0.01, *p < 0.05, ns = not significant. Treatment 
with ARV-1502 alone showed on average 5–8% reduction in cell viability (data not shown to maintain a clearer visibility of the results)
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TCGA analysis
The presence and distribution of bacteria within human 
cancer tissues, especially Mycoplasma and Fusobac-
terium, was assessed through data mining of human 
primary cancer sequencing datasets from The Cancer 
Genome Atlas (TCGA). TCGA hosts human genomic 
and transcriptomic sequencing data sets from a large 
number of human cancer tissues [47], where bacterial 
sequences can also be retrieved and analyzed to charac-
terize CAB.

RNA-Seq sequences from a total of 10,293 samples 
spanning 33 different cancer types were initially retrieved 
from TCGA (version 9.0), after which analyses were 
focused only on primary tumor samples and solid tissue 
normal samples. As such, samples from the following 
cancers were removed from the analyses: acute myeloid 
leukemia, lymphoid neoplasm diffuse large B-cell lym-
phoma, mesothelioma, skin cutaneous melanoma, chol-
angiocarcinoma, testicular germ cell tumors, as well as 
metastatic, additional metastatic and “additional—new 
primary” samples. After sample filtering, the final dataset 
analyzed was comprised of 9505 primary solid tumor and 

solid tissue normal samples distributed across 27 cancer 
types. To note, some solid tissue normal samples (uveal 
melanoma, uterine carcinosarcoma, ovarian serous cys-
tadenocarcinoma, glioblastoma multiforme, brain lower 
grade glioma, adrenocortical carcinoma) were missing in 
the dataset. Sequences were downloaded in BAM align-
ment format from TCGA, and reads which were indi-
cated in the alignment as mapping to the human genome 
were discarded, since we needed to retain only the 
potential microbial sequences. To distinguish microbial 
sequences from other sequences that did not map to the 
human genome (such as sequencing artifacts or muta-
tions/rearrangements within tumors) we first screened 
the sequences with a Hidden Markov Model (HMM) 
[48] created from the SILVA Release 132 alignment [49] 
and then taxonomically classified the sequences using 
Kraken 2 [50] with a database also based on SILVA 
132. The resulting 16S sequence dataset was taxonomi-
cally assigned to a total of 9510 taxa at 7 different taxo-
nomic levels (from phylum to species) and count tables 
were generated for data visualization and analyses in R. 
Because of the wide variations in the number of reads 

Fig. 2 ARV-1502 increases anti-cancer activity of cisplatin and 5FU in cells from a murine primary cancer constitutively expressing DnaK. A 
Hematoxylin and Eosin (H&E) staining of a spontaneous mass removed from the abdomen of a DnaK positive mouse. The normal architecture 
is effaced by unencapsulated, poorly demarcated, densely cellular neoplasm composed of round cells arranged in sheets. Neoplastic cells have 
variably distinct cell borders, a scant amount of eosinophilic cytoplasm, a round, occasionally indented nucleus with finely stippled chromatin 
and one variably prominent nucleolus. Anisocytosis and anisokaryosis are moderate, and mitotic count is up to 7 in a single high-power field 
(2.32  mm2). These findings are consistent with a round cell neoplasia. The images of the section were taken at 4× (top) and 40× (bottom). B Western 
Blot analysis confirms expression of DnaK-V5 in the murine primary cancer cells isolated from the spontaneous tumor. Both eM-DnaK and DnaK 
expressed in cancer cells were fused to a V5 peptide sequence for convenient detection. eM-DnaK has been used as positive control for antibody 
detection. Cells isolated from a spleen of a  DnaK−/− mouse were used as negative control. Upper part: membrane probed with anti-V5 antibody 
recognizing DnaK-V5. Lower part: membrane probed with an anti-GAPDH antibody. Markers specifying the molecular weight (MW) are indicated. 
C Viability assay of primary murine cancer cells treated with anti-cancer drugs with or without ARV-1502. Cells from the spontaneous tumor mass 
(round cell neoplasia) detected in a DnaK positive mouse were isolated and then treated with the anti-cancer drugs, cisplatin (25 µM) or 5FU 
(75 µM). In parallel, the cells were also treated with ARV-1502. We assessed cell viability by using the trypan blue assay. Percentage of alive cells 
for each treatment are calculated as percentage using untreated cell as reference. The results are representative of two independent experiments 
using primary cells from two different spontaneous tumors. Statistical differences were tested using Student’s t test. All statistical tests were two 
sided. ***p < 0.001, **p < 0.01



Page 6 of 15Benedetti et al. Journal of Translational Medicine          (2024) 22:269 

sequenced across all samples (min: 49,637,151 sequenc-
ing reads; max: 516,415,337 sequencing reads; Additional 
file 3: Fig. S3A, B), 16S counts were then normalized in 
each sample by computing a scaling factor based on the 
number of reads in a sample divided by the number of 
reads in the smallest sample.

Specimen collection and detection of bacterial DnaK using 
qPCR
Frozen biopsies of cancers tissues already identified 
in the Pathology Biorepository Shared Service (PBSS) 
core of the Greenebaum Comprehensive Cancer Center 
at the University of Maryland (GCCC-UM) were col-
lected and stored in deep freezer (− 80  °C). This retro-
spective study was approved by the Institutional Review 
Board at University of Maryland, Baltimore (approval 
number: HP-00040021). All methods were performed 
following the relevant guidelines and regulations. Docu-
mented informed consent was obtained from each study 

participant. Patient demographics and clinical character-
istics were investigated by reviewing the medical records 
and interviews. Minimal associated clinic-pathologic 
data to include tumor histologic type, treatment status 
(treatment naïve vs. post neoadjuvant treatment), treat-
ment regimen, and an assessment of patient treatment 
responses was collated. Since the samples were obtained 
to validate a proof of concept, inclusion criteria, such as 
sex, age or weight, randomization, blinding, power analy-
sis, were considered irrelevant for the study’s objectives. 
Total DNA was extracted from tissues using the DNeasy 
Blood & Tissue Kits (QIAGEN, Hilden, Germany) 
according to the manufacturer’s instructions. DNA con-
centration and purity were recorded using a NanoDrop 
spectrophotometer (NanoDrop Technologies, Wilming-
ton, DE). Mycoplasma and Fusobacterium DnaK genes 
were detected and amplified by qPCR using the following 
primers and probes:

Fig. 3 Distribution of the 30 most abundant bacterial taxa (species level) in both primary solid tumors and normal solid tissues
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– eM-DnaK: F primer: CAA TGC ACA ACG TGA 
AGC CA; R primer: AAG CAG CAG CAG TAG 
GTT CG; probe: 5 6-FAM/AT CGC AGG T/ZEN/A 
AAA TTG CAG G/3IABkFQ/;

– eF-DnaK: F primer: CAA CAC AAG GAC CTA 
CAA AAA C; R primer: CGC AAC AAC TTC 
ATC AGG G; probe:/56-FAM/AA ATC TTA C/
ZEN/T TGT TGG AGG TTC TAC AAG AAT ACC 
A/3IABkFQ/.

Briefly, amplifications were performed in 20  μL reac-
tion mixture containing 1× SsoAdvanced Universal 
Probes Supermix (Bio-Rad Laboratories, Hercules, CA), 
each primer at 300  nM, probe at 200  nM and 50  ng of 
total DNA. Reference standard curves were generated 
using serially diluted plasmids containing the target 
DnaK gene. Aliquots were prepared once by dilution of 
DNA in distilled water and were stored at − 20 °C. Water 
and aliquots of total DNA from HCT116 and AGS cells 
Mycoplasma and Fusobacterium-free were included for 
each of the amplifications as negative controls.

Following activation of DNA polymerase at 94  °C for 
30 s, 40 cycles of amplification (denaturation step, 95 °C 
for 15  s; annealing-extension step, 60  °C for 30  s) were 
performed with CFX384 Real-Time PCR System (Bio-
Rad Laboratories, Hercules, CA). An accurate analysis 
of the melting temperature curve of the generated ampli-
cons was conducted for of the amplifications to rule out 
any non-specific interference.

Generation of data for DnaK domains’ comparison
We started from the Mycoplasma fermentans (MF-
I1—ATFG00000000) [30] template sequence for DnaK. 
The template sequence is reported in Additional file  5: 
Table  S2. We extracted three domains for DnaK. The 
exact positions of the regions of interested are reported, 
separated by semicolons, in the respective sequence 
headers. Domain 1 (NDB) extended within aa1-392, 
domain 2 (SBD) within aa392-507, and finally domain 
3 (α-helical domain) within aa508-638, as described 
[51]. We downloaded 22,155 DnaK bacterial proteins 
from NCBI (query: DnaK_hsp70). We then aligned each 

Fig. 4 Heatmap displaying relative abundance values of bacteria identified in primary solid tumor and normal solid tissue
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fragment of each template against ncbi-blast-2.9.0 against 
the target downloaded proteins. Blast results were fil-
tered to keep only matches > 70% of the length of the 
query, after which the genus information of the matches 
was parsed to generate the distribution plots in Fig. 5.

Results
Exogenous Mycoplasma DnaK reduces the activity 
of cisplatin and 5‑fluorouracil in human cancer cell lines
To test the hypothesis that exogenously Mycoplasma 
DnaK added to cells treated with cisplatin or 5FU could 
reduce their anti-cancer effect, we designed an in  vitro 
assay based on the colorectal carcinoma cell line HCT116 
and the gastric carcinoma cell line AGS. This assay also 
uses purified exogenous M. fermentans DnaK (eM-DnaK) 
recapitulating the conditions whereby cancer cells would 
take up [30, 36] the bacterial protein released in the sur-
rounding tumor microenvironment [34, 37, 52]. This in 
turn allowed us to study DnaK’s effect on cell viability in 
the presence of the anti-cancer drugs.

When HCT116 cells were treated with cisplatin in the 
presence of eM-DnaK, the anti-cancer effect of the drug 

was blunted, and viability greatly increased from 31 to 
53% (Fig.  1A). On the other hand, the presence of eM-
DnaK did not have a statistically significant effect on the 
anti-cancer action of 5FU, and viability increased only 
from 14 to 16% (Fig. 1B).

When AGS cells were treated with cisplatin in the pres-
ence of eM-DnaK, the anti-cancer effect of the drug was 
also reduced, leading to an increase in cell viability from 
40 to 57% (Fig. 1C). Similarly, a reduction of anti-cancer 
activity was also observed following treatment with 5FU 
in the presence of eM-DnaK, with viability increasing 
from 15 to 33% (Fig. 1D).

A specific DnaK‑binding peptide restores the drugs’ 
anti‑cancer activities
To confirm that bacterial DnaK is responsible for reduc-
tion in cisplatin and 5FU anti-cancer-activities, and to 
provide proof of concept for therapeutic intervention, we 
used ARV-1502, a peptide optimized from pyrrhocoricin 
and drosocin, which has been previously demonstrated to 
bind the Escherichia coli DnaK substrate-binding domain 
and to reduce its ATPase activity, without interacting 

Fig. 5 Genus distribution of the top 50 Blast hits for the 3 DnaK domains of Mycoplasma. Domain 1 (NDB) aa1-392, domain 2 (SBD) aa392-507 
and domain 3 (α-helical domain) aa508-638, as described [51]. Fusobacterium is indicated by an arrow
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with human Hsp70 [43, 53, 54]. We first show that the 
peptide is also able to bind eM-DnaK (Additional file 1: 
Fig. S1A) and that ARV-1502 binding to DnaK is not pre-
venting the exogenous protein entry into the cells (Addi-
tional file 1: Fig. S1B). Then, we proceeded to analyze the 
effects of ARV-1502 in HCT116 and AGS cells treated 
with cisplatin and 5FU in the presence of eM-DnaK. In 
all samples we observed a restoration of the original anti-
cancer activity of each drug, indicating that the inhibi-
tory effect of DnaKs was being reversed (Fig. 1A–D).

ARV‑1502 increases the activity of anti‑cancer drugs 
in mouse primary cancer cells expressing Mycoplasma 
DnaK protein
To validate ex vivo our previous data in cell lines, we next 
used primary cancer cells derived from a spontaneous 
solid tumor mass (round cell neoplasia) retrieved from 
the abdomen of a DnaK positive knock-in mice generated 
in our Laboratory (Fig.  2A). These cells constitutively 
express DnaK mimicking an in  vivo situation whereby 
the cells would be infected by M. fermentans expressing 

and secreting DnaK inside the cell’s compartments [39] 
(Fig.  2B). Treatment of the cancer cells with cisplatin 
or 5FU reduced their viability to 60% and 55%, respec-
tively (Fig.  2C). The treatment with the DnaK inhibi-
tor ARV-1502 alone had a slight inhibitory effect (11%), 
resulting in reduced cells viability to 89% compared to 
the untreated cells. When the primary cancer cells were 
treated with the DnaK inhibitor ARV-1502 we observed 
cell viability further reduced to 45% for cisplatin and 
to 40% for the 5FU (Fig.  2C), which amounts to a 25% 
improved anti-cancer effect for both drugs. These data 
indicate that inhibiting DnaK activity re-established the 
activity of anti-cancer drugs in the primary cancer cells, 
confirming the data obtained in the cancer cell lines.

Identification of CAB with amino acid composition similar 
to Mycoplasma DnaK
The Cancer Genome Atlas provides a comprehensive 
dataset of nucleic acid sequences, both DNA and mRNA 
from a number of cancer tissues [2, 47, 55]. We reasoned 
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that bacterial sequences could be retrieved from this 
dataset and used to evaluate the composition of the 
cancer-associated microbiota and the expression of dif-
ferent bacterial genes, after removal of all the eukaryotic 
sequences from the mRNA dataset (see also “Materi-
als and methods”). Using the 16S rRNA gene sequences 
identified in the TCGA data set, we characterized bac-
terial taxa profiles from 9505 primary solid tumor and 
solid tissue normal samples distributed across 27 cancer 
types (Additional file  2: Fig. S2). On average, 263,379 
16S rRNA reads were identified in each cancer type with 
a wide variability across cancer types (from a min of 79 
16S sequences in kidney renal carcinomas to 38,415,049 
16S sequences in ovarian serous cystadenocarcinoma; 
Additional file  2: Fig. S2 bottom panel) which was con-
comitant with the wide range in the sequencing data set 

size for each sample. Overall, the top 5 bacterial taxa 
detected across all samples (both primary solid tumor 
and solid tissue normal) were Proteobacteria, Actinobac-
teria, Gammaproteobacteria, Corynebacterium (all four 
taxa unclassified at the genus level) and Acinetobacter 
baumanii bacteria (Fig.  3). The general bacterial pro-
files, obtained by aggregating samples across all cancers, 
seemed similar when comparing primary solid tumor to 
solid tissue normal samples (Fig.  4). Nonetheless, pre-
vious studies have shown that bacterial biomarkers of 
cancer can be identified for specific cancer types [2, 56, 
57] and that specific bacteria compose the tumor micro-
biome [1], hinting at potential role of specific bacteria in 
certain cancers [58].

To identify other DnaKs that could have the same 
inhibitory effect on anticancer drugs, we searched for 
bacterial DnaKs with amino acid composition similar to 

Fig. 7 Distribution of Fusobacterium and Mycoplasma bacteria across cancer types. The distribution of both Fusobacterium and Mycoplasma 
bacteria was determined in the different cancer samples belonging to the TCGA data set, as described in “Materials and methods”. The average 
relative abundance and distribution of each bacterium in primary solid tumors and solid tissue normal are indicated
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the different domains of Mycoplasma DnaK, which con-
sists of an N-terminal ATPase domain of about 45  kDa 
(NBD, nucleotide binding domain) and a C-terminal sub-
strate of about 25 kDa (SDB, substrate binding domain). 
The latter is further subdivided into a β-sandwich sub-
domain of about 15 kDa and a C-terminal α-helical sub-
domain of 10  kDa [51]. We obtained a list of the first 
50 bacterial hits by average bitscore for each domain of 
Mycoplasma DnaK, which is presented in Fig. 5. Among 
the identified bacteria, Fusobacterium DnaK exhibited 
a high degree of similarity with M. fermentans DnaK. 
These results extend and confirm at the domain level our 
previous phylogenetic amino acid analysis [30]. We note 
that several reports indicate that F. nucleatum is com-
monly associated with gastrointestinal cancer [59–61] 
and progression with cancer and resistance to anti-can-
cer therapy [10–12].

The activity of anti‑cancer drugs is reduced 
by Fusobacterium nucleatum DnaK and restored 
by ARV‑1502
Given the similarity in amino acid composition 
between Mycoplasma and Fusobacterium DnaKs, we 
asked whether exogenously added F. nucleatum DnaK 

(eF-DnaK) could reduce the activity of cisplatin and 
5FU. When cisplatin was used for the treatment of 
HCT116 cells in the presence of eF-DnaK, the anti-
cancer effect of the drug was blunted and viability 
increased from 24 to 35% (Fig. 6A). Also, the anti-can-
cer-effect of 5FU was reduced in the presence of eF-
DnaK, and viability increased from 14 to 17% (Fig. 6B).

When AGS cells were treated with cisplatin in 
the presence of eF-DnaK, the anti-cancer effect 
was reduced and viability increased from 11 to 24% 
(Fig.  6C). Treatment with 5FU in the presence of eF-
DnaK also reduced its anti-cancer effect, and viability 
increased from 31 to 42% (Fig. 6D).

Similarly to what observed with eM-DnaK, treatments 
with ARV-1502 were able to restore the drugs’ anti-can-
cer activity in the presence of eF-DnaK (Fig. 6A–D, and 
also cf. Fig. 1A–D).

Next, we performed an analysis of bacteria associated 
with individual cancer types from the TCGA dataset. In 
some cases, we highlighted clear differences compar-
ing solid tumor tissues to normal samples (Fig. 7). Fuso-
bacterium is more frequently present in the primary 
solid tumor across all samples compared to normal tis-
sues, except for a few types of cancers (namely, prostate 

Fig. 8 Graphical representation depicting the inhibitory effect of DnaK on anti-cancer activity of Cisplatin and 5FU. A Treatment in the presence 
of DnaK results in reduced activity of anticancer drugs. B Adding an inhibitor of DnaK ATP-ase activity restores the activity of the anti-cancer drugs. 
The figure has been created with BioRender.com
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adenocarcinoma, lung adenocarcinoma, and kidney 
chromophobe) where it was more abundant in the solid 
tissues normal (Fig.  7, left panel). To note, Fusobacte-
rium is particularly present in the cancers related to the 
gastrointestinal tract (head and neck squamous cell car-
cinoma, esophageal carcinoma, colon adenocarcinoma 
and rectum adenocarcinoma). Mycoplasma was not as 
frequently observed as Fusobacterium, but still present 
more in the solid tumor tissues compared to the normal 
tissues adjacent to the tumor site (Fig. 7, right panel). As 
observed before, Mycoplasma also showed high abun-
dance in the cancer tissues belonging to the gastroin-
testinal tract. On the other hand, lung squamous cell 
carcinoma and cholangiocarcinoma presented higher 
abundance of Mycoplasmas in the normal tissues com-
pared to the primary solid tumor (Fig. 7, right panel).

Finally, although overall concordance between the 
TGCA data set and in vivo findings has been previously 
reported [2], we decided to further validate our analysis 
by assessing the presence of both Mycoplasma and Fuso-
bacterium DnaKs in primary cancer tissues samples of 
both stomach and colon adenocarcinoma. Both bacteria 
were readily detected by quantitative real-time PCR with 
specific primers and probe, in both tumor tissues in vari-
able amount (Additional file 4: Table S1).

Discussion
Here we show that Mycoplasma DnaK inhibits the anti-
cancer effects of widely used anti-cancer drugs (cisplatin 
and 5FU) in HCT116 and AGS, colorectal and gastric 
carcinoma cell lines, respectively. We also show that a 
DnaK binding peptide (ARV-1502) can fully reverse this 
inhibitory effect. These data were confirmed in a spon-
taneous murine primary tumor from a knock-in mouse 
model constitutively expressing M. fermentans DnaK 
generated in our laboratory. Additional studies are 
ongoing to determine the exact molecular mechanisms 
responsible for this effect. Subsequently, by analyzing 
and comparing the distribution of bacteria in human 
cancer sequencing data sets obtained from TCGA, we 
identified several other CAB with DnaK highly similar to 
Mycoplasma DnaK in amino acid composition, suggest-
ing their involvement in reducing the efficacy of chem-
otherapy. Among them, we identified F. nucleatum, and 
we provide evidence that also its DnaK reduces both cis-
platin and 5FU anti-cancer activity, in turn restored by 
ARV-1502 (Fig. 8).

The use in this study of data from TCGA provides an 
additional layer of clinical relevance to our findings and 
further help to elucidate the role of specific components 
of the human cancer microbiota, namely Mycoplasma 
and Fusobacterium. We note that these bacteria were 
previously shown to reduce the anti-cancer activity of 

drugs like cisplatin and/or 5FU both in vitro and in vivo 
[8, 10, 12, 13]. Furthermore, recent research revealed that 
in cancer patients undergoing cisplatin and 5FU treat-
ment, the level of F. nucleatum was a predictive marker 
for chemotherapy response, although the exact molecular 
mechanism(s) behind this observation was not investi-
gated [11]. It tempting to speculate that increased levels 
of bacteria are correlated to increased levels of DnaK 
expression. Additional studies are needed to correlate 
these levels with response to therapy.

Based on our data, we propose that DnaK reaches the 
intracellular compartments by two routes: (i) taken up 
by cancer cells [30, 31, 36] after being expressed and 
secreted by bacteria present in the tumor microenviron-
ment, and (ii) by being expressed and secreted inside 
tumor cells by invading bacteria like Mycoplasmas [39, 
62] or Fusobacteria [63]. Intracellular DnaK then binds 
and reduces the activity of host proteins (such as p53) 
involved in the effective response to certain anti-cancer 
drugs [30, 31, 39]. DnaK interaction with co-chaperone 
proteins, including the co-chaperone DnaJ [30], could 
provide the necessary ATPase activity for the chaperone 
function inside the eukaryotic cell [64]. Since ARV-1502 
binds the DnaK ATP-ase region and inhibits the ATP-ase 
activity [43, 44], the peptide would likely act by “locking” 
DnaK in a conformation unable to bind and inhibit the 
client proteins’ functions, thus restoring the drugs’ anti-
cancer activity.

Given their capacity to interact with several crucial 
proteins, DnaKs have the potential to influence signifi-
cant cellular pathways and functions in healthy cells [65]. 
Notably, their engagement with DNA repair compo-
nents can render cells more susceptible to transforma-
tion following damage, a phenomenon we have recently 
demonstrated in  vivo [66]. Moreover, the inappropriate 
activation of protein kinases due to DnaK interaction 
may lead to abnormal cellular activation [42]. We have 
also found that the presence of DnaK is associated with 
an increase in Reactive Oxygen Species and pro-inflam-
matory cytokine production, which may contribute to 
cancer onset and progression [66]. Highlighting the 
functional parallels between DnaK and the HSP70 pro-
tein family, it’s important to note that the HSP70 family 
is overexpressed in various cancers, where they facilitate 
growth and survival of cancer cells [67, 68]. This connec-
tion not only emphasizes DnaK’s critical contributions 
to cancer biology but also reinforces its importance as a 
focal point in cancer research.

Conclusions
In conclusion, the significant finding of our study is that 
two CAB, M. fermentans and F. nucleatum, use a novel 
mechanism to reduce the efficacy of anti-cancer drugs. 
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Moreover, the use of TCGA data provides a broader con-
text for the clinical significance of these findings. Finally, 
this discovery offers a practical framework for designing 
and implementing novel personalized anti-cancer strate-
gies by targeting specific bacterial DnaKs in patients with 
poor response to chemotherapy.
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